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ABSTRACT. In deep learning, interval neural networks are used to quantify the uncertainty of a pre-trained
neural network. Suppose we are given a computational problem P and a pre-trained neural network ΦP that
aims to solve P . An interval neural network is then a pair of neural networks (φ, φ), with the property that
φ(y) ≤ ΦP (y) ≤ φ(y) for all inputs y, that are specifically trained to quantify the uncertainty of ΦP , in
the sense that the size of the interval [φ(y), φ(y)] quantifies the uncertainty of the prediction ΦP (y). In this
paper we investigate the phenomenon when algorithms cannot compute interval neural networks in the setting
of inverse problems. We show that in the typical setting of a linear inverse problem, the problem of constructing
an optimal pair of interval neural networks is non-computable, even with the assumption that the pre-trained
neural network ΦP is an optimal solution. In other words, there exist classes of training sets Ω, such that there
is no algorithm, even randomized (with probability p > 1/2), that computes an optimal pair of interval neural
networks for each training set T ∈ Ω. This phenomenon happens even when we are given a pre-trained neural
network ΦT that is optimal for T . This phenomenon is intimately linked to the instability in deep learning.
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1. INTRODUCTION

Computing confidence intervals for neural networks (NNs) have great potential for significantly enhanc-
ing the trust of AI systems. In recent years, such intervals NNs as described in the abstract, have been
used for a wide range of task, including uncertainty estimation [67, 77, 81], verifying predictions [9, 71]
and enhancing our understanding of their approximation properties [95]. However, recent studies have also
raised issues surrounding the limitations of such intervals [9,71,95]. It has, for example, been demonstrated
how interval analysis of NNs cannot necessarily verify robust predictions [71], or how for certain problems
it is NP-hard to compute confidence intervals for NNs [95]. More broadly, this follows the larger trend in
machine learning the last few years of studying the limitations of AI-systems [87], whether it is for large lan-
guage models [100], predictive models [45, 50] or limitations of training algorithms [39]. Thus, a pertinent
question is the following:

Suppose there exist interval NNs that provide uncertainty quantification of a neural net-
work, can they be computed by an algorithm?

1



2 LUCA EVA GAZDAG, VEGARD ANTUN, AND ANDERS C. HANSEN

In this work, we continue the trend mentioned above and address the above question by investigating
whether one can design classes of training datasets for which any choice of training algorithm fails to
compute so called interval NNs for uncertainty quantification. We consider the procedure proposed by Oala
et al. in [77] for computing interval NNs for linear discrete inverse problems and we show that for certain
classes of training data there does not exist any algorithm that can compute approximations to these interval
NNs beyond a certain accuracy.

The mechanism causing this phenomenon utilises an inherent instability of the training procedure with
respect to the training datasets. A consequence of this instability and the subsequent lack of reliable algo-
rithms have several consequences (see §3.3 for a more detailed description):

One may prove existence of interval NNs providing uncertainty quantification for DL methods, over
some class of input training sets. However, any algorithm trying to compute the interval NNs over this class
will yield incorrect uncertainty on some input training set. The incorrectness can manifest in two ways:

(1) The incorrectness can lead to the conclusion that there are no – or small – uncertainties, when in
fact the uncertainties may be severe.

(2) Or the incorrectness can lead to the conclusion that there are severe uncertainties – when in fact –
we have sharpness for the optimal interval neural networks.

Another issue that arises from the instability, is that training interval NNs will be susceptible to data poison-
ing. That is, the phenomenon where an attacker is allowed to alter some portion of the training data, often in
an imperceivable way, causing the trained system to behave in an undesirable way for certain inputs. In this
work, we demonstrate that there exist inputs such that even an arbitrarily small perturbation of the training
dataset leads to significantly different interval neural networks when using standard training procedures.

1.1. Notation. We start by introducing some useful notation. The main essence of this paper is the study
of neural networks, we therefore start by giving a precise definition of this concept. Let K be a natural
number and let N := (N0, N1, . . . , NK−1, NK) ∈ NK+1. A neural network with dimension (N,K) is a
map Φ : RN0 → RNK such that

Φ(x) := V (K) ◦ σ ◦ V (K−1) ◦ σ ◦ V (K−2) ◦ · · · ◦ σ ◦ V (1)x,

where, for k = 1, . . . ,K, the map V (k) is an affine map from RNk−1 → RNk , that is V (k)x(k) =

W (k)x(k) + b(k), where b(k) ∈ RNk and W (k) ∈ RNk−1×Nk . The map σ : R → R is interpreted as
a coordinate wise map and is called the non-linearity or activation function: typically σ is chosen to be
continuous and non-polynomial, in [77] σ is chosen to be the ReLu-function.

Two other useful concepts for this paper are the element wise min and max functions, as these play an
essential role in the construction of interval neural networks and in our proofs. For any vectors x1, x2 ∈ Rn,
we define max{x1, x2} = zmax and min{x1, x2} = zmin, with

zimax = max{x1
i , x

2
i } =

x1
i , if x1

i ≥ x2
i

x2
i , otherwise

and zimin = min{x1
i , x

2
i } =

x1
i , if x1

i ≤ x2
i

x2
i , otherwise.

for i = 1, . . . , n.

2. INVERSE PROBLEMS AND INTERVAL NEURAL NETWORKS

2.1. Linear discrete inverse problems. Throughout this paper we study the construction of interval neural
networks in the context of solving linear discrete inverse problems. A linear discrete inverse problem can
be expressed as follows:

Given measurements y = Ax+ e ∈ Rm of x ∈ RN , recover x. (2.1)

Here A is an m × N real-valued matrix modelling the measurement process of x, and e models measure-
ment noise. While seemingly simple, this equation is sufficiently expressive to model many real-world
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applications. Examples include most types of medical and industrial imaging (MRI, CT, microscopy) [3],
image deblurring, statistical estimation [92], etc. These types of problems have been extensively studied
in sparse recovery and compressed sensing when x is a sparse vector or a vector with some structured
sparsity [2–4, 10, 20, 25, 27, 28, 43, 46, 60, 61]. However, recent developments have led to a plethora of AI
techniques [6, 8, 53, 54, 59, 68, 78] for solving these types of problems.

In many of the applications listed above the rank(A) < N , either because m < N or because the
matrix A is rank-deficient. In both cases, the kernel of the matrix is non-trivial, which means that even
in the noiseless setting, the linear system in (2.1) does not have a unique solution. To make the problem
tractable whenever rank(A) < N , it is therefore customary to introduce a set U1 ⊂ RN called the model
class [3, 27, 43, 60, 61], and assume that x belongs to this set. We may, therefore, rewrite the noiseless
problem as follows:

Given measurements y = Ax ∈ Rm of x ∈ U1 ⊂ RN , recover x. (2.2)

For the remainder of this paper we consider the noiseless version of (2.1) presented above, because
providing results about computational barriers in the noiseless setting gives stronger results. If constructing
optimal interval neural networks is non-computable in the noiseless setting, there should be no hope of
constructing optimal interval neural networks from noisy measurements either.

Traditional methods for solving (2.2) typically make explicit assumptions about the set U1 and design the
reconstruction mapping based on this choice. Examples of sets U1 found in the literature are sparse vectors,
union of subspaces, manifolds, etc. [19,27,66]. Nowadays, learning based methods are popular alternatives
to the traditional methods whenever one has access to a dataset,

T = {(x(1), y(1)), . . . , (x(`), y(`))} ⊂ RN × Rm, (2.3)

of training examples. For these methods, one seeks to find a NN Φ: Rm → RN for which Φ(y) ≈ x, for
each (x, y) ∈ T and preferably also for all (x, y) in some holdout test set. Thus, for learning based methods,
one does not describe U1 mathematically as for the traditional methods, but one implicitly aims to learn U1

from the data T , by training a neural network which maps Ax 7→ x for each x ∈ U1.

2.2. Computing interval neural networks for inverse problems. In [77] the authors proposed to compute
a pair of interval NNs φ, φ : Rm → RN for the problem in (2.1), whose objective is to provide confidence
intervals for a NN Φ: Rm → RN trained to solve the inverse problem. The confidence intervals would be
computed component wise as φ(y′)− φ(y′) for inputs y′, by ensuring that the trained interval NNs satisfy

φ(y) ≤ Φ(y) ≤ φ(y) componentwise for all inputs y.

The idea proposed in [77], is then to utilize the component wise confidence intervals provided by these NNs
to detect potential failure modes for Φ.

The method proposed in [77] works as follows. Given a dataset T as in (2.3) one first trains a feed-
forward ReLU NN Φ: Rm → RN using a squared-error loss function. Then, given the weights W (k) and
the biases b(k) of Φ, one trains two interval NNs φ, φ : Rm → RN with the same number of layers as Φ, by
minimizing the objective function

FT ,β(φ, φ) :=
∑

(x,y)∈T

‖max{x−φ(y), 0}‖22 +‖max{φ(y)−x, 0}‖22 +β‖φ(y)−φ(y)‖1, β > 0 (2.4)

subject to the constraints W (k) ≤ W (k) ≤ W
(k)

and b(k) ≤ b(k) ≤ b
(k)

, where all inequalities are meant
entry wise, and W (k),W

(k)
, b(k), b

(k)
are the weights and the biases of φ, φ respectively.

The observation made in [77] is that one can design a clever architecture for φ, φ, that can mimic interval
arithmetic for the weights and biases by using the interval property of these parameters. This architecture
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heavily exploits the fact that the ReLU activation function ensures that the input to each layer is non-
negative. We refer to [77], for further details on this, but we note that this ensures that φ(y) ≤ Φ(y) ≤ φ(y)

for all y ∈ Rm.
Our goal in this work is to investigate whether there exists classes of training sets, for which no algorithm

can reliably compute interval NNs. Following [77], these interval NNs must necessarily depend on the pre-
trained NN Φ, the optimization parameter β ∈ R, and the considered training set T . In this work, we
assume throughout that β > 0 is a given fixed dyadic number (a number which is exactly representable on
a computer). In addition, we make several well-posedness assumptions about T and Φ, to ensure that our
results are not a consequence of unreasonable training data or poor training of the neural network Φ.

We start with assumptions about T . Let BN1 (0) denote the open unit Euclidean ball in RN , and assume
that for a given integer ` > 1 and a given model class U1 ⊆ BN1 (0), each x-coordinate of the training set
T = {(x(i), Ax(i))}`i=1 belongs to the model class U1. That is, the set T is a member of

T`,U1
:= {{(x(1), Ax(1)), . . . , (x(`), Ax(`))} ⊂ U1 ×A(U1) : x(1), . . . , x(`) ∈ U1}. (2.5)

We require that U1 ⊂ BN1 (0) because we are interested in measuring the error of an algorithm relative to
the size of the training sets, and BN1 (0) is an arbitrary, yet practical, restriction on the size of the training
sets.

Throughout the paper, to mitigate the effects due to poor training of Φ, we assume that for a given
training set T , the corresponding pre-trained neural network Φ, satisfies Φ(y) ∈ VT (y) for all y ∈ Rm,
where VT : Rm ⇒ Rn is, the potentially multivalued map, given by

VT (y) := argmin
z∈RN

dist(z, π1(T )) + ‖Az − y‖2, (2.6)

with dist(z, π1(T )) := infu∈π1(T ) ‖z − u‖2, and where π1(T ) := {x ∈ RN : (x, y) ∈ T }. The
double arrow notation ⇒ indicates a multi-valued map. This mapping is inspired by the notion of instance
optimality, introduced in [34], and later developed in works such as [24, 42, 98]. Since x ∈ π1(T ) implies
that x ∈ VT (Ax), we get that the neural network Φ has an excellent performance on all elements in π2(T ),
where π2(T ) := {y ∈ Rm : (x, y) ∈ T }, which means that Φ maps y = Ax to a unique x, or selects one
out of the (many) solutions when π1(T ) has redundant elements.

Further, we need to make sure that the classes of neural networks that we are working with are rich enough
to guarantee the existence of well-behaved interval neural networks. We do not wish for our computational
barriers to arise due to the lack of existence of interval neural networks nor the lack of expressiveness of
these networks. The following assumption is a technical assumption that ensures this.

Assumption 2.1. For a given fixed integer ` ≥ 1, we assume that NN ` is a class of neural networks
such that for any collection T =

{
(x(1), y(1)), . . . , (x(`), y(`))

}
⊂ RN × Rm, where each y-coordinate is

distinct, the following holds:

(i) (`-interpolatory): There exists a neural network Ψ ∈ NN `, such that Ψ(y) = x for each (x, y) ∈
T .

(ii) For any choice of x′ ∈ RN , any k ∈ {1, . . . , `} and any Ψ ∈ NN ` satisfying (i), there exist neural
networks φ, φ ∈ NN `, such that
(a) φ(y) ≤ Ψ(y) ≤ φ(y) for all y ∈ Rm, and
(b) such that φ(y) = φ(y) = x for all (x, y) ∈ T \ {x(k), y(k)}, and
(c) φ(y(k)) = min{x′, x(k)} and φ(y(k)) = max{x′, x(k)}.

Here the first condition states that the network Ψ is well-trained, i.e., that it interpolates all the training
data in the set T . The second condition is centered on the existence of certain interval neural networks.
Condition (a) states that there exists interval neural networks φ and φ that provide elementwise upper and
lower bounds for the chosen network Ψ. Condition (b), states that these interval neural networks provide
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sharp interval bounds for all elements in T , except for on one (arbitrarily chosen) input pair (x(k), y(k)),
and condition (c) gives precise values on the output of these networks for the chosen input y(k).

Our main motivation for introducing Assumption 2.1 is to allow the most general results possible, while
securing existence of well-behaved interval neural networks. We do not restrict our attention to classes of
ReLU networks, but rather extend our results to any class of neural networks that satisfies Assumption 2.1.
We wish to highlight that Assumption 2.1 is satisfied by any class of ReLU-networks of fixed depth greater
than or equal to 2. We illustrate this in Appendix A. Thus, proving results for classes of NNs that satisfy
Assumption 2.1 is strictly stronger than addressing the classes of neural networks that are considered by the
authors in [77].

We assume throughout the paper that all the neural networks that we are working with are contained in a
classNN` that satisfies Assumption 2.1. In particular we assume that, for a given training set T and a given
class of neural networks NN`, that satisfies Assumption 2.1, the pre-trained neural network Φ belongs to
the following set ofW(T ,NN`) defined by

W(T ,NN`) := {Ψ ∈ NN` : Ψ(y) ∈ VT (y) for all y ∈ Rm}. (2.7)

We also require that the interval neural networks φ and φ belong to NN`, and that they respect the
interval property φ(y) ≤ Φ(y) ≤ φ(y) for all y ∈ Rm. In order to ensure this we introduce the following
optimization classes:

NN u
Φ = {φ : Rm → RN | φ ∈ NN` and φ(y) ≤ Φ(y) for all y ∈ Rm}, and (2.8)

NN o
Φ = {φ : Rm → RN | φ ∈ NN` and Φ(y) ≤ φ(y) for all y ∈ Rm}. (2.9)

Remark 2.2. The optimization classes above state properties of the neural networks Φ, φ and φ, rather than
properties of the parameters of these networks. This gives us much greater flexibility in designing these
NNs, because the condition φ(y) ≤ Φ(y) ≤ φ(y) is strictly weaker than the conditions of having both

W (k) ≤W (k) ≤W (k)
and b(k) ≤ b(k) ≤ b(k)

.

Remark 2.3. In [77], the neural networks Φ and φ, φ have slightly different architectures, due to the fact
that φ and φmodel interval arithmetic for Φ. It is straightforward to state Assumption 2.1, with two different
neural network classes, adopting this detail into our result. However, in the interest of keeping things short
and clean, we do not make this distinction.

3. MAIN THEOREM

3.1. Preliminaries. We introduce some notation on how to encode the parameters of a neural network Φ.
Given the number of layers K ∈ N, and some pre-fixed dimensions N0, N1, . . . , NK ∈ N, we define θΦ to
be the collection

θΦ =

K⋃
k=0

{b(k)
j }

j=Nk
j=1 ∪ {W (k)

i,j }
i=Nk−1,j=Nk
i,j=1 . (3.1)

In other words, θΦ stores the information about the entries of the weights and the biases of the neural network
Φ with pre-fixed dimensions. With this in place, we give the following more precise statement about our
objective. For a given class NN` that satisfies Assumption 2.1, a given model class U1, a parameter β > 0,
a collection

Ω ⊆ {(T , θΦ) | T ∈ T`,U1
, θΦ parameters of Φ, and Φ ∈ W(T ,NN`)}, (3.2)

and a mapping Ξβ : Ω ⇒ NN u
Φ ×NN

o
Φ, given by

Ξβ(T , θΦ) = argmin
ψ∈NNuΦ ,ψ∈NNoΦ

FT ,β(ψ,ψ), (3.3)
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our goal is to investigate whether we can compute an element (φ, φ) ∈ Ξβ(T , θΦ) for each pair (T , θΦ) ∈ Ω,
when reading inexact inputs. Throughout the paper we will assume that Ξβ(T , θΦ) 6= ∅. This is obvious for
standard choices of the nonlinear σ.

We say that an algorithm Γ : Ω → NN u
Φ × NN

o
Φ approximates an optimal pair of interval neural

networks (φ, φ) ∈ NN u
Φ ×NN

o
Φ to accuracy δ, for a training set T , if

distT (Γ(T , θΦ),Ξβ(T , θΦ)) := inf
(φ,φ)∈Ξβ(T ,θΦ)

dT (Γ(T , θΦ), (φ, φ)) ≤ δ,

with

dT ((φ, φ), (ψ,ψ)) = max

{
sup

y∈π2(T )

‖φ(y)− ψ(y)‖22, sup
y∈π2(T )

‖φ(y)− ψ(y)‖22

}
, (3.4)

where π2(T ) := {y ∈ Rm : (x, y) ∈ T }.

3.2. Inexactness and the main theorem. For completeness, we give an intuitive explanation of why we
need to consider inexact input and what we mean by inexact input. Due to the discrete nature of modern
computers, a training set T = {(x(j), y(j))}rj=1 can often not be represented exactly on a computer, because
the only numbers that are exactly representable are a subset of the dyadic rationals given by D = {a2−j :

a ∈ Z, j ∈ N}. The matrix A could, for example, have irrational entries, which happens in many real world
applications. The entries of A can only be approximated in finite base-2 arithmetic, giving rise to round-off
approximations, and an inexact representation of the elements in the training set T .

Thus, for each choice of training set T , we assume that the algorithm has access to a sequence of dyadic
training sets {Tn}n∈N, where for each (x, y) ∈ T and n ∈ N, there is a pair (xn, yn) ∈ Tn ⊂ DN × Dm,
such that for all i = 1, . . . , N and j = 1, . . . ,m, we have that |xni − xi| ≤ 2−n and that |ynj − yj | ≤ 2−n.
With n(N) = n+ dlog2(

√
N)e and n(m) = n+ dlog2(

√
m)e we then get that

‖xn(N) − x‖2 ≤ 2−n and ‖yn(m) − y‖2 ≤ 2−n.

Similarly, for each parameter θhΦ for h ∈ H , whereH is some finite index set for the parameters of Φ, there is
a dyadic sequence of numbers {θh,nΦ }n∈N, such that for each n ∈ N we have that |θh,nΦ −θhΦ| ≤ 2−n. At last,
we require that the approximations satisfy the same well posedness assumptions as T and Φ. Specifically,
that Tn ∈ T`,U1 for each n ∈ N, and that the neural network Φn, represented by the parameters {θh,nΦ }h∈H ,
satisfies Φn ∈ W(Tn,NN`) for each n ∈ N.

We require that a successful algorithm should work on any approximating sequence of the form
({Tn}n∈N, {θΦn}n∈N) . Note that this extended computational model accepting inexact input is standard
and can be found in many areas of the mathematical literature, and we mention only a small subset here
including the work in [12, 21, 35–37, 39, 40, 48, 49, 51, 55, 56, 63, 65, 89].

Remark 3.1. The above model means that for each training set T = {(x(j), y(j))}rj=1 and for each pre-
trained neural network Φ ∈ W(T ,NN`), we have infinitely many collections of approximate sequences

(T̃ , θ̃Φ) = ({{(x(j),n, y(j),n)}n∈N}rj=1, {{θ
h,n
Φ }n∈N}h∈H) (3.5)

as described above. A sequence of approximations is provided to the algorithm through an ’oracle’. For
example, in the case of a Turing machine [89], this would be through an oracle input tape (see [63] for the
standard setup), or in the case of a Blum-Shub-Smale (BSS) machine [22], this would be through an oracle
node. The algorithm can thus ask for an approximation to any given accuracy as described above, and use as
many queries as desired. We want to emphasise that our results hold regardless of the computational model
for the ’oracle’. In particular, all our results hold in the Markov model based on the Markov algorithm [82]
– i.e. when the inexact input is required to be computable, in particular when {(x(j),n, y(j),n)}n∈N and
{θh,nΦ }n∈N are computable sequences for each j = 1, . . . , r and h ∈ H .
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We end this section by informally stating the main theorem of this paper. See Theorem 5.8 for the detailed
statement.

Theorem 3.2 (Non-existence of algorithms). Let m,N ∈ N with N ≥ 2, and let A ∈ Rm×N be such
that 1 ≤ rank(A) < N . Let ` ≥ 2, κ ∈ (0, 1/3) and let NN` be a class of neural networks that
satisfy Assumption 2.1. Then, for any β ∈ (0,

√
κ/(4
√

2N)), there exist infinitely many model classes
U1 ⊆ BN1 (0), and for each model class, infinitely many collections

Ω = {(T , θΦ) : T ∈ T`,U1 and Φ ∈ W(T ,NN`)}

of training sets and corresponding pre-trained neural networks, such that no algorithm, even randomised
(with probability p > 1/2), can approximate an optimal pair of interval neural networks (φ, φ) ∈ Ξβ(T , θΦ)

for all elements (T , θΦ) ∈ Ω to accuracy κ/2, when reading inexact input.

3.3. Consequences of the main theorem. Theorem 3.2 tells us that there exists classes of training sets Ω,
such there exists no algorithm, even randomized, that can approximate an optimal pair of interval neural
networks, for each training set T ∈ Ω. Moreover, that this happens even when we are given a pre-trained
neural network ΦT , that is optimal for T , for each T ∈ Ω. The problem of constructing an optimal ΦT

for each T ∈ Ω is non-computable in itself [51], but Theorem 3.2 shows that, even if we had an oracle
providing such a network, there are cases where we would not be able to give a correct classification of it’s
uncertainty. Recall that the projections onto the coordinates of a training set T are denoted by

π1(T ) = {x ∈ RN : (x, y) ∈ T } and π2(T ) = {y ∈ Rm : (x, y) ∈ T }. (3.6)

The goal of minimizing (2.4) is to provide the sharpest possible bounds for the set Xy :− {x ∈ π1(T ) :

y = Ax} for each y ∈ π2(T ), in the sense that the interval [φ(y), φ(y)] should be the smallest possible with
the property that φ(y) ≤ x ≤ φ(y) for all x ∈ Xy , where the inequalities are meant component wise. The
failure of constructing an optimal pair of interval neural networks can lead to two different types of errors:

(1) (Wrong certainty prediction.) In the case where Xy = {x1, x2} with x1 6= x2 for a y ∈ π2(T ),
the reading of inexact input could lead the computer to interpret the pairs (x1, y), (x2, y) ∈ T as
two pairs (x1, y1) and (x2, y2) with y1 6= y2. Minimizing (2.4) with this interpretation would yield
that φ(y1) = φ(y1) = x1 and that φ(y2) = φ(y2) = x2, yielding an uncertainty score of zero for
both y1 and y2, whereas an optimal solution should give non-zero uncertainty score to the element
y instead. In other words, inexact representations might lead us to think that there is no uncertainty
in our predictions, even when there is uncertainty present.

(2) (Failure of sharpness). On the other hand, the inexact reading of inputs could result in the computer
interpreting two distinct points (x1, y1), (x2, y2) ∈ T with y1 6= y2 as pairs (x1, y), (x2, y), in
this case, the algorithm over-quantifies the uncertainty, and we will think that our prediction is less
certain than it is.

(3) (Data poisoning). Data poisoning is a phenomenon where an attacker subtly alters a portion of the
training data, often in an imperceptible manner, leading to the trained system behaving unreliably
for specific inputs. The above instabilities demonstrate that certain inputs exist such that even
minimal perturbations to the training dataset can result in significantly different interval neural
networks when using standard training procedures.

To make matters even worse, we will have no way of detecting whether we are in failure mode (1) or (2)

above, or in other words whether we in general should expect that there is more, or less, uncertainty than
what our uncertainty estimation predicts.



8 LUCA EVA GAZDAG, VEGARD ANTUN, AND ANDERS C. HANSEN

4. CONNECTION TO PREVIOUS WORK

The results in this paper are part of the program on the limitations of AI, which is the topic of the
18th problem on Smale’s list of mathematical problems for the 21st century [86]. This paper specifically
connects the limitations of AI to the instability of neural networks and the challenges of reliably quantifying
uncertainty computationally. It achieves this by establishing lower bounds on the ’breakdown epsilon’
for the problem of computing interval neural networks. The concept of ’breakdown epsilon’ stems from
generalized hardness of approximation [12, 39, 47], which is part of the mathematics behind the Solvability
Complexity Index (SCI) hierarchy.

Instability in AI. Our results are closely linked to the instability phenomenon in AI methods. Neural
networks become universally unstable (non-robust) when trained to solve such problems in virtually any
application [3, 5, 6, 29, 33, 50, 57, 58, 72, 88]. For early work on the instability of neural networks, see S.
Moosavi-Dezfooli, A. Fawzi, and P. Frossard et al. [72, 73]. Our work particularly relates to the research
of A. Bastounis et al. [11], B. Adcock et al. [1], and V. Antun et al. [6]. For recent developments, see D.
Higham and I. Tyukin et al. [90, 91], as well as the results by L. Bungert and G. Trillos et al. [26], and S.
Wang, N. Si, and J. Blanchet [94].

Generalised hardness of approximation and the mathematics behind the SCI hierarchy. Note that the tools
used and further developed in this paper have roots in generalised hardness of approximation (GHA) and
the mathematics behind the Solvability Complexity Index (SCI) hierarchy. For the initial results on GHA
see A. Bastounis et al. [12], M. Colbrook et al. [39]. See also [51] and Problem 5 (J. Lagarias) in [47].
The SCI framework, introduced in [55], has been further developed through significant contributions by
J. Ben-Artzi, M. Marletta and F. Rösler [15, 16], M. Colbrook et al. [36, 38], and O. Nevanlinna with co-
authors [13, 14, 56]. Notable work also includes contributions by S. Olver and M. Webb [37, 96]. The SCI
hierarchy is intrinsically connected to S. Smale’s [83, 84] foundational program on computational mathe-
matics and scientific computing. This initiative spurred early pioneering work by C. McMullen [69,70,85],
as well as P. Doyle and C. McMullen [44], particularly in the area of polynomial root-finding, leading to
crucial classification results which can be interpreted within the SCI hierarchy. Additional classification
efforts in the SCI hierarchy have been made by S. Weinberger [97]. The mathematical roots of the SCI
hierarchy trace back to the work of K. Gödel [52] and A. Turing [89], though contemporary techniques have
expanded to accommodate any model of computation.

Robust optimization. Our results and the concept of GHA are directly linked to robust optimization and
the seminal work by Ben-Tal, El Ghaoui, and Nemirovski [17,18,74,75]. Specifically, GHA is essential for
any robust optimisation theory aimed at computing minimisers of both convex and non-convex optimisation
problems. Our work illustrates the delicate issues occurring when AI, instability and robust optimisation
meet uncertainty quantification.

Existence vs computability of NNs. There is extensive literature on the existence results of neural net-
works (NNs) [23, 79, 99]. Noteworthy contributions include those by F. Voigtlaender et al. [93], review
papers by A. Pinkus [80], and the work of R. DeVore, B. Hanin, and G. Petrova [41]. We also mention
approximation theorems developed by P. Kidger and T. Lyons [62]. However, as demonstrated by M. Col-
brook, V. Antun et al. in [39], only a small subset of the NNs that are theoretically proven to exist can be
computed by algorithms. Moreover, within the framework proposed by A. Chambolle and T. Pock [31, 32],
the results in [39] show that, under specific assumptions, stable and accurate NNs can indeed be computed.
Additionally, the work by P. Niyogi, S. Smale, and S. Weinberger [76] provides important insights into the
existence of algorithms for learning.
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5. MATHEMATICAL PRELIMINARIES FROM THE SCI HIERARCHY

5.1. Computational problems and ∆1-information. We formulate our results in the language of the Solv-
ability Complexity Index (SCI) hierarchy. The SCI hierarchy is a mathematical framework designed to clas-
sify the intrinsic difficulty of different computational problems found in scientific computing. As its theory
is now extensive, we only cite a limited number of results [12–16, 35–37, 39, 55, 56]. For completeness, we
include the definitions from the SCI hierarchy that are needed for our statements and proofs, and we follow
the lines of [12] in our presentation.

The most basic building block in the SCI hierarchy is the notion of a computational problem. We start
by abstractly defining the concept of a computational problem, and thereafter, we describe how computing
interval neural networks can be embedded into this language.

Definition 5.1 (Computational problem [12]). Let Ω be some set, which we call the domain or input set.
Let Λ be a set of complex valued functions on Ω such that for ι1, ι2 ∈ Ω, then ι1 = ι2 if and only if
f(ι1) = f(ι2) for all f ∈ Λ, called an evaluation set. Let (M, d) be a metric space, and finally let
Ξ : Ω → M be a function which we call the problem function. We call the collection {Ξ,Ω,M,Λ} a
computational problem.

In the above definition, the function Ξ: Ω → M is the problem function which gives rise to the com-
putational problem. It is this function we seek to approximate/compute. The set Ω is the domain of Ξ and
the metric space (M, d) is the range of this function. The set Λ describes which type of information we can
acquire about the input to Ξ. It is this information which can be accessed by an algorithm. For convenience,
we throughout the manuscript restrict our attention to sets Λ that are finite.

Recall that for a given training set size ` ≥ 2, model class U1 ⊂ BN1 (0), and matrix A ∈ Rm×N , we
have that

T`,U1
= {{(x(1), Ax1), . . . , (x(`), Ax(`))} ⊂ U1 ×A(U1) : x(1), . . . , x(`) ∈ U1} (5.1)

denotes the class of all training sets of size ` with respect to the model class U1. Then, for a given class
NN` of neural networks that satisfy Assumption 2.1, the domain Ω of our computational problem is a
collection of pairs of such training sets and the corresponding parameters of a pre-trained neural network
Φ ∈ W(T ,NN`), whereW(T ,NN`) is as defined in (2.7). More precisely,

Ω ⊆ {(T , θΦ) | T ∈ T`,U1
, θΦ parameters of Φ, and Φ ∈ W(T ,NN`)}. (5.2)

For any fixed β > 0, we then seek to compute a minimization of (2.4) for neural networks φ ∈ NN u
Φ

and φ ∈ NN o
Φ. That is, for a given domain Ω of training sets and pre-trained neural networks, our problem

function Ξβ : Ω ⇒M, withM := NN u
T ×NN

o
T is given by

Ξβ(T , θΦ) = argmin
ψ∈NNuΦ ,ψ∈NNoΦ

FT ,β(ψ,ψ), (5.3)

In summary, the problem function Ξβ maps a training set T , and the weights θΦ of a corresponding pre-
trained neural network Φ, to the set of interval neural networks {(ψ,ψ)} ⊆ NN u

Φ ×NN o
Φ, which attain the

minimum value of FT ,β .
Now, in order to measure the approximation error of different algorithms, whose objective is to solve the

computational problem defined above, we need to equipM with a suitable distance function. We therefore
viewM as a metric space equipped with the following metric:

dM((φ, φ), (ψ,ψ)) := max

{
sup

y∈A(U1)

‖φ(y)− ψ(y)‖22, sup
y∈A(U1)

‖φ(y)− ψ(y)‖22

}
, (5.4)

where we identify the neural networks that are equivalent on A(U1). The observant reader might notice that
this metric is slightly different from the distance function introduced in (3.4). The reason for this is that
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we wish to have a unified metric for the whole domain Ω, and the distance function in (3.4) is not suitable
for this, because it depends on each individual training set. However, we will prove that the computational
breakdown for any training set T happens at a point contained in π2(T ).

The set of measurements Λ is the collection of functions that provide us with the information we are
allowed to read as an input to an algorithm. We define the measurements for the training sets T and the
parameters θΦ as follows: Given a training set T , let fkx,i : Ω → R be given by fkx,i((T , θΦ)) = x

(k)
i ,

where the index i denotes the i’th coordinate of the vector x(k). We define fky,j : Ω→ R in the same way to

measure the y-coordinates of T , more precisely fky,j((T , θΦ)) = y
(k)
j . Next, we introduce the measurements

of the parameters θΦ. As we have seen in (3.1), the parameters θΦ of a neural network Φ are represented
as a finite collection of real numbers θΦ = {θhΦ}h∈H with |H| < ∞. We then introduce the following
measurements: Let fhθ : Ω → R be given by fhθ ((T , θΦ)) = θhΦ. In summary, our set of measurements is
given by

Λ = {fky,j , fkx,i, fhθ : Ω→ R | i = 1, . . . , N , j = 1, . . . ,m, , k = 1, . . . , `, and h ∈ H}. (5.5)

As we have mentioned, in these cases we cannot necessarily access or store the values fj(ι) on a com-
puter, but we can compute approximations fj,n(ι) ∈ D + iD such that fj,n(ι) → fj(ι) as n → ∞. The
concept of ∆1-information formalizes this.

Definition 5.2 (∆1-information [12]). Let {Ξ,Ω,M,Λ} be a computational problem. We say that Λ has
∆1-information if for each fj ∈ Λ there are mappings fj,n : Ω→ Q+ iQ such that |fj,n(ι)− fj(ι)| ≤ 2−n

for all ι ∈ Ω. Furthermore, if Λ̂ is a collection of such functions, such that Λ has ∆1-information, we say
that Λ̂ provides ∆1-information for Λ and we denote the family of all such Λ̂ by L1(Λ).

In the above definition the set Λ̂ corresponds to one particular choice of ∆1-information. However,
we want to have algorithms that can handle any choice of such information. To formalize this, we define
computational problems with ∆1-information.

Definition 5.3 (Computational problem with ∆1-information [12]). Let J be an index set for Λ. Then
a computational problem where Λ has ∆1-information is denoted by {Ξ,Ω,M,Λ}∆1 := {Ξ̃, Ω̃,M, Λ̃},
where

Ω̃ =
{
ι̃ = {fj,n(ι)}j,n∈J×N : ι ∈ Ω, {fj}j∈J = Λ, |fj,n(ι)− fj(ι)| ≤ 2−n

}
,

Moreover, if ι̃ = {fj,n(ι)}j,n∈J×N ∈ Ω̃ then we define Ξ̃(ι̃) = Ξ(ι) and f̃j,n(ι̃) = fj,n(ι). We also set
Λ̃ = {f̃j,n}j,n∈J×N. Note that Ξ̃ is well-defined by Definition 5.1 of a computational problem and that the
definition of Ω̃ includes all possible instances of ∆1-information Λ̂ ∈ L1(Λ).

Lastly, we describe the precise notation for inexact representations of the elements in our specific case.
Let Λ̂ = {fn |f ∈ Λ, n ∈ N} be a set that provides ∆1-information for Ω as defined in Definition 5.2. Then,
for an arbitrary (T , θΦ) ∈ Ω and k ∈ {1, . . . , `}, the corresponding inexact representation of (x(k), y(k)) ∈
T is the pair of sequences (x̃(k), ỹ(k)), where

x̃(k) = {{fkx,i,n(T , θΦ)}i=Ni=1 }n∈N and ỹ(k) = {{fky,j,n(T , θΦ)}j=mj=1 }n∈N. (5.6)

Similarly, for the parameters θΦ = {θhΦ}h∈H : The inexact representation θ̃hΦ of θhΦ is the sequence

θ̃hΦ = {fhθ,n(T , θΦ)}n∈N, for each h ∈ H .

We also recall that the approximations satisfy the same well posednes assumptions as T and Φ. More
precisely, that Tn ∈ T`,U1

for each n ∈ N, and that the neural network Φn, represented by the parameters
{θh,nΦ }h∈H , satisfies Φn ∈ W(Tn,NN`) for each n ∈ N. We do this to show that computational barriers
arise, even when the approximations are well-posed.
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5.2. Algorithmic preliminaries: a user-friendly guide. The main goal in this section is to introduce the
concepts of a general algorithm, and of breakdown epsilons, which are needed for the formal statement and
proof of Theorem 3.2. We follow the lines of [12] in our presentation of these concepts also.

5.2.1. General algorithms. The most common theoretical definition of an algorithm is a Turing machine,
however, in this paper we use a more general definition of an algorithm, as this makes our impossibility
statements stronger. In particular, by using a definition which encompasses any model of computation
(such as Turing machines or real BSS machines), we ensure that proved lower bounds for computations are
universally true for all reasonable models of computation. In the SCI hierarchy, this definition is given in
terms of a general algorithm (defined below), whose goal is to capture the notion of a deterministic algorithm
for a given computational problem.

Definition 5.4 (General Algorithm [12]). Given a computational problem {Ξ,Ω,M,Λ}, a general algo-
rithm is a mapping Γ : Ω→M∪ {NH} such that for each ι ∈ Ω the following hold

(i) There exists a non-empty subset of evaluations ΛΓ(ι) ⊂ Λ, and whenever Γ(ι) 6= NH, then ΛΓ(ι)

is finite.
(ii) The action of Γ on ι is determined uniquely by {f(ι)}f∈ΛΓ(ι),

(iii) For every ι′ ∈ Ω such that f(ι′) = f(ι) for every f ∈ ΛΓ(ι), it holds that ΛΓ(ι′) = ΛΓ(ι).

This definition requires some comments. The object NH stands for “non-halting” and is meant to capture
the event that an algorithm runs forever. The introduction of this object requires that we extend the metric
dM onM to also handle NH. We do this as follows

dM(x, y) =


dM(x, y) if x, y ∈M,

0 if x = y = NH,

∞ otherwise.

(5.7)

The three other properties listed in the above definition are requirements that any reasonable definition of
an algorithm must satisfy. The first says that if the algorithm does halt, then it can only have read a finite
amount of information. The second condition says that the algorithm can only depend on the information
it has read. In particular, it cannot depend on information about ι that it has not read. The third condition
ensures consistency. It says that if the algorithm reads the same information about two different inputs, then
it cannot behave differently for these two inputs.

Remark 5.5 (The purpose of a general algorithm: universal impossibility results). The purpose of a general
algorithm is to have a definition that encompasses any model of computation, and that allows impossibility
results to become universal. Given that there are several non-equivalent models of computation, impossibil-
ity results are shown with this general definition of an algorithm.

Randomness is an indispensable tool in computational mathematics which is used in many different
areas, including optimization, algebraic computation, network routing, learning and data science. This
motivates the need for formalizing what we mean by a randomised algorithm. According to [12], we define
a randomised general algorithm as follows.

Definition 5.6 (Randomised General Algorithm [12]). Given a computational problem {Ξ,Ω,M,Λ}, where
Λ = {fk | k ∈ N, k ≤ |Λ|}, a randomised general algorithm (RGA) is a collection X of general algorithms
Γ : Ω → M∪ {NH}, a sigma-algebra F on X , and a family of probability measures {Pι}ι∈Ω on F such
that the following conditions hold:

(i) For each ι ∈ Ω, the mapping Γran
ι : (X,F) → (M∪ {NH},B), defined by Γran

ι (Γ) = Γ(ι), is a
random variable, where B is the Borel sigma-algebra onM∪ {NH}.
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(ii) For each n ∈ N and ι ∈ Ω, we have {Γ ∈ X |TΓ(ι) ≤ n} ∈ F , where

TΓ(ι) := sup{m ∈ N | fm ∈ ΛΓ(ι)}

is the minimum amount of input information.
(iii) For all ι1, ι2 ∈ Ω and E ∈ F so that, for every Γ ∈ E and every f ∈ ΛΓ(ι1), we have f(ι1) =

f(ι2), it holds that Pι1(E) = Pι2(E).

Here, the first two conditions are measure theoretic and ensure that one can use standard tools from
probability theory to prove results about randomised general algorithms. The final condition ensures that
the algorithm acts consistently on the inputs. In particular, for identical evaluations the probabilistic laws
do not change. It was established in [12] that condition (ii), for a given RGA (X,F , {Pι}ι∈Ω), holds
independently of the choice of the enumeration of Λ.

Remark 5.7. Following [12], we abuse notation slightly, and also write RGA for the family of all ran-
domised general algorithms (X,F , {Pι}ι∈Ω), and refer to the algorithms in RGA by Γran.

Finally, we end this section with a formalized version of our main theorem.

Theorem 5.8. Let m,N ∈ N with N ≥ 2, and let A ∈ Rm×N be such that 1 ≤ rank(A) < N . Let
` ≥ 2, κ ∈ (0, 1/3) and let NN` be a class of neural networks that satisfies Assumption 2.1. Then
for any β ∈ (0,

√
κ/(4
√

2N)) there exist infinitely many model classes U1 ⊆ BN1 (0), and for each
model class, infinitely many computational problems {Ξβ ,Ω,M,Λ}, where the objects are as described
in Equations (5.2)–(5.5), such that there exists a set Λ̂ ∈ L1(Λ), giving ∆1-information, such that for the
corresponding computational problem {Ξβ ,Ω,M, Λ̂}, we have that there exists no algorithm, not even
randomised (with probability p > 1/2), that approximates an optimal pair of interval neural networks
(φ, φ) ∈ Ξβ(T , θΦ), in the sense of (3.4), for all elements (T , θΦ) ∈ Ω to accuracy κ/2.

6. PROOF OF THE MAIN RESULT

6.1. A few preliminary results for the proof of Theorem 5.8.

Lemma 6.1. Let A ∈ Rm×N with 1 ≤ rank(A) < N . Furthermore, let κ, β > 0, ` ≥ 2, U1 ⊂ RN ,
and let NN` be a class of neural networks that satisfies Assumption 2.1. Assume that there exists two
elements x(1), x(2) ∈ U1, such that Ax(1) = Ax(2) and such that ‖x(1) − x(2)‖22 = κ. Moreover, let T0 =

{(x(1), Ax(1)), (x(2), Ax(2))} and let T1 ∈ T`−2,U1
be any training set where each of the second coordinates

are distinct and not equal to Ax(1). With T = T0 ∪ T1, let Φ ∈ W(T ,NN`), where W(T ,NN`) is as
defined in (2.7), and let NN u

Φ and NN o
Φ be the the optimization classes defined in (2.8). Then

min
φ∈NNuΦ ,φ∈NNoΦ

FT0∪T1,β(φ, φ) = min
φ∈NNuΦ ,φ∈NN oΦ

FT0,β(φ, φ) ≤ 2β
√
Nκ. (6.1)

Proof. We start by arguing for the first equality in (6.1). Since all the second coordinates in T1 are distinct,
we must have that the pre-trained neural network Φ ∈ W(T ,NN`) interpolates all the points in T1, this is
because Φ ∈ W(T ,NN`) implies that the neural network Φ has an excellent performance on all elements
in π2(T ), which means that Φ maps y = Ax to the unique x in the case where the elements in π2(T1) are
distinct. Thus, by part (b) in Assumption 2.1, we get that there exists φ ∈ NN u

Φ and φ ∈ NN o
Φ that for

each (x, y) ∈ T1, maps y 7→ x, this yields that the objective function FT1,β is zero on the set T1. Clearly,
we can choose neural networks with this property on the extended training set T0 ∪ T1 without affecting the
optimal value of FT0∪T1,β , since we are minimizing over a class of networks which is `-interpolatory. This
means that the optimal neural networks interpolate all the data in T1 resulting in the first equality.
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To prove the inequality in (6.1), let y = Ax(1) = Ax(2) and let (ψ,ψ) ∈ NN u
Φ × NN o

Φ be such that
ψ(y) = max{x(1), x(2)} and ψ(y) = min{x(1), x(2)}. We then have that

min
φ∈NNuΦ ,φ∈NN oΦ

FT0,β(φ, φ) ≤ FT0,β(ψ,ψ) = 2β‖max{x(1), x(2)} −min{x(1), x(2)}‖1

= 2β

N∑
i=1

|x(1)
i − x

(2)
i | = 2β‖x(1) − x(2)‖1 ≤ 2β

√
N‖x(1) − x(2)‖2 = 2β

√
Nκ,

where we in the last equality used the assumption that ‖x(1) − x(2)‖2 =
√
κ. �

Lemma 6.2. Let κ > 0, c ∈ (0, 1], and let a ∈ Rn be vector with non-negative entries, satisfying ‖a‖22 ≥
cκ/2. Then b̃ = −

√
cκ
2

1
‖a‖2 a is the unique minimizer of the optimization problem,

min
b∈Rn

‖a+ b‖22 subject to ‖b‖22 ≤ cκ/2. (6.2)

Proof. Let t ∈ [0, 1], we then start by solving the following optimization problem

min
b∈Rn

‖a+ b‖22 subject to ‖b‖22 = t
cκ

2
. (6.3)

The Lagrange function for (6.3) is given by L(b, λ) = ‖a+ b‖22 + λ(‖b‖22 − tcκ/2). Now, all the extremal
points (b, λ) must satisfy the following system of equations, given by the method of Lagrange multipliers,

2(a+ b) + 2λb = 0 and ‖b‖22 − t cκ2 = 0.

From the first equality we have that a = −(1+λ)b. Using the second equality gives ‖a‖22 = (1+λ)2tcκ/2.
This implies that λ = −1± (

√
tcκ/2)−1‖a‖2. Thus, we get the extremal points b1 = −b̃

√
t and b2 = b̃

√
t,

with b̃ = −
√

cκ
2

1
‖a‖2 a. Since there are no other solutions to this system, and a has non-negative entries and

satisfies ‖a‖22 ≥ cκ/2 we get that b1 is a global maximum and that b2 is a global minimum. We conclude
that b2 is the unique minimizer, and obtain the general result by observing that

min
b∈Rn
{‖a+ b‖22 : ‖b‖22 ≤

cκ

2
} = inf

t∈[0,1]
min
b∈Rn
{‖a+ b‖22 : ‖b‖22 = t

cκ

2
} = inf

t∈[0,1]
‖a+ b̃

√
t‖22 = ‖a+ b̃‖22.

�

Lemma 6.3. Let κ > 0 and c ∈ (0, 1], and let a, b1, b2 ∈ Rn be such that

(i) ‖bi‖22 ≤ cκ/2 for i = 1, 2,
(ii) ‖a‖22 = 2κ.

Then

‖max{a+ b1, 0}‖22 + ‖max{−a+ b2, 0}‖22 ≥
(

2 + c−
√

8c
)
κ. (6.4)

Proof. We start by splitting the vector a into its’ positive and negative parts a+ and a−, where a+ :=

max{a, 0}, and a− := max{−a, 0}. We note that a = a+−a− and that the entries of a− are non-negative.
Furthermore, since the two vectors a+ and a− have disjoint support we have that ‖a+‖22 +‖a−‖22 = ‖a‖22 =

2κ from condition (ii). To ease the notation in what follows, we let S+ = supp(a+) ⊂ {1, . . . , N} denote
the denote support set of a+, and we let S+

c = {1, . . . , N} \ S+ denote its’ complement. Furthermore, for
an index set S ⊂ {1, . . . , N} and a vector x ∈ RN , we let xS be the vector with entries (xS)i = xi if i ∈ S
and zero otherwise.

Consider the following two optimization problems,

min
b∈Rn

‖max{a+ b, 0}‖22 subject to ‖b‖22 ≤
cκ

2
, (Q1)

min
b∈Rn

‖max{−a+ b, 0}‖22 subject to ‖b‖22 ≤
cκ

2
. (Q2)

In what follows we find a lower bound for the optimal value of each of these optimization problems. Once
we have these bounds, we can use these to compute the lower bound in (6.4).
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We start by considering (Q1), and consider the two cases ‖a+‖22 ≤ cκ/2 and ‖a+‖22 > cκ/2 separately.
If ‖a+‖22 ≤ cκ/2, it is easy to see that b = −a+ is a feasible point for (Q1), and that b = −a+ attains the
minimum value 0. On the other hand, if ‖a+‖22 > cκ/2 and b ∈ RN satisfies ‖b‖22 ≤ cκ/2, we have that

‖max{a+ b, 0}‖22 = ‖max{a+ + bS+ + bS+
c
− a−, 0}‖22 ≥ ‖max{a+ + bS+ , 0}‖22

≥
∥∥∥a+ −

√
cκ
2

1
‖a+‖2 a

+
∥∥∥2

2
=
(

1−
√

cκ
2

1
‖a+‖2

)2

‖a+‖22

=
cκ

2
+ ‖a+‖2

(
‖a+‖2 −

√
2cκ
)
> 0.

Here the first inequality holds since the support of a++bS+ and bS+
c
−a− are disjoint. The second inequality

holds because−
√

cκ
2

1
‖a+‖2 a

+ is supported on S+, it is a feasible point, and from Lemma 6.2 we know that
it attains the minimum value over all choices of bS+ satisfying the constraint ‖bS+‖22 ≤ cκ/2. Finally, the
last inequality holds since ‖a+‖2 >

√
cκ/2.

From symmetry it is clear that if ‖a−‖22 ≤ cκ/2, then the objective function of (Q2) is zero, and if
‖a−‖22 > cκ/2, we have that

min
b∈RN

{
‖max{−a+ b, 0}‖22 : ‖b‖22 ≤ cκ/2

}
=
cκ

2
+ ‖a−‖2

(
‖a−‖2 −

√
2cκ
)
> 0

Next, observe that due to assumption (i), we have that

‖max{a+ b1}‖22 + ‖max{−a+ b2, 0}‖22
≥ min
b∈RN

{
‖max{a+ b, 0}‖22 : ‖b‖22 ≤ cκ/2

}
+ min
b∈RN

{
‖max{−a+ b, 0}‖22 : ‖b‖22 ≤ cκ/2

} (6.5)

From assumption (ii) we have that ‖a‖22 = ‖a+‖22 + ‖a−‖22 = 2κ, which implies that we cannot have that
‖a+‖22 ≤ cκ/2 and ‖a−‖22 ≤ cκ/2 at the same time. Thus, to bound the expression on the right hand side
in (6.5), we need to consider the three cases,

(A) ‖a+‖22 > cκ/2 and ‖a−‖22 > cκ/2,
(B) ‖a−‖22 ≤ cκ/2,
(C) ‖a+‖22 ≤ cκ/2.

We start by considering (A), so suppose that this holds. Observe that ‖a−‖2 =
√

2κ− ‖a+‖22 since ‖a‖22 =

2κ and that cκ/2 < ‖a+‖22 < 2κ − cκ/2 due to assumption (A). From above, we know that the minimum
value of both (Q1) and (Q2) are positive in this case. Combining this fact with (6.5), we see that

‖max{a+ b1}‖22 + ‖max{−a+ b2, 0}‖22

≥ cκ+ ‖a+‖2
(
‖a+‖2 −

√
2cκ
)

+ ‖a−‖2
(
‖a−‖2 −

√
2cκ
)

= cκ+ ‖a+‖2
(
‖a+‖2 −

√
2cκ
)

+
√

2κ− ‖a+‖22
(√

2κ− ‖a+‖22 −
√

2cκ

)
= (2 + c)κ−

√
2cκ

(
‖a+‖2 +

√
2κ− ‖a+‖22

)
≥ (2 + c)κ−

√
8cκ = (2 + c−

√
8c)κ.

Where the last inequality follows from the fact that function f(x) = x+
√

2κ− x2 on the domain
√
cκ/2 <

x <
√

2κ− cκ/2 attains it maximum in x =
√
κ. This shows the lower bound in (6.4), whenever (A) holds.

Now, suppose that (B) holds. Since ‖a−‖22 ≤ cκ/2, we have that ‖a+‖2 ≥
√

2κ− cκ/2 >
√
cκ/2.

Furthermore, since ‖a−‖22 ≤ cκ/2 we know that the minimum value of (Q2) is zero, and the lower bound
for (6.5) becomes,

‖max{a+ b1}‖22 + ‖max{−a+ b2, 0}‖22 ≥
cκ

2
+ ‖a+‖2

(
‖a+‖2 −

√
2cκ
)
≥
(

2−
√

4c− c2
)
κ

≥ (2 + c−
√

8c)κ
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where we used that ‖a+‖2 ≥
√

2κ− cκ/2 for the second to last inequality. By symmetry we get the same
lower bound if we assume that (C) holds. We, therefore, conclude that the lower bound in (6.4) holds. �

6.2. Breakdown epsilons – The key to proving the impossibility statements. The key to proving the im-
possibility statements in Theorem 3.2 is via the breakdown epsilons introduced in [12]. In an intuitive sense
we have the following definition: The strong breakdown epsilon is the largest ε, for which any algorithm
fails to achieve ε accuracy on a given computational problem for at least one input. We now present the
precise versions of the breakdown epsilons, both in the deterministic and randomised setting.

Definition 6.4 (Strong breakdown epsilons [12]). Given a computational problem {Ξ,Ω,M,Λ}, we define;

(i) the strong breakdown epsilon by

εsB := sup{ε ≥ 0 : ∀ general algorithms Γ,∃ι ∈ Ω such that distM(Γ(ι),Ξ(ι)) > ε}, and

(ii) the probabilistic strong breakdown epsilon by εsPB : [0, 1)→ R by

εsPB(p) = sup{ε ≥ 0, | ∀Γran ∈ RGA ∃ ι ∈ Ω such that Pι(distM(Γran
ι ,Ξ(ι)) > ε) > p},

where distM(Γ(ι),Ξ(ι)) = infξ∈Ξ(ι) dM(Γ(ι), ξ).

We need the following important proposition from [12] to prove the computational breakdown in Theo-
rem 5.8.

Proposition 6.5 (Proposition 9.5 in [12]). Let {Ξ,Ω,M,Λ} be a computational problem with Λ = {fk |k ∈
N, k ≤ |Λ| } countable. Suppose that there are two sequences {ι1n}n∈N, {ι2n}n∈N ⊆ Ω satisfying the
following conditions:

a) There are sets S1, S2 ⊆ M and κ > 0 such that infx1∈S1,x2∈S2
dM(x1, x2) ≥ κ and Ξ(ιjn) ⊆ Sj

for j = 1, 2.

b) For every k ≤ |Λ| there is a ck ∈ C such that |fk(ιjn)− ck| ≤ 1/4n for all n ∈ N and j = 1, 2.
c) There is ι0 ∈ Ω such that for every k ≤ |Λ| we have that b) is satisfied with ck = fk(ι0).

Then there exists Λ̃ ∈ L(Λ) such that εsB ≥ εsPhB(p) ≥ κ/2 for p ∈ [0, 1/2) and εsPB ≥ κ/2 for p ∈ (0, 1/3)

for the computational problem {Ξ,Ω,M, Λ̃}.

Remark 6.6. Note that the above proposition holds also in the Markov model. Since this is the main mecha-
nism for the impossibility result in our main results, Theorem 3.2 holds also in the Markov model. The math-
ematical theory for converting between the two models (Markov model and computable ∆1-information)
was developed in [30, 64].

We remind the reader that we are interested in proving that the computational breakdown for any training
set T happens at a point contained in π2(T ), where π2(T ) = {y ∈ Rm : (x, y) ∈ T }. More precisely, we
wish to prove that for any κ ∈ (0, 1/3), there exists domains Ω such that, for any algorithm Γ, there exists at
least one pair (T , θΦ) ∈ Ω such that distT (Γ(T , θΦ),Ξβ(T , θΦ)) :− inf(φ,φ)∈Ξβ(T ,θΦ) dT (Γ(T , θΦ), (φ, φ))

≥ κ/2, with

dT ((φ, φ), (ψ,ψ)) = max

{
sup

y∈π2(T )

‖φ(y)− ψ(y)‖22, sup
y∈π2(T )

‖φ(y)− ψ(y)‖22

}
. (6.6)

We therefore proceed by proving the computational breakdown for the alternative inverse problem
{Ξβ ,Ω,M′, Λ̂} whereM′ = NN u

Φ ×NN o
Φ, but with the metric dM((φ, φ), (ψ,ψ)), introduced in (5.4),

replaced by the metric dM′((φ, φ), (ψ,ψ)) given by

dM′((φ, φ), (ψ,ψ)) := max

{
sup
y∈FΩ

‖φ(y)− ψ(y)‖22, sup
y∈FΩ

‖φ(y)− ψ(y)‖22
}
, (6.7)
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with FΩ =
⋂
T ∈Ω π2(T ), where we identify the neural networks that are equal on FΩ. We observe that

proving that εsB > κ/2 for {Ξβ ,Ω,M′, Λ̂} immediately implies that there exists at least one pair (T , θΦ) ∈
Ω such that distT (Γ(T , θΦ),Ξβ(T , θΦ)) ≥ κ/2, when reading inexact input.

Proposition 6.7. Let m,N ∈ N with N ≥ 2, and let A ∈ Rm×N be such that 1 ≤ rank(A) < N . Let
` ≥ 2, κ ∈ (0, 1/3) and let NN` be a class of neural networks that satisfies Assumption 2.1. Then for any
β ∈ (0,

√
κ/(4
√

2N)) there exists infinitely many model classes U1 ⊆ BN1 (0), and for each model class,
infinitely many choices for Ω, giving rise to infinitely many computational problems {Ξβ ,Ω,M,Λ}, where
the objects are as described in Equations (5.2)–(5.5), such that there exists a set Λ̂ ∈ L1(Λ), giving ∆1-
information, such that εsB ≥ εsPB(p) ≥ κ/2 for p ∈ [0, 1/2) for the computational problem {Ξβ ,Ω,M′, Λ̂},
whereM′ is the metric defined in (6.7).

Proof. We prove the above result by constructing a set U1 ⊂ RN and a domain Ω, as described in (5.2),
with sequences {(ι1n,Φ1

n)}n∈N, {(ι2n,Φ2
n)}n∈N ⊆ Ω that satisfy the following conditions:

(a) There are sets S1, S2 ⊂M′ such that inf(φ,φ)∈S1,(ψ,ψ)∈S2 dM′((φ, φ), (ψ,ψ)) ≥ κ and Ξβ(ιjn,Φ
j
n) ⊂

Sj for j = 1, 2.
(b) For every k ∈ |Λ| there is a ck ∈ C such that |fk(ιjn,Φ

j
n)− ck| ≤ 1/4n, for j = 1, 2 and all n ∈ N.

(c) There is an (ι0,Φ0) ∈ T`,U1
×W(ι0,NN`) such that for every k ≤ |Λ| we have that (b) is satisfies

with ck = fk(ι0,Φ0).
(d) There is an (ι0,Φ0) ∈ T`,U1×W(ι0,NN`) for which condition (c) holds and additionally (ι2n,Φ

2
n) =

(ι0,Φ0), for all n ∈ N.

Then it follows from Proposition 6.5, that there exists a Λ̂ ∈ L1(Λ), such that εsB ≥ εsPB(p) ≥ εsPhB(p) ≥
κ/2 for p ∈ [0, 1/2) for the computational problem {Ξβ ,Ω,M′, Λ̂}.

We proceed by constructing U1 and start by making a few observations. The kernel of A must be non-
trivial since rank(A) < N . We can, therefore, pick a non-zero vector v ∈ ker(A) with squared norm
‖v‖22 = 8κ. Furthermore, since rank(A) ≥ 1, we can pick a non-zero vector w ∈ ker(A)⊥ with ‖w‖2 =

(3− 2
√

2)κ.
Let S = {tw : t ∈ [−1,−1/2]} and let the model set U1 := {v + tw : t ∈ [0, 1]} ∪ {0} ∪ S . For ` > 2

let Tb ⊂ A(S) × S be a set with cardinality ` − 2, where all of the first components are distinct. We note
that this implies that all the second components are distinct as well, since S ⊂ ker(A)⊥. If ` = 2, we let
Tb = ∅. Given the above setup, we can now define the two sequences {ι1n}n∈N and {ι2n}n∈N as follows. Let

ι1n = (Tb, (0, 0), (v+
1

4n
w,

1

4n
Aw)) and ι2n = (Tb, (0, 0), (v, 0)), n ∈ N. (6.8)

We observe that the elements in ι1n and ι2n are listed such that all the equal elements land on the same index
and such that (x(`), A(x(`))) = (v+ 1

4nw,
1

4nAw) ∈ ι1n and (x(`), A(x(`))) = (v, 0) ∈ ι2n. It is clear that
ιjn ⊆ T`,U1

for all n ∈ N and j = 1, 2, and that U1 ⊆ BN1 (0).
Next, since, by Assumption 2.1, NN` is an `-interpolatory class of neural networks and ι1n consists of

` distinct points, there exists a neural network Φ1
n ∈ NN` that interpolates all the points in ι1n for each

n ∈ N. It then follows from the definition ofW(ι1n,NN`) in (2.7) that Φ1
n ∈ W(ι1n,NN`) for all n ∈ N.

In the case of ι2n the map Vι2n(y) in (2.6) is multivalued at the point y = 0. However, we observe that
any map Ψ1 ∈ NN` that interpolates all the points in Tb and that satisfies Ψ1(0) = 0 has the property
that Ψ1 ∈ W(ι2n,NN`). In particular, this gives us that Φ1

n ∈ W(ι2n,NN`), therefore, by simply setting
Φ2
n = Φ1

n for each n ∈ N, we may conclude that Φ2
n ∈ W(ι2n,NN`) for each n ∈ N.

With this in place, we let Ω = {(ι1n,Φ1
n)}n∈N ∪ {(ι2n,Φ2

n)}n∈N in what follows. By the arbitrary choice
of the elements in Tb and w ∈ ker(A)⊥ it is clear that there exists uncountably many choices for the model
class U1, and for each choice of U1, there exists uncountably many choices for Ω.

With the above sequences well defined, we proceed by showing that these sequences satisfy the claims
in (a)-(d) above. We start by considering (a), with Sj =

⋃∞
n=1 Ξβ(ιjn,Φ

j
n), for j = 1, 2. We observe that
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any pair of `-interpolatory NNs, which interpolates all the training data in ι1n, attains zero training loss on
Fι1n,β . In particular, this implies that any pair (φ, φ) ∈ Ξβ(ι1n,Φ

1
n) interpolates the data in ι1n.

Next, we consider the constant sequence ι2n where both (0, 0) ∈ ι2n and (v, 0) ∈ ι2n have identical y-
coordinates, and all other other y-coordinates are distinct. Furthermore, since ‖v−0‖22 = 8κ we know from
Lemma 6.1, with κ′ = 8κ, that for any pair (ψ,ψ) ∈ Ξβ(ι2n,Φ

2
n), we have Fι2n,β(ψ,ψ) ≤ 4β

√
2Nκ < κ,

where the last inequality follows from the fact that β <
√
κ/(4
√

2N).
It remains to show that

dM′((φ, φ), (ψ,ψ)) = max

{
sup
y∈FΩ

‖φ(y)− ψ(y)‖22, sup
y∈FΩ

‖φ(y)− ψ(y)‖22
}
≥ κ (6.9)

for all (φ, φ) ∈ S1 and (ψ,ψ) ∈ S2. Assume for a contradiction that this is not the case. By the above
argumentation we know that φ(0) = φ(0) = 0 and by the assumption that dM′((φ, φ), (ψ,ψ)) < κ we get
that ‖ψ(0) − 0‖22 = ‖ψ(0) − φ(0)‖22 < κ, and similarly we get that ‖ψ(0) − 0‖22 = ‖ψ(0) − φ(0)‖22 < κ.
Next, we observe that

Fι2n,β(ψ,ψ) ≥ ‖max{v − ψ(0), 0}‖22 + ‖max{ψ(0)− v, 0}‖22
= ‖max{v − 0 + φ(0)− ψ(0), 0}‖22 + ‖max{ψ(0)− φ(0) + 0− v, 0}‖22 ≥ 2κ

where the last inequality follows from Lemma 6.3, with κ′ = 4κ, c = 1/2, b1 = φ(0) − ψ(0), b2 =

φ(0) − ψ(0) and a = v − 0. However, this is a contradiction, as we know from the above discussion that
Fι2n,β(ψ,ψ) < κ. This establishes (6.9), and thereby also (a).

To establish items (b)-(d), we see that it is sufficient to establish (b) with ck = f(ι2n,Φ
2
n) for any n ∈ N,

since ι2n is constant for all n ∈ N. We notice that, for each n ∈ N, we have that Φ1
n = Φ2

n, and the
elements in Tb and (0, 0) coincide in ι1n and ι2n and are listed on the same index. Moreover we have that
(x(`), A(x(`))) = (v+ 1

4n e,A(v+ 1
4n e)) ∈ ι

1
n and (x(`), A(x(`))) = (v, 0) ∈ ι2n, thus we only need to show

that the criteria in part (b), for f `x,i and f `y,j where i = 1, . . . , N , j = 1, . . . ,m. We start by f `y,j . For each
j have that |f `y,j(ι1n)− f `y,j(ι2n)|= |A( 1

4n e)j− 0| = 1
4n |A(e)j | ≤ 1

4n . A similar calculation show the result
for f `x,i, but we omit the details. This establishes (b)-(d) above, and concludes the proof. �

6.3. Proof of Theorem 5.8. Proof of Theorem 5.8. By Proposition 6.7, and the definition of the break-
down epsilons εsB and εsPB(p), it follows that there exists a set Λ̂ ∈ L1(Λ), giving ∆1-information for
{Ξβ ,Ω,M′,Λ}, such that, for any algorithm Γ : Ω̂ → M′, there exists a pair (T1, θ

1
Φ) ∈ Ω such that

distM′(Ξβ(T1, θ
1
Φ),Γ(T1, θ

1
Φ)) ≥ κ/2, and that, for any randomised algorithm Γran : Ω̂ → M, there

exists a pair (T2, θ
2
Φ) ∈ Ω such that P(distM′(Ξβ(T2, θ

2
Φ),Γ(T2, θ

2
Φ)) ≥ κ/2) ≥ 1/2. The statement of

Theorem 5.8 follows from this. �

APPENDIX A. RELU-NETWORKS SATISFY ASSUMPTION 2.1

In this appendix we present a proposition that illustrates that Assumption 2.1 is satisfied by any class of
ReLU-networks, with input dimension m and output dimension N , of fixed depth greater than or equal to 2.
We start by showing a lemma the that asserts that Assumption 2.1 is satisfied for ReLu-networks of depth
equal to 2 with output dimension N = 1. We the assert then general result by a corollary.

We start by introducing the following notation: For a vector z ⊆ Rm, π1(z) is the projection onto the
first coordinate defined as:

π1(z) := {z1 | z = (z1, . . . , zm) ∈ Rm}, (A.1)

We repeat the definition of a neural network and Assumption 2.1 for completeness.
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Definition A.1. Let K be a natural number and let N := (N0, N1, . . . , NK−1, NK) ∈ NK+1. A neural
network with dimension (N,K) is a map Φ : RN0 → RNK such that

Φ(x) := V (K) ◦ σ ◦ V (K−1) ◦ σ ◦ V (K−2) ◦ · · · ◦ σ ◦ V (1)x,

where, for k = 1, . . . ,K, the map V (k) is an affine map from RNk−1 → RNk , that is V (k)x(k) =

W (k)x(k) + b(k), where b(k) ∈ RNk and W (k) ∈ RNk−1×Nk . The map σ : R → R is interpreted as a
coordinate wise map and is called the non-linearity or activation function.

Assumption 2.1. For a given integer ` ≥ 1, we assume thatNN ` is a class of neural networks such that
for any collection T =

{
(x(1), y(1)), . . . , (x(`), y(`))

}
⊂ RN × Rm, where each y-coordinate is distinct,

the following holds:

(i) (`-interpolatory): There exists a neural network Ψ ∈ NN `, such that Ψ(y) = x for each (x, y) ∈
T .

(ii) For any choice of x′ ∈ RN , any k ∈ {1, . . . , `} and any Ψ ∈ NN ` satisfying (i), there exist neural
networks φ, φ ∈ NN `, such that
(a) φ(y) ≤ Ψ(y) ≤ φ(y) for all y ∈ Rm, and
(b) such that φ(y) = φ(y) = x for all (x, y) ∈ T \ {x(k), y(k)}, and
(c) φ(y(k)) = min{x′, x(k)} and φ(y(k)) = max{x′, x(k)}.

Lemma A.2. Let m ∈ N and let N = 1. Let NN 2
ReLu denote the class of neural networks, according to

Definition A.1, where K = 2, N0 = m, N1 ∈ N and N2 = N = 1, and where σ : R→ R is given by

σ(y) = ReLu(y) =

y if x > 0

0 otherwise.

Then NN 2
ReLu satisfies Assumption 2.1.

Proof. Let ` ∈ N and let T ⊂ R × Rm be as described in Assumption 2.1. More precisely, T ={
(x(1), y(1)), . . . , (x(`), y(`))

}
⊂ R × Rm, where each y-coordinate is distinct. We proceed by showing

that there exists three neural networks Φ, φ, φ ∈ NN 2
ReLu that satisfy points (i) and (ii) in Assumption 2.1.

Indeed, let k ∈ {1, . . . , `} and let x′ ∈ R. Set x(k),1 = min{x′, x(k)} and x(k),2 = max{x′, x(k)}. We then
construct neural networks Φ, φ, φ ∈ NN 2

ReLu such that

• Φ interpolates the points {(y(i), x(i))}`i=1,
• φ interpolates the points {(y(k), x(k),1)} ∪ [{(y(i), x(i))}`−1

i=1\{(y(k), x(k))}],
• φ interpolates the points {(y(k), x(k),2)} ∪ [{(y(i), x(i))}`−1

i=1\{(y(k), x(k))}],

and such that φ(y) ≤ Φ(y) ≤ φ(y) for all y ∈ Rm.

Let π1(y(i)) = y
(i)
1 be the projection onto the first coordinate of the vector y(i) ∈ Rm. We may assume

without loss of generality that the points in T are ordered such that y(1)
1 ≤ y

(2)
1 ≤ . . . ,≤ y

(`)
1 . Moreover,

if y(i)
1 = y

(i+1)
1 for some i ∈ {1, . . . , `} we may remove y(i+1)

1 from the list, thereby, we may assume
without loss of generality that y(1)

1 < y
(2)
1 < . . . , < y

(`)
1 . We then construct piecewise linear functions

f : R→ R, f : R→ R, and f : R→ R such that

• f interpolates the points {(y(i)
1 , x(i))}`i=1,

• f interpolates the points {(y(k)
1 , x(k),1)} ∪ [{(y(i)

1 , x(i))}`−1
i=1\{(y

(k)
1 , x(k))}],

• f interpolates the points {(y(k)
1 , x(k),2)} ∪ [{(y(i)

1 , x(i))}`−1
i=1\{(y

(k)
1 , x(k))}].
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Indeed, let f : R→ R, and f : R→ R be given by

f(y) =


x(i+1)−x(i)

y
(i+1)
1 −y(i)

1

(y − y(i)
1 ) + x(i) when y ∈ [y

(i)
1 , y

(i+1)
1 ) and i 6= k, i 6= k + 1

x(k),1−x(k−1)

y
(k)
1 −y

(k−1)
1

(y − y(k−1)
1 ) + x(k−1) when y ∈ [y

(k−1)
1 , y

(k)
1 )

x(k+1)−x(k),1

y
(k+1)
1 −y(k)

1

(y − y(k)
1 ) + x(k),1 when y ∈ [y

(k)
1 , y

(k+1)
1 ),

and

f(y) =


x(i+1)−x(i)

y
(i+1)
1 −y(i)

1

(y − y(i)
1 ) + x(i) when y ∈ [y

(i)
1 , y

(i+1)
1 ) and i 6= k, i 6= k + 1

x(k),2−x(k−1)

y
(k)
1 −y

(k−1)
1

(y − y(k−1)
1 ) + x(k−1) when y ∈ [y

(k−1)
1 , y

(k)
1 )

x(k+1)−x(k),2

y
(k+1)
1 −y(k)

1

(y − y(k)
1 ) + x(k),2 when y ∈ [y

(k)
1 , y

(k+1)
1 ),

and let f : R→ R be given by f(y) = x(i+1)−x(i)

y
(i+1)
1 −y(i)

1

(y−y(i)
1 )+x(i) when y ∈ [y

(i)
1 , y

(i+1)
1 ]. It is then straight

forward to check that f, f and f are piecewise linear functions such that f(y) ≤ f(y) ≤ f(y) for all y ∈ R
and such that they interpolate the desired points. By [7, Theorem 2.2] every such function can be represented
by a 2-layer ReLu-network. More precisely we have that f = V (2) ◦ σ ◦ V (1), f = V (2) ◦ σ ◦ V (1), and

f = V
(2)◦σ◦V (1)

. Finally, the projection π1 : Rm → R onto the first coordinate is a linear map. Hence we
may set Φ(y) = V (2) ◦σ ◦V (1) ◦π1(y), φ(y) = V (2) ◦σ ◦V (1) ◦π1(y), and φ(y) = V

(2) ◦σ ◦V (1) ◦π1(y)

to obtain the desired result. �

Corollary A.3. Let m,N, d ∈ N with d ≥ 2. Let NN d
ReLu denote the class of neural networks, according

to Definition A.1, where K = d, N0 = m, N1, . . . , Nd−1 ∈ N and Nd = N , and where σ : R→ R is given
by

σ(y) = ReLu(y) =

y if y > 0

0 otherwise.

Then NN d
ReLu satisfies Assumption 2.1.

Proof. To assert the statement in the corollary from Lemma A.2 it suffices to prove the following two
statements:

(1) Given a d-layer neural network Φ : Rm → RN , it is possible to add a ReLU-layer, without changing
the output, to obtain a d+ 1-layer neural network.

(2) Given x ∈ RN , y ∈ Rm and d-layer neural networks Φ1, . . . ,ΦN such that Φi(y) = xi for
i = 1, . . . , N , we can construct a d-layer neural network Φ : Rm → RN such that Φ(y) = x.

We start by proving (i): We observe that, with σ = ReLu, we have that x = σ(x) − σ(−x). Hence, by
setting V (1) = [IN ,−IN ]T , where IN denotes the N dimensional identity matrix, and V (2) = [IN ,−IN ],
we get that V (2) ◦ σ ◦ V (1)(x) = σ(x) − σ(−x) = x for any x ∈ RN . Thus, let Φ : Rm → RN be an
arbitrary d-layer neural network, then the composition V (2) ◦σ ◦V (1) ◦Φ(x) = Φ(x) is a d+1-layer neural
network with the same output as Φ. This asserts part (i).

We now prove part (ii): Let x = (x1, . . . , xN ) ∈ RN be an arbitrary vector and assume that for a
given y ∈ Rm there exists d-layer neural networks Φ1, . . . ,ΦN : RN → R such that Φi(y) = xi for each
i = 1, . . . , N . We can then "stack" the neural networks Φ1, . . . ,ΦN to construct a neural network Φ :

RN → Rm such that Φ(y) = x in the following way. Let V (j) = [V
(j)
1 , . . . , V

(j)
N ]T for j = 1, . . . , d, where

V
(j)
i denotes the j’th affine map in the neural network Φi for i = 1, . . . , N . We then define Φ : Rm → RN

to be the neural network Φ = V (d) ◦ σ ◦ · · · ◦ σ ◦ V (1), then it’s clear that Φ is a d-layer neural network.
Moreover, Φ(y) = [Φ1(y), . . . ,ΦN (y)]T = (x1, . . . , xN ) = x, this asserts part (ii). �
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[12] A. Bastounis, A. C. Hansen, and V. Vlačić. The extended Smale’s 9th problem – On computational barriers and paradoxes in

estimation, regularisation, computer-assisted proofs and learning. arXiv:2110.15734, 2021.
[13] J. Ben-Artzi, M. J. Colbrook, A. C. Hansen, O. Nevanlinna, and M. Seidel. Computing spectra – On the solvability complexity

index hierarchy and towers of algorithms. arXiv:1508.03280, 2020.
[14] J. Ben-Artzi, A. C. Hansen, O. Nevanlinna, and M. Seidel. New barriers in complexity theory: On the solvability complexity

index and the towers of algorithms. Comptes Rendus Mathematique, 353(10):931 – 936, 2015.
[15] J. Ben-Artzi, M. Marletta, and F. Rösler. Computing the sound of the sea in a seashell. Found. Comput. Math., 22(3):697–731,

2022.
[16] J. Ben-Artzi, M. Marletta, and F. Rösler. Computing scattering resonances. J. Eur. Math. Soc., (to appear).
[17] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in Applied Mathematics. Princeton Uni-

versity Press, October 2009.
[18] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated with uncertain data. Mathemat-

ical Programming, 88(3):411–424, 2000.
[19] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(8):1798–1828, 2013.
[20] J. Bigot, C. Boyer, and P. Weiss. An analysis of block sampling strategies in compressed sensing. IEEE Transactions on Infor-

mation Theory, 62(4):2125–2139, 2016.
[21] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill Series in higher mathematics. McGraw-Hill, 1967.
[22] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, Berlin, Heidelberg, 1997.
[23] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with sparsely connected deep neural networks.

SIAM Journal on Mathematics of Data Science, 1(1):8–45, 2019.
[24] A. Bourrier, M. E. Davies, T. Peleg, P. Pérez, and R. Gribonval. Fundamental performance limits for ideal decoders in high-

dimensional linear inverse problems. IEEE Transactions on Information Theory, 60(12):7928–7946, 2014.
[25] C. Boyer, J. Bigot, and P. Weiss. Compressed sensing with structured sparsity and structured acquisition. Applied and Compu-

tational Harmonic Analysis, 46(2):312 – 350, 2019.
[26] L. Bungert, N. García Trillos, and R. Murray. The geometry of adversarial training in binary classification. Information and

Inference: A Journal of the IMA, 12(2):921–968, 01 2023.
[27] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete fre-

quency information. IEEE Transactions on Information Theory, 52(2):489–509, 2006.
[28] E. J. Candès, T. Strohmer, and V. Voroninski. Phaselift: Exact and stable signal recovery from magnitude measurements via

convex programming. Communications on Pure and Applied Mathematics, 66(8):1241–1274, 2013.
[29] N. Carlini and D. Wagner. Audio adversarial examples: Targeted attacks on speech-to-text. In 2018 IEEE Security and Privacy

Workshops (SPW), pages 1–7. IEEE, 2018.



WHEN ALGORITHMS CANNOT COMPUTE UNCERTAINTY QUANTIFICATIONS FOR NEURAL NETWORKS 21

[30] G. S. Ceı̆tin. Algorithmic operators in constructive metric spaces. Trudy Mat. Inst. Steklov., 67:295–361, 1962.
[31] A. Chambolle. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision,

20(1):89–97, 2004.
[32] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of

Mathematical Imaging and Vision, 40(1):120–145, May 2011.
[33] C. Choi. 7 revealing ways AIs fail. IEEE Spectrum, September, 2021.
[34] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. Journal of the American mathe-

matical society, 22(1):211–231, 2009.
[35] M. Colbrook. On the computation of geometric features of spectra of linear operators on hilbert spaces. Foundations of Compu-

tational Mathematics, (to appear).
[36] M. Colbrook and A. C. Hansen. The foundations of spectral computations via the solvability complexity index hierarchy. J. Eur.

Math. Soc., (to appear).
[37] M. Colbrook, A. Horning, and A. Townsend. Computing spectral measures of self-adjoint operators. SIAM Rev., 63(3):489–524,

2021.
[38] M. J. Colbrook. Computing spectral measures and spectral types. Communications in Mathematical Physics, 384(1):433–501,

2021.
[39] M. J. Colbrook, V. Antun, and A. C. Hansen. The difficulty of computing stable and accurate neural networks: On the barriers

of deep learning and smale’s 18th problem. Proc. Natl. Acad. Sci. USA, 119(12):e2107151119, 2022.
[40] F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error. Journal of the ACM, 46(1):113–184,

1999.
[41] R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Acta Numerica, 30:327–444, 2021.
[42] R. DeVore, G. Petrova, and P. Wojtaszczyk. Instance-optimality in probability with an l1-minimization decoder. Appl. Comput.

Harmon. Anal., 27, 2009.
[43] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, 2006.
[44] P. Doyle and C. McMullen. Solving the quintic by iteration. Acta Mathematica, 163(3-4):151–180, 1989.
[45] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust physical-world

attacks on deep learning visual classification. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1625–1634, 2018.

[46] A. Fannjiang and T. Strohmer. The numerics of phase retrieval. Acta Numerica, 29:125–228, 2020.
[47] C. Fefferman, A. Hansen, and S. Jitomirskaya, editors. Computational mathematics in computer assisted proofs, American

Institute of Mathematics Workshops. American Institute of Mathematics, 2022. Available online at
https://aimath.org/pastworkshops/compproofsvrep.pdf.

[48] C. Fefferman and B. Klartag. Fitting a Cm-Smooth Function to Data II. Revista Matematica Iberoamericana, 25(1):49 – 273,
2009.

[49] C. L. Fefferman and B. Klartag. Fitting a Cm-smooth function to data. I. Annals of Mathematics, 169(1):315–346, 2009.
[50] S. G. Finlayson, J. D. Bowers, J. Ito, J. L. Zittrain, A. L. Beam, and I. S. Kohane. Adversarial attacks on medical machine

learning. Science, 363(6433):1287–1289, 2019.
[51] L. E. Gazdag and A. C. Hansen. Generalised hardness of approximation and the SCI hierarchy – on determining the boundaries

of training algorithms in AI, 2023.
[52] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für mathematik

und physik, 38(1):173–198, 1931.
[53] N. M. Gottschling, V. Antun, B. Adcock, and A. C. Hansen. The troublesome kernel: why deep learning for inverse problems is

typically unstable. arXiv:2001.01258, 2020.
[54] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. Learning a variational network for

reconstruction of accelerated MRI data. Magnetic Resonance in Medicine, 79(6):3055–3071, 2018.
[55] A. C. Hansen. On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. Journal

of the American Mathematical Society, 24(1):81–124, 2011.
[56] A. C. Hansen and O. Nevanlinna. Complexity issues in computing spectra, pseudospectra and resolvents. Banach Center Publi-

cations, 112:171–194, 2016.
[57] D. Heaven. Why deep-learning AIs are so easy to fool. Nature, 574(7777):163–166, October 2019.
[58] Y. Huang et al. Some investigations on robustness of deep learning in limited angle tomography. In International Conference on

Medical Image Computing and Computer-Assisted Intervention, pages 145–153. Springer, 2018.
[59] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep convolutional neural network for inverse problems in imaging. IEEE

Trans. Image Process., 26(9):4509–4522, 2017.
[60] A. Juditsky, F. Kilinç-Karzan, A. Nemirovski, and B. Polyak. Accuracy guaranties for `1 recovery of block-sparse signals. The

Annals of Statistics, 40(6):3077 – 3107, 2012.

https://aimath.org/pastworkshops/compproofsvrep.pdf


22 LUCA EVA GAZDAG, VEGARD ANTUN, AND ANDERS C. HANSEN

[61] A. B. Juditsky, F. Kilinç-Karzan, and A. Nemirovski. Verifiable conditions of `1-recovery for sparse signals with sign restric-
tions. Mathematical Programming, 127(1):89–122, 2011.

[62] P. Kidger and T. Lyons. Universal Approximation with Deep Narrow Networks. In J. Abernethy and S. Agarwal, editors, Pro-

ceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages
2306–2327. PMLR, 09–12 Jul 2020.

[63] K. Ko. Complexity Theory of Real Functions. Birkhauser, 1991.
[64] G. Kreisel, D. Lacombe, and J. R. Shoenfield. Partial recursive functionals and effective operations. In Constructivity in math-

ematics: Proceedings of the colloquium held at Amsterdam, 1957 (edited by A. Heyting), Stud. Logic Found. Math., pages
290–297. North-Holland, Amsterdam, 1959.

[65] L. Lovasz. An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-NSF Regional Conference Series in Applied
Mathematics. Society for Industrial and Applied Mathematics, 1987.

[66] Y. Ma and Y. Fu. Manifold Learning Theory and Applications. Taylor & Francis, 2011.
[67] J. Macdonald, M. März, L. Oala, and W. Samek. Interval neural networks as instability detectors for image reconstructions. In

Bildverarbeitung für die Medizin 2021, pages 324–329, Wiesbaden, 2021. Springer Fachmedien Wiesbaden.
[68] M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal

Process Mag., 34(6):85–95, 2017.
[69] C. McMullen. Families of rational maps and iterative root-finding algorithms. Annals of Mathematics, 125(3):467–493, 1987.
[70] C. McMullen. Braiding of the attractor and the failure of iterative algorithms. Inventiones Mathematicae, 91(2):259–272, 1988.
[71] M. B. Mirman, M. Baader, and M. Vechev. The fundamental limits of neural networks for interval certified robustness. Trans-

actions on Machine Learning Research, 2022.
[72] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations. In IEEE Conference on computer

vision and pattern recognition, pages 86–94, July 2017.
[73] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method to fool deep neural networks. CoRR,

abs/1511.04599, 2015.
[74] A. Nemirovski. Lectures on Robust Convex Optimization. Available online at https://www2.isye.gatech.edu/

~nemirovs/, 2009.
[75] A. Nemirovskii. Several np-hard problems arising in robust stability analysis. Mathematics of Control, Signals and Systems,

6(2):99–105, 1993.
[76] P. Niyogi, S. Smale, and S. Weinberger. A topological view of unsupervised learning from noisy data. SIAM Journal on Com-

puting, 40(3):646–663, 2011.
[77] L. Oala, C. Heiz, J. Macdonald, M. Marz, W. Samek, and G. Kutyniok. Interval neural networks: Uncertainty scores, 2020.
[78] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett. Deep learning techniques for inverse problems

in imaging. IEEE Journal on Selected Areas in Information Theory, 1(1):39–56, 2020.
[79] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural

Networks, 108:296–330, 2018.
[80] A. Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8, 1999.
[81] J. Sadeghi, M. de Angelis, and E. Patelli. Efficient training of interval neural networks for imprecise training data. Neural

Networks, 118:338–351, 2019.
[82] A. Salomaa, C. U. Press, G. Rota, B. Doran, T. Lam, P. Flajolet, M. Ismail, and E. Lutwak. Computation and Automata.

EBL-Schweitzer. Cambridge University Press, 1985.
[83] S. Smale. The fundamental theorem of algebra and complexity theory. Bulletin of the American Mathematical Society, 4(1):1–

36, 1981.
[84] S. Smale. Complexity theory and numerical analysis. In Acta numerica, 1997, volume 6 of Acta Numer., pages 523–551. Cam-

bridge Univ. Press, Cambridge, 1997.
[85] S. Smale. The work of Curtis T McMullen. In Proceedings of the International Congress of Mathematicians I, Berlin, Doc.

Math. J. DMV, pages 127–132. 1998.
[86] S. Smale. Mathematical problems for the next century. In V. Arnold, M. Atiyah, P. Lax, and B. Mazur, editors, Mathematics:

Frontiers and Perspectives. American Mathematical Society, 2000.
[87] E. Strickland. 2021’s top stories about AI spoiler: A lot of them talked about what’s wrong with machine learning today. IEEE

Spectrum, Dec 2021.
[88] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. In International Conference on Learning Representations, 2014.
[89] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathe-

matical Society, S2-42(1):230, 1936.
[90] I. Tyukin, D. Higham, and A. Gorban. On adversarial examples and stealth attacks in artificial intelligence systems. In 2020

International Joint Conference on Neural Networks (IJCNN), pages 1–6. IEEE, 2020.

https://www2.isye.gatech.edu/~nemirovs/
https://www2.isye.gatech.edu/~nemirovs/


WHEN ALGORITHMS CANNOT COMPUTE UNCERTAINTY QUANTIFICATIONS FOR NEURAL NETWORKS 23

[91] I. Tyukin, D. Higham, A. Gorban, and E. Woldegeorgis. The feasibility and inevitability of stealth attacks. arXiv2106.13997,
2021.

[92] C. R. Vogel. Computational Methods for Inverse Problems. Society for Industrial and Applied Mathematics, 2002.
[93] F. Voigtlaender. The universal approximation theorem for complex-valued neural networks. Applied and Computational Har-

monic Analysis, 64:33–61, 2023.
[94] S. Wang, N. Si, J. Blanchet, and Z. Zhou. On the foundation of distributionally robust reinforcement learning. arXiv:2311.09018,

2023.
[95] Z. Wang, A. Albarghouthi, G. Prakriya, and S. Jha. Interval universal approximation for neural networks. Proc. ACM Program.

Lang., 6(POPL), jan 2022.
[96] M. Webb and S. Olver. Spectra of Jacobi operators via connection coefficient matrices. Communications in Mathematical

Physics, 382(2):657–707, 2021.
[97] S. Weinberger. Computers, Rigidity, and Moduli: The Large-Scale Fractal Geometry of Riemannian Moduli Space. Princeton

University Press, USA, 2004.
[98] P. Wojtaszczyk. Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math.,

10, 2010.
[99] D. Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In Conference on learning theory,

pages 639–649. PMLR, 2018.
[100] M. Zhang, O. Press, W. Merrill, A. Liu, and N. A. Smith. How language model hallucinations can snowball. arXiv:2305.13534,

2023.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO

Email address: lucaeg@math.uio.no

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO

Email address: vegarant@math.uio.no

DEPARTMENT OF APPLIED MATHEMATICS AND THEORETICAL PHYSICS, UNIVERSITY OF CAMBRIDGE

Email address: ach70@cam.ac.uk


	1. Introduction
	2. Inverse problems and interval neural networks
	3. Main Theorem
	4. Connection to previous work
	5. Mathematical preliminaries from the SCI hierarchy
	6. Proof of the main result
	Appendix A. ReLU-networks satisfy as1
	References

