
Numerical Analysis - Part II

Anders C. Hansen

Lecture 10

1 / 30

The diffusion equation in two space

dimensions

2 / 30

The diffusion equation in two space dimensions

We are solving

∂u

∂t
= ∇2u, 0 ≤ x , y ≤ 1, t ≥ 0, (1)

where u = u(x , y , t), together with initial conditions at t = 0 and
Dirichlet boundary conditions at ∂Ω, where Ω = [0, 1]2 × [0,∞). It
is straightforward to generalize our derivation of numerical
algorithms, e.g. by the method of lines.

3 / 30

Recall the five point formula

We have the five-point method

�
��
�
��
�
��

�
�� �
��
−4

1

1

1 1 ui ,j = ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1 − 4ui ,j ,

discretising the two dimensional Laplacian.

4 / 30

The diffusion equation in two space dimensions

Thus, let u`,m(t) ≈ u(`h,mh, t), where h = ∆x = ∆y , and let
un`,m ≈ u`,m(nk) where k = ∆t. The five-point formula results in

u′`,m = 1
h2 (u`−1,m + u`+1,m + u`,m−1 + u`,m+1 − 4u`,m),

or in the matrix form

u ′ = 1
h2A∗u, u = (u`,m) ∈ RN , (2)

where A∗ is the block TST matrix of the five-point scheme:

A∗ =


H I

I
. . .

.

. . . I

I H

 , H =


−4 1

1
. . .

.

. . . 1

1 −4

 .

5 / 30

The diffusion equation in two space dimensions

Thus, the Euler method yields

un+1
`,m = un`,m + µ(un`−1,m + un`+1,m + un`,m−1 + un`,m+1 − 4un`,m), (3)

or in the matrix form

un+1 = Aun, A = I + µA∗

where, as before, µ = k
h2 = ∆t

(∆x)2 . The local error is

η = O(k2+kh2) = O(h4). To analyse stability, we notice that A is
symmetric, hence normal, and its eigenvalues are related to those of
A∗ by the rule

λk,`(A) = 1 + µλk,`(A∗)
Prop. 1.12

= 1− 4µ
(

sin2 πkh
2

+ sin2 π`h
2

)
.

Consequently,

sup
h>0

ρ(A) = max{1, |1− 8µ|}, hence µ ≤ 1
4 ⇔ stability.

6 / 30

Fourier analysis in 2D

Fourier analysis generalizes to two dimensions: of course, we now
need to extend the range of (x , y) in (1) from 0 ≤ x , y ≤ 1 to
x , y ∈ R. A 2D Fourier transform reads

û(θ, ψ) =
∑
`,m∈Z

u`,me
−i(`θ+mψ)

and all our results readily generalize.

7 / 30

Fourier analysis in 2D

In particular, the Fourier transform is an isometry from `2[Z2] to
L2([−π, π]2), i.e.(∑
`,m∈Z

|u`,m|2
)1/2

=: ‖u‖ = ‖û‖∗ :=
(1

4π2

∫ π

−π

∫ π

−π
|û(θ, ψ)|2 dθ dψ

)1/2
,

and the method is stable iff |H(θ, ψ)| ≤ 1 for all θ, ψ ∈ [−π, π]. The
proofs are an easy elaboration on the one-dimensional theory.
Insofar as the Euler method (3) is concerned,

H(θ, ψ) = 1+µ
(
e−iθ+eiθ+e−iψ+eiψ−4

)
= 1−4µ

(
sin2 θ

2
+sin2 ψ

2

)
,

and we again deduce stability if and only if µ ≤ 1
4 .

8 / 30

Parseval’s identity

Lemma 1 (Parseval’s identity)

For any v ∈ `2[Z], we have ‖v‖ = ‖v̂‖∗.
Proof. By definition,

‖v̂‖2
∗ = 1

2π

∫ π

−π

∣∣∑
m∈Z

e−imθvm
∣∣2dθ = 1

2π

∫ π

−π

∑
m∈Z

∑
k∈Z

vmv̄ke
−i(m−k)θdθ

= 1
2π

∑
m∈Z

∑
k∈Z

vmv̄k

∫ π

−π
e−i(m−k)θdθ

(∗)
=
∑
m∈Z

∑
k∈Z

vmv̄kδm−k = ‖v‖2 ,

where equality (∗) is due to the fact that

∫ π

−π
e−i`θdθ =


2π, ` = 0,

0, ` ∈ Z \ {0},
�

The implication of the lemma is that the Fourier transform is an
isometry of the Euclidean norm. This is an important reason
underlying its many applications in mathematics and beyond.

9 / 30

Crank-Nicolson for 2D

Applying the trapezoidal rule to our semi-dicretization (2) we obtain
the two-dimensional Crank-Nicolson method:

(I − 1
2
µA∗) un+1 = (I + 1

2
µA∗) un , (4)

in which we move from the n-th to the (n+1)-st level by solving the
system of linear equations Bun+1 = Cun, or un+1 = B−1Cun. For
stability, similarly to the one-dimensional case, the eigenvalue
analysis implies that A = B−1C is normal and shares the same
eigenvectors with B and C , hence

λ(A) =
λ(C)

λ(B)
=

1 + 1
2µλ(A∗)

1− 1
2µλ(A∗)

⇒ |λ(A)| < 1 as λ(A∗) < 0

and the method is stable for all µ. The same result can be obtained
through the Fourier analysis.

10 / 30

Crank-Nicolson for 2D

We would like to find a fast solver to the system (4). The matrix
B = I − 1

2
µA∗ has a structure similar to that of A∗, where

A∗ =


H I

I
. . .

.

. . . I

I H

 , H =


−4 1

1
. . .

.

. . . 1

1 −4

 .
so we may apply the Hockney method.

The total computational cost per iteration is O(M2 logM) for a
M ×M discretization grid.

11 / 30

Crank-Nicolson for 2D

Matlab demo: Download the Matlab GUI for Solving the Wave
and Diffusion Equations in 2D from http://www.damtp.cam.ac.

uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html and
solve the diffusion equation (1) for different initial conditions. For
the numerical solution of the equation you can choose from the
Euler method and the Crank-Nicolson scheme. The GUI allows you
to solve the wave equation as well. Compare the behaviour of
solutions!

12 / 30

http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html
http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html

Splitting

In all the examples of semi-discretization we have seen so far, we always
reach a linear system of ODE of the form:

u′ = Au, u(0) = u0. (5)

The solution of this linear system of ODE is given by

u(t) = etAu0 (6)

where the matrix exponential function is defined by eB :=
∑∞

k=0
1
k!
Bk . It

is easily verified that detA/dt = AetA, therefore (6) is indeed a solution of
(5).
If A can be diagonalized A = VDV−1, then etA = V etDV−1 where etD is
the diagonal matrix consisting diag (etDii). As such one can compute the
solution of (5) exactly. However computing an eigenvalue decomposition
can be costly, and so one would like to consider more efficient methods,
based on the solution of sparse linear systems instead.

13 / 30

Splitting

Observe that one-step methods for solving (5) are approximating a matrix
exponential. Indeed, with k = ∆t, we have:

Euler: un+1 = (I + kA)un, ez = 1 + z +O(z2);

Implicit Euler: un+1 = (I − kA)−1un, ez = (1− z)−1 +O(z2);

Trapezoidal: un+1 =
(
I − 1

2kA
)−1 (

I + 1
2kA

)
un, ez =

1+ 1
2
z

1− 1
2
z

+O(z3).

In practice the matrix A is very sparse, and this can be exploited when
solving linear systems e.g., for the implicit Euler or Trapezoidal Rule.

14 / 30

Splitting

In many cases, the matrix A is naturally expressed as a sum of two
matrices, A = B + C . For example, when discretizing the diffusion
equation in 2D with zero boundary conditions, we have A = 1

h2 (Ax + Ay)

where 1
h2 Ax ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂x2 ,

and 1
h2 Ay ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂y2 . In

matrix notations, if the grid points are ordered by columns, then we have:

Ax =


−2I I

I
. . .

. . .
. . .

. . . I

I −2I

 , Ay =


G

G
. . .

G

 , G =


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2

 ∈ RM×M .

(7)

15 / 30

Kronecker product

Remark: It is convenient to note that Ax = G ⊗ I and Ay = I ⊗ G ,
where ⊗ is the Kronecker product of matrices (kron in Matlab)
defined by

A⊗ B =


A11B A12B . . . A1mA

B

A21B A22B . . . A2mA
B

...

AnA1B AnAmA
B

 ∈ RnAnB×mAmB

where A ∈ RnA×mA and B ∈ RnB×mB .

In general, exp(t(B + C)) 6= exp(tB) exp(tC). Equality holds
however when B and C commute.

16 / 30

Splitting the exponential

Proposition 2
For any matrices B,C,

et(B+C) = etBetC +
1
2
t2(CB − BC) +O(t3). (8)

If B and C commute, then eB+C = eBeC .

Proof. We Taylor-expand both expressions etBetC and et(B+C):

etBetC = (I + tB + t2B2/2 +O(t3))(I + tC + t2C 2/2 +O(t3))

= I + t(B + C) +
t2

2
(B2 + C 2 + 2BC) +O(t3)

and

et(B+C) = I + t(B + C) +
t2

2
(B + C)2 +O(t3)

= I + t(B + C) +
t2

2
(B2 + C 2 + BC + CB) +O(t3).

Equation (8) follows.

17 / 30

Splitting the exponential

Proof.
When B and C commute, we can write:

exp(B+C) =
∞∑
n=0

1

n!
(B+C)n =

∞∑
n=0

1

n!

(
n∑

k=0

(
n

k

)
Bn−kC k

)
=
∞∑
k=0

∞∑
n=k

1

n!

(
n

k

)
Bn−kC k

Recall that

(
n

k

)
=

n!

k!(n − k)!
, so

exp(B + C) =
∞∑
k=0

∞∑
n=k

1

k!(n − k)!
Bn−kC k =

∞∑
k=0

∞∑
m=0

1

k!m!
BmC k = eBeC .

�

18 / 30

Splitting for the 2D diffusion equation

19 / 30

Splitting the exponential

Recall that for the 2D diffusion equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂x2

using the five-point discretisation scheme for the Laplacian yields
the following ODE

du
dt

=
1

h2
(Ax + Ay)u

where the matrices Ax and Ay are expressed as Ax = G ⊗ I and
Ay = I ⊗ G , where ⊗ is the Kronecker product, and G is the
M ×M tridiagonal matrix

G =


−2 1

1
. . .

.

. . . 1

1 −2

 ∈ RM×M .

20 / 30

Splitting the exponential

It is straightforward to verify that Ax and Ay commute; namely
AxAy = AyAx = G ⊗ G (check out the basic rules of multiplication
with the kronecker product
https://en.wikipedia.org/wiki/Kronecker_product). This
should not come as a suprise since the operators ∂2/∂x2 and
∂2/∂y2, which Ax/h

2 and Ay/h
2 approximate, are known to

commute. So we can write

ek(Ax+Ay)/h2
= ekAx/h2

ekAy/h2
.

This means that the solution of the semi-discretized diffusion
equation in 2D, with zero boundary conditions, satisfies

un+1 = ekAx/h2
ekAy/h2

un. (9)

21 / 30

https://en.wikipedia.org/wiki/Kronecker_product

Split Crank-Nicolson

In the split Crank-Nicolson scheme, we approximate each exponential map
in (9) by the rational function

r(z) = (1 + z/2)(1− z/2)−1,

which leads to

un+1 = (I +
µ
2
Ax)(I − µ

2
Ax)−1(I +

µ
2
Ay)(I − µ

2
Ay)−1un. (10)

Note that computing un+1/2 = (I +
µ
2
Ay)(I − µ

2
Ay)−1un can be done

efficiently in O(M2) time as Ay is block-diagonal, and the matrices G are
tridiagonal (each tridiagonal solve requires O(M) time, and we have M of
these). Computing un+1 = (I +

µ
2
Ax)(I − µ

2
Ax)−1un+1/2 can also be done

in O(M2) time, since Ax is also block-diagonal provided we appropriately
permute the rows and columns so that the grid ordering is by rows instead
of columns. This means that the update step (10) of Split-Crank-Nicolson
can be performed in time O(M2) and only requires tridiagonal matrix
solves (no FFT needed).

22 / 30

Split Crank-Nicolson

One can easily verify stability of the split Crank-Nicolson scheme.
Indeed, we can write

‖r(µAx)r(µAy)‖2 ≤ ‖r(µAx)‖2‖r(µAy)‖2 ≤ 1

since, as seen in previous lectures,
‖r(µAx)‖2 = ‖(I + µ

2
Ax)(I − µ

2
Ax)−1‖2 ≤ 1 since Ax is symmetric

and its eigenvalues are ≤ 0. (Same for ‖r(µAy)‖2.)

23 / 30

Split Crank-Nicolson

Exercise: Check the consistency of the scheme

un+1 = r(µAx)r(µAy)un.

In particular, show that split Crank-Nicolson has the ‘same’ local
error as the classical Crank-Nicolson scheme. That is the local error
is O(k3 + kh2).

24 / 30

2D diffusion with variable diffusion coefficient

25 / 30

2D diffusion with variable diffusion coefficient

In general, however, the matrices B and C in A = B + C do not have to
commute, as in the following example: The general diffusion equation with a
diffusion coefficient a(x , y) > 0 is given by:

∂u

∂t
=

∂

∂x

(
a(x , y)

∂u

∂x

)
+

∂

∂y

(
a(x , y)

∂u

∂y

)
, (11)

together with initial conditions on [0, 1]2 and Dirichlet boundary conditions along
∂[0, 1]2×[0,∞). We replace each space derivative by central differences at
midpoints,

dg(ξ)

dξ
≈

g(ξ +
1
2
h)− g(ξ − 1

2
h)

h
,

resulting in the ODE system

u′`,m =
1
h2

[
a`− 1

2
,mu`−1,m + a`+ 1

2
,mu`+1,m + a`,m− 1

2
u`,m−1 + a`,m+ 1

2
u`,m+1

−
(
a`− 1

2
,m + a`+ 1

2
,m + a`,m− 1

2
+ a`,m+ 1

2

)
u`,m

]
.

(12)

26 / 30

2D diffusion with variable diffusion coefficient

Assuming zero boundary conditions, we have a system u ′ = Au, and
the matrix A can be split as A = 1

h2 (Ax + Ay). Here, Ax and Ay are
again constructed from the contribution of discretizations in the x-
and y -directions respectively, namely Ax includes all the a`± 1

2
,m

terms, and Ay consists of the remaining a`,m± 1
2

components. The

resulting operators Ax and Ay do not necessarily commute, and so
the splitting scheme

un+1 = ekAx/h2
ekAy/h2

un

will carry an error of O(k2), following Proposition 2.

27 / 30

Strang splitting

One can obtain better splitting approximations of et(B+C). For

example it is not hard to prove that e
1
2
tBetCe

1
2
tB gives a O(t3)

approximation of et(B+C), i.e.,

et(B+C) = e
1
2
tBetCe

1
2
tB +O(t3). (13)

28 / 30

Splitting of inhomogeneous systems

Our exposition so far has been limited to the case of zero boundary
conditions. In general, the linear ODE system is of the form

u′ = Au + b, u(0) = u0, (14)

where b originates in boundary conditions (and, possibly, in a forcing term
f (x , y) in the original PDE (11)). Note that our analysis should
accommodate b = b(t), since boundary conditions might vary in time!
The exact solution of (14) is provided by the variation of constants formula

u(t) = etAu(0) +

∫ t

0

e(t−s)Ab(s)ds, t ≥ 0,

therefore

u(tn+1) = ekAu(tn) +

∫ tn+1

tn

e(tn+1−s)Ab(s)ds .

The integral on the right-hand side can be evaluated using quadrature.

29 / 30

Splitting of inhomogeneous systems

For example, the trapezoidal rule∫ k
0 g(τ)dτ = 1

2
k[g(0) + g(k)] +O(k3) gives

u(tn+1) ≈ ekAu(tn) + 1
2
k[ekAb(tn) + b(tn+1)],

with a local error of O(k3). We can now replace exponentials with
their splittings. For example, Strang’s splitting (13), together with
the rational function approximation r(z) = (1 + z/2)/(1− z/2) of
the exponential map, results in

un+1 = r
(

1
2
kB
)
r
(
kC
)
r
(

1
2
kB
)[

un + 1
2
kbn

]
+ 1

2
kbn+1.

As before, everything reduces to (inexpensive) solution of
tridiagonal systems.

30 / 30

