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Spectral Methods
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Large matrices versus small matrices

Finite difference schemes rest upon the replacement of derivatives
by a linear combination of function values. This leads to the
solution of a system of algebraic equations, which on the one hand
tends to be large (due to the slow convergence properties of the
approximation) but on the other hand is highly structured and
sparse, leading itself to effective algorithms for its solution. We will
get to know some of these algorithms in Section 4.

However, an enticing alternative to this strategy are methods that
produce small matrices in the first place. Although, these matrices
will usually not be sparse anymore, the much smaller the size of the
matrices renders its solution affordable. The key point for such
approximations are better convergence properties requiring much
smaller number of parameters.
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General idea of spectral methods

The basic idea of spectral methods is simple. Consider a PDE of the form

Lu = f (1)

where L is a differential operator (e.g., L = ∂2

∂x2
, or L = ∂2

∂x2
+ ∂2

∂y2 , etc.)

and f is a right-hand side function. We consider a finite-dimensional
subspace of functions V spanned by a basis ψ1, . . . , ψN . A typical choice
for V is a space of (trigonometric) polynomials of finite degree. We seek
an approximate solution to the PDE by a linear combination of the ψn,
i.e., uN(x) =

∑N
n=1 cnψn(x). Plugging uN(x) in the PDE we get the

following linear equation in the unknowns (cn):

N∑
n=1

cnLψn = f . (2)
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General idea of spectral methods

In general the equation will not have a solution, as there is no reason to
expect that the original PDE has a solution in the subspace V . However,
we can seek to satisfy equation (2) approximately. Assume that the
(ψn)1≤n≤N are an orthonormal family of functions, with respect to some
inner product 〈·, ·〉. Then instead of looking for (cn) that satisfy (2), we
will require only that the projection of LuN − f on the subspace V is zero.
This is the same as requiring that

N∑
n=1

cn 〈Lψn, ψm〉 = 〈f , ψm〉 ∀m = 1, . . . ,N. (3)

If we call A the matrix Am,n = 〈Lψn, ψm〉, we end up with a N × N linear

system Ac = f̃ , where f̃m = 〈f , ψm〉.
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Fourier approximation of functions

In this chapter we will focus on two of the most common choices of
basis functions (ψn); namely the Fourier basis, and the basis of
Chebyshev polynomials.

We focus on one-dimensional problems on the domain [−1, 1]. The
basis of functions we consider here is

ψn(x) = e iπnx , n ∈ Z.

These functions are orthonormal with respect to the normalized L2

inner product on [−1, 1], i.e.,

〈ψn, ψm〉 =
1

2

∫ 1

−1
ψn(x)ψm(x) =

{
1 if n = m

0 else.
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Fourier approximation of functions

We consider the truncated Fourier approximation of a function f on
the interval [−1, 1]:

f (x) ≈ φN(x) =

N/2∑
n=−N/2+1

f̂ne
iπnx , x ∈ [−1, 1], (4)

where here and elsewhere in this section N ≥ 2 is an even integer
and

f̂n = 〈f , ψn〉 =
1

2

∫ 1

−1
f (t)e−iπnt dt, n ∈ Z

are the (Fourier) coefficients of this approximation. We want to
analyse the approximation properties of (4).
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Fourier approximation of functions

Theorem 1 (The de la Valleé Poussin theorem)

If the function f is Riemann integrable and f̂n = O(n−1) for
|n| � 1, then φN(x) = f (x) +O(N−1) as N →∞ for every point
x ∈ (−1, 1) where f is Lipschitz.
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Carlesson’s Theorem

Let f be an L2 periodic function with Fourier coefficients f̂ (n). Then

lim
N→∞

∑
|n|≤N

f̂ (n)e inx = f (x)

for almost every x.

There exists a L1 periodic function where the Fourier series diverges
everywhere (Kolmogorov), however, the above result can be
extended to Lp functions for p > 1.
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The Gibbs phenomenon

Remark 2 (The Gibbs effect at the end points)

Note that if f is smoothly differentiable then, integrating by
parts,

f̂n =
(−1)n+1

2πin
[f (1)− f (−1)] +

1

πin
f̂ ′n = O(n−1) for |n| � 1.

Since such an f is Lipschitz on (−1, 1), we deduce from Theorem
1 that φN converges to f there with speed O(N−1). However,
convergence with speed O(N−1) is very slow and moreover, we
cannot guarantee convergence at the endpoints −1 and 1. In
fact, it is possible to show that

φN(±1)→ 1

2
[f (−1) + f (1)] as n→∞

and hence, unless f is periodic we fail to converge.
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The Gibbs phenomenon

Figure: Convergence of the Fourier series
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Fourier approximation for periodic functions

Suppose f is an analytic function in [−1, 1], that can be extended
analytically to a closed complex domain Ω. In addition let f be
periodic with period 2. In particular, f (m)(−1) = f (m)(1) for all
m ∈ Z+. Then, by multiple integration by parts, we get

f̂n =
1

πin
f̂ ′n =

1

(πin)2
f̂ ′′n =

1

(πin)3
f̂ ′′′n = . . . .

Thus, we have

f̂n =
1

(πin)m
f̂
(m)
n , m = 0, 1, . . . . (5)

But, how large is
∣∣f̂ (m)
n

∣∣?
12 / 30



Fourier approximation for periodic functions

To answer this question we use Cauchy’s theorem of complex
analysis, which states that

f (m)(x) =
m!

2πi

∫
γ

f (z) dz

(z − x)m+1
, x ∈ [−1, 1],

where γ is the positively oriented boundary of Ω. Therefore, with
α−1 > 0 being the minimal distance between γ and [−1, 1] and
M = max{|f (z)| : z ∈ γ} <∞, it follows that

|f (m)(x)| ≤ m!

2π

∫
γ

|f (z)| |dz |
|z − x |m+1

≤ M length γ

2π
m!αm+1,

and hence, we can bound
∣∣f̂ (m)
n

∣∣ ≤ c m!αm+1 for some c > 0.
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Fourier approximation for periodic functions

Now, using (5) and the above upper bound,

|φN(x)− f (x)| =
∣∣∣ N/2∑
n=−N/2+1

f̂ne
iπnx −

∞∑
n=−∞

f̂ne
iπnx

∣∣∣
≤

∑
|n|≥N/2

|f̂n| =
∑
|n|≥N/2

|f̂ (m)
n |
|πn|m

≤ cm!αm+1

πm

+∞∑
n=N/2

1

nm
.

14 / 30



Fourier approximation for periodic functions

Using, that for any r ∈ N, and m > 1
+∞∑

n=r+1

1

nm
≤
∫ ∞
r

dt

tm
=

1

m − 1
r−m+1,

x
r,r+1,r+2

1/(r + 1)2

we deduce that

|φN(x)− f (x)| ≤ c ′m!
( α

πN

)m−1
, m ≥ 2.
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Fourier approximation for periodic functions

Finally, we have a competition between (α/(πN))m−1 and m! for
large m. Because of Stirling’s formula

m! ≈
√

2πmm+1/2e−m

we have

m!
( α

πN

)m−1
≈
√

2πm
m

e

( αm
πeN

)m−1
which becomes very small for large N. Hence, |φN − f | = O(N−p)
for any p ∈ N and we deduce that the Fourier approximation of an
analytic periodic function is of infinite order.
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Fourier approximation for periodic functions

Definition 3 (Convergence at spectral speed)

An N-term approximation φN of a function f converges to f at
spectral speed if ‖φN − f ‖ decays faster than O(N−p) for any
p = 1, 2, . . ..

Remark 4
It is possible to prove that there exist constants c1,w > 0 such
that ‖φN − f ‖ ≤ c1e

−wN for all N ∈ N uniformly in [−1, 1]. Thus,
convergence is at least at an exponential rate.

17 / 30



The algebra of Fourier expansions

Let A be the set of all functions f : [−1, 1]→ C , which are analytic
in [−1, 1], periodic with period 2, and that can be extended
analytically into the complex plane. Then A is a linear space, i.e.,
f , g ∈ A and α ∈ C then f + g ∈ A and af ∈ A. In particular,
with f and g expressed in its Fourier series, i.e.,

f (x) =
∞∑

n=−∞
f̂ne

iπnx , g(x) =
∞∑

n=−∞
ĝne

iπnx

we have

f (x) + g(x) =
∞∑

n=−∞
(f̂n + ĝn)e iπnx , αf (x) =

∞∑
n=−∞

αf̂ne
iπnx . (6)
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The algebra of Fourier expansions

Moreover,

f (x) · g(x) =
∞∑

n=−∞

( ∞∑
m=−∞

f̂n−mĝm

)
e iπnx =

∞∑
n=−∞

(
f̂ ∗ ĝ

)
n
e iπnx ,

(7)
where ∗ denotes the convolution operator (recall
https://en.wikipedia.org/wiki/Convolution), hence

(̂f ·g)n = (f̂ ∗ ĝ)n.
Moreover, if f ∈ A then f ′ ∈ A and

f ′(x) = iπ
∞∑

n=−∞
n · f̂ne iπnx . (8)

Since {f̂n} decays faster than O(n−p) for any p ∈ N, this provides
that all derivatives of f have rapidly convergent Fourier expansions.
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Application to differential equations

Consider the two-point boundary value problem: y = y(x),
−1 ≤ x ≤ 1, solves

y ′′ + a(x)y ′ + b(x)y = f (x), y(−1) = y(1), (9)

where a, b, f ∈ A and we seek a periodic solution y ∈ A for (9).
Substituting y , a, b and f by their Fourier series and using (6)-(8)
we obtain an infinite dimensional system of linear equations for the
Fourier coefficients ŷn:

−π2n2ŷn+iπ
∞∑

m=−∞
mân−mŷm+

∞∑
m=−∞

b̂n−mŷm = f̂n, n ∈ Z. (10)
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Application to differential equations

Since a, b, f ∈ A, their Fourier coefficients decrease rapidly, like
O(n−p) for every p ∈ N. Hence, we can truncate (10) into the
N-dimensional system

−π2n2ŷn + iπ

N/2∑
m=−N/2+1

mân−mŷm +

N/2∑
m=−N/2+1

b̂n−mŷm = f̂n, (11)

where n = −N/2 + 1, . . . ,N/2.
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Application to differential equations

Remark 5
The matrix of (11) is in general dense, but our theory predicts
that fairly small values of N, hence very small matrices, are
sufficient for high accuracy. For instance: choosing
a(x) = f (x) = cosπx , b(x) = sin 2πx (which incidentally even
leads to a sparse matrix) we get

N = 16 error of size 10−10

N = 22 error of size 10−15 (which is already hitting εMach).
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The discrete Fourier transform (DFT)

Recall the DFT:

https://en.wikipedia.org/wiki/DFT_matrix)

Exercise: Prove that the DFT is a unitary matrix.
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Computation of Fourier coefficients (DFT)

We have to compute

f̂n =
1

2

∫ 1

−1
f (t)e−iπnt dt, n ∈ Z. (12)

For this, suppose we wish to compute the integral on [−1, 1] of a function
h ∈ A by means of the Riemann sums on the uniform partition∫ 1

−1
h(t) dt ≈ 2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
. (13)

This is known as a rectangle rule. We want to know how good this
approximation is. As in the definition of the DFT, let ωN = e2πi/N . Then
we have

2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
=

2

N

N/2∑
k=−N/2+1

∞∑
n=−∞

ĥne
2πink/N

=
2

N

∞∑
n=−∞

ĥn

N/2∑
k=−N/2+1

ωnk
N .

(14)
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Computation of Fourier coefficients (DFT)

Since ωN
N = 1 we have

N/2∑
k=−N/2+1

ωnk
N = ω

−n(N/2−1)
N

N−1∑
k=0

ωnk
N =

{
N, n ≡ 0 (modN),

0, n 6≡ 0 (modN),

https://en.wikipedia.org/wiki/DFT_matrix)
and we deduce that

2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
= 2

∞∑
r=−∞

ĥNr .
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Computation of Fourier coefficients (DFT)

Hence, the error committed by the Riemann approximation is

eN(h) :=
2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
−
∫ 1

−1
h(t) dt = 2

∞∑
r=−∞

ĥNr − 2ĥ0

= 2
∞∑
r=1

(
ĥNr + ĥ−Nr

)
.

Since h ∈ A, its Fourier coefficients decay at spectral rate, namely
ĥNr = O((Nr)−p), and hence the error of the Riemann sums
approximation (13) decays spectrally as a function of N,

eN(h) = O(N−p) ∀p ∈ N .
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Computation of Fourier coefficients (DFT)

Going back to the computation of the Fourier coefficients (12), we
see that we may compute the integral of h(x) = 1

2 f (x)e−iπnx by
means of the Riemann sums, and this gives a spectral method for
calculating the Fourier coefficients of f :

f̂n ≈
1

N

N/2∑
k=−N/2+1

f

(
2k

N

)
ω−nkN , n = −N/2 + 1, . . . ,N/2 .

(15)
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Computation of Fourier coefficients (DFT)

Remark 6
One can recognise that formula (15) is the discrete Fourier
transform (DFT) of the sequence (yk) =

(
f (2kN )

)
, see Definition

??, hence not only have we a spectral rate of convergence, but
also a fast algorithm (FFT) of computing the Fourier coefficients.
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The fast Fourier transform (FFT)

The fast Fourier transform (FFT) is a computational algorithm,
which computes the leading N Fourier coefficients of a function in
just O(N log2N) operations. We assume that N is a power of 2, i.e.
N = 2m = 2p, and for y ∈ Π2m, denote by

y (E) = {y2j}j∈Z and y (O) = {y2j+1}j∈Z

the even and odd portions of y , respectively. Note that
y (E), y (O) ∈ Πm.
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The fast Fourier transform (FFT)

To execute FFT, we start from vectors of unit length and in each
s-th stage, s = 1...p, assemble 2p−s vectors of length 2s from
vectors of length 2s−1 with

x` = x
(E)
` + ω`2sx

(O)
` , ` = 0, . . . , 2s−1−1. (16)

Therefore, it costs just s products to evaluate the first half of x ,
provided that x (E) and x (O) are known. It actually costs nothing to
evaluate the second half, since

x2s−1+` = x
(E)
` − ω`2sx

(O)
` , ` = 0, . . . , 2s−1−1.

Altogether, the cost of FFT is p2p−1 = 1
2N log2N products.
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