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Iterative methods for linear algebraic systems
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Solving linear systems with iterative methods

The general iterative method for solving Ax = b is a rule
xk+1 = fk(x0, x1, . . . , xk). We will consider the simplest ones:
linear, one-step, stationary iterative schemes:

xk+1 = Hxk + v , x0, v ∈ Rn. (1)

Here one chooses H and v so that x∗, a solution of Ax = b,
satisfies x∗ = Hx∗ + v , i.e. it is the fixed point of the iteration (1)
(if the scheme converges). Standard terminology:

the iteration matrix H, the error ek := x∗ − xk , the residual rk := Aek = b − Axk .
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Solving linear systems – Iterative refinement

For a given class of matrices A (e.g. positive definite matrices, or
even a single particular matrix), we are interested in convergent
methods, i.e. the methods such that xk → x∗ = A−1b for every
starting value x0. Subtracting x∗ = Hx∗ + v from (1) we obtain

ek+1 = Hek = · · · = Hk+1e0, (2)

i.e., a method is convergent if ek = Hke0 → 0 for any e0 ∈ Rn.

(Iterative refinement). This is the scheme

xk+1 = xk − S(Axk − b) .

If S = A−1, then xk+1 = A−1b = x∗, so it is suggestive to choose S
as an approximation to A−1. The iteration matrix for this scheme is
HS = I − SA.
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Solving linear systems – Splitting

(Splitting). This is the scheme

(A− B)xk+1 = −Bxk + b ,

with the iteration matrix H = −(A− B)−1B. Any splitting can be
viewed as an iterative refinement (and vice versa) because

(A− B)xk+1 = −Bxk + b ⇔ (A− B)xk+1 = (A− B)xk − (Axk − b)

⇔ xk+1 = xk − (A− B)−1(Axk − b),

so we should seek a splitting such that S = (A−B)−1 approximates
A−1.
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Solving linear systems – Convergence

Theorem 1
Let H ∈ Rn×n. Then lim

k→∞
Hkz = 0 for any z ∈ Rn if and only if

ρ(H) < 1.

Proof. 1) Let λ be an eigenvalue of (the real) H, real or complex,
such that |λ| = ρ(H) ≥ 1, and let w be a corresponding
eigenvector, i.e., Hw = λw . Then Hkw = λkw , and

‖Hkw‖∞ = |λ|k‖w‖∞ ≥ ‖w‖∞ =: γ > 0. (3)

If w is real, we choose z = w , hence ‖Hkz‖∞ ≥ γ, and this cannot
tend to zero.
If w is complex, then w = u + iv with some real vectors u, v . But
then at least one of the sequences (Hku), (Hkv) does not tend to
zero. For if both do, then also Hkw = Hku + iHkv → 0, and this
contradicts (3).
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Solving linear systems – Convergence

Proof. Cont. 2) Now, let ρ(H) < 1, and assume for simplicity that
H possesses n linearly independent eigenvectors (w j) such that
Hw j = λjw j . Linear independence means that every z ∈ Rn can be
expressed as a linear combination of the eigenvectors, i.e., there
exist (cj) ∈ C such that z =

∑n
j=1 cjw j . Thus,

Hkz =
∑n

j=1 cjλ
k
j w j ,

and since |λj | ≤ ρ(H) < 1 we have limk→∞Hkz = 0, as required. �
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Solving linear systems – Convergence

Remark 2 (Non-examinable)

The complete proof of case (2) of Theorem 1 exploits the
so-called Jordan normal form of the matrix H, namely
H = SJS−1, where J is a block diagonal matrix consisting of the
Jordan blocks,

J =


J1

J2
. . .

Jr

 , Ji =


λi 1
λi
. . .
. . . 1

λi

 , Ji ∈ Rni×ni ,
∑

i ni = n .

To prove that Jki → 0 if |λi | < 1 one should split Ji = λi I + P,
notice that Pm = 0 for m ≥ ni , and evaluate the terms of the
expansion (λi I + P)k =

∑ni−1
m=0

(k
m

)
λk−mi Pm.
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Solving linear systems – Convergence

Applying Theorem 1 to the error estimate (2), we arrive at the
following statement.

Theorem 3
Let x∗, a solution of Ax = b, satisfy x∗ = Hx∗ + v and we are
given the scheme

xk+1 = Hxk + v , x0, v ∈ Rn. (4)

Then xk → x∗ for any choice of x0 if and only if ρ(H) < 1.

Note: Of course, we would like to know not just convergence but
the rate of it. For example, we achieve convergence with

H =

 0.99 106

0 0.99

 ,
but it will take quite a long time. We will discuss this topic briefly
later on.
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Jacobi and Gauss–Seidel

Both of these methods are versions of splitting which can be applied
to any A with nonzero diagonal elements. We write A as the sum of
three matrices L0 + D + U0: subdiagonal (strictly lower-triangular),
diagonal and superdiagonal (strictly upper-triangular) portions of A,
respectively.
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The Jacobi method

1) Jacobi method. We set A− B = D, the diagonal part of A, and
we obtain the next iteration by solving the diagonal system

Dx (k+1) = −(L0 + U0)x (k) + b, HJ = −D−1(L0 + U0) .
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The Gauss–Seidel method

2) Gauss–Seidel method. We take A− B = L0 + D = L, the
lower-triangular part of A, and we generate the sequence (x (k)) by
solving the triangular system

(L0 + D) x (k+1) = −U0x (k) + b, HGS = −(L0 + D)−1U0 .

There is no need to invert (L0 + D), we calculate the components of
x (k+1) in sequence by forward substitution:

aiix
(k+1)
i = −

∑
j<i aijx

(k+1)
j −

∑
j>i aijx

(k)
j + bi , i = 1..n.
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Convergence

As we mentioned above, the sequence x (k) converges to the solution
of Ax = b if the spectral radius of the iteration matrix,

HJ = −D−1(L0 + U0) or HGS = −(L0 + D)−1U0,

respectively, is less than one. Our next goal is to prove that this is
the case for two important classes of matrices A:

a) diagonally dominant and b) positive definite matrices.

We start with recalling the simple, but very useful Gershgorin
theorem.
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Revision – Gershgorin theorem

All eigenvalues of an n×n matrix A are contained in the union of
the Gershgorin discs in the complex plane:

σ(A) ⊂ ∪ni=1Γi , Γi := {z ∈ C : |z − aii | ≤ ri}, ri :=
∑

j 6=i |aij | .
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Strictly diagonally dominant matrices

Definition 4 (Strictly diagonally dominant matrices)

A matrix A is called strictly diagonally dominant by rows (resp.
by columns) if

|aii | >
∑

j 6=i |aij |, i = 1..n (resp. |ajj | >
∑

i 6=j |aij |, j = 1..n ).

From Gershgorin theorem, it follows that strictly diagonally
dominant matrices are nonsingular.
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Convergence of iterations

Theorem 5
If A is strictly diagonally dominant, then both the Jacobi and the
Gauss-Seidel methods converge.

Proof. For the Gauss-Seidel method, the eigenvalues of the
iteration matrix HGS = −(L0 + D)−1U0 satisfy the equation

det[HGS − λI ] = det[−(L0 + D)−1U0 − λI ] = 0.

Moreover,

det[−(L0+D)−1U0−λI ] = 0 ⇒ det[Aλ] := det[U0+λD+λL0] = 0.

It is easy to see that if A = L0 + D + U0 is strictly diagonally
dominant, then for |λ| ≥ 1 the matrix Aλ = λL0 + λD + U0 is
strictly diagonally dominant too, hence it is nonsingular, and
therefore the equality det[Aλ] = 0 is impossible. Thus |λ| < 1,
hence convergence. The proof for the Jacobi method is the same. �
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The Householder–John theorem

Theorem 6 (The Householder–John theorem)

If A and B are real matrices such that both A and A−B−BT are
symmetric positive definite, then the spectral radius of
H = −(A− B)−1B is strictly less than one.
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The Householder–John theorem

Proof. Let λ be an eigenvalue of H, so Hw = λw holds, where
w 6= 0 is an eigenvector. (Note that both λ and w may have
nonzero imaginary parts when H is not symmetric, e.g. in the
Gauss–Seidel method.) The definition of H provides equality
−Bw = λ(A− B)w , and we note that λ 6= 1 since otherwise A
would be singular (which it is not). Thus, we deduce

wTBw =
λ

λ− 1
wTAw , (5)

where the bar means complex conjugation.
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The Householder–John theorem

Proof. Cont. Moreover, writing w = u + iv , where u and v are
real, we find (for C = CT ) the identity wTCw = uTCu + vTCv ,
so symmetric positive definiteness in the assumption implies
wTAw > 0 and wT (A− B − BT )w > 0. In the latter inequality,
we use relation (5) and its conjugate transpose to obtain

0 < wTAw −wTBw −wTBTw =

(
1− λ

λ− 1
− λ

λ− 1

)
wTAw

=
1− |λ|2

|λ− 1|2
wTAw .

Now λ 6= 1 implies |λ− 1|2 > 0. Hence, recalling that wTAw > 0,
we see that 1− |λ|2 is positive. Therefore |λ| < 1 occurs for every
eigenvalue of H as required. �
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The Householder–John theorem – A corollary

Corollary 7

1) If A is symmetric positive definite, then the Gauss-Seidel
method converges.

2) If both A and 2D−A are symmetric positive definite, then the
Jacobi method converges.

Proof. 1) For the Gauss-Seidel method, we take A− B = L0 + D,
thus B = U0 is the superdiagonal part of symmetric A, hence
A− B − BT is equal to D, the diagonal part of A, and if A is
positive definite, then D is positive definite too (this is the first part
of the Exercise 23 from Example Sheets).
2) For the Jacobi method, we have B = A− D, and if A is
symmetric, then A− B − BT = 2D − A. (The latter matrix is the
same as A except that the signs of the off-diagonal elements are
reversed.) �
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Linear systems in elliptic PDEs

As we have seen in the previous sections linear systems Ax = b,
where A is a real symmetric positive (negative) definite matrix,
frequently occur in numerical methods for solving elliptic partial
differential equations.
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Poisson’s equation on a square

A typical example we already encountered is Poisson’s equation on a
square where the five-point formula approximation yields an n × n
system of linear equations with n = m2 unknowns up,q:

up−1,q + up+1,q + up,q−1 + up,q+1 − 4up,q = h2f (ph, qh) (6)

In the natural ordering, when the grid points are arranged by
columns, A is the following block tridiagonal matrix:

A =



B I

I B I
. . .

. . .
. . .

I B I

I B


, B =



−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1

1 −4


. (7)
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The matrix A is symmetric and negative definite

Lemma 8
For any ordering of the grid points, the matrix A of the system (6)
is symmetric and negative definite.
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Poisson’s equation on a square

Note that when p or q is equal to 1 or m, then the values u0,q, up,0
or up,m+1, um+1,q are known boundary values and they should be
moved to the right-hand side, thus leaving fewer unknowns on the
left.

For any ordering of the grid points (ph, qh) we have shown in
Lemma 8 that the matrix A of this linear system is symmetric and
negative definite.
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Poisson’s equation on a square

Corollary 9

For the linear system (6), for any ordering of the grid, both Jacobi
and Gauss-Seidel methods converge.

Proof. By Lemma 8, A is symmetric and negative definite, hence
convergence of Gauss-Seidel. To prove convergence of the Jacobi
method, we need negative definiteness of the matrix 2D − A, and
that follows by the same arguments as in Lemma 8: recall that the
proof operates with the modulus of the off-diagonal elements and
does not depend on their sign. �
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Relaxation

It is often possible to improve the efficiency of the splitting method
by relaxation. Specifically, instead of letting
(A− B)x (k+1) = −Bx (k) + b, we let

(A−B)x̂ (k+1) = −Bx (k)+b, and then x (k+1) = ωx̂ (k+1)+(1−ω)x (k) k = 0, 1, . . . ,

where ω is a real constant called the relaxation parameter.

Note that ω = 1 corresponds to the standard “unrelaxed” iteration.
Good choice of ω leads to a smaller spectral radius of the iteration
matrix (compared with the ”unrelaxed” method), and the smaller
the spectral radius, the faster the iteration converges.
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Relaxation

To this end, let us express the relaxation iteration matrix Hω in terms of
H = −(A− B)−1B. We have

x̂ (k+1) = Hx (k)+v ⇒
x (k+1) = ωx̂ (k+1) + (1− ω)x (k)

= ωHx (k) + (1− ω)x (k) + ωv ,

hence
Hω = ωH + (1− ω)I .

It follows that the spectra of Hω and H are related by the rule
λω = ωλ+ (1− ω),

https://users.math.msu.edu/users/maccluer/Class/415/

SpectralMapping.pdf

therefore one may try to choose ω ∈ R to minimize

ρ(Hω) = max {|ωλ+ (1− ω)| : λ ∈ σ(H)}.
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Relaxation

In general, σ(H) is unknown, but often we have some information
about it which can be utilized to find a ”good” (rather than ”best”)
value of ω. For example, suppose that it is known that σ(H) is real
and resides in the interval [α, β] where −1 < α < β < 1. In that
case we seek ω to minimize

max {|ωλ+ (1− ω)| : λ ∈ [α, β]} .
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Relaxation

It is readily seen that, for a fixed λ < 1, the function
f (ω) = ωλ+ (1− ω) is decreasing, therefore, as ω increases
(decreases) from 1 the spectrum of Hω moves to the left (to the
right) of the spectrum of H. It is clear that the optimal location of
the spectrum σ(Hω) (or of the interval [αω, βω] that contains
σ(Hω)) is the one which is centralized around the origin:

−[ωα+(1−ω)] = ωβ+(1−ω) ⇒
ωopt = 2

2−(α+β)

−αωopt = βωopt = β−α
2−(α+β) .
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Minimization of quadratic function

The methods we considered so far for solving Ax = b, namely
Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

x (k+1) = x (k) + ckd (k) ,

where we were aimed at getting ρ(H) < 1 for the iteration matix H.
Say, for Jacobi with relaxation, we set ck = ω and
d (k) = D−1(b − Ax (k)).
For solving Ax = b with a (positive definite) matrix A > 0, there is
a different approach to constructing good iterative methods. It is
based on succesive minimization of the quadratic function

F (x (k)) := ‖x∗ − x (k)‖2A = ‖e(k)‖2A ,

since the minimizer is clearly the exact solution. Here,
‖y‖A := (Ay , y)1/2 :=

√
yTAy is a Euclidean-type distance which

is well-defined for A > 0.
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Minimization of quadratic function

So, at each step k , we are decreasing the A-distance between x (k)

and the exact solution x∗. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent
condition

x (k+1) = x (k) + ckd (k) ⇒ F (x (k+1)) < F (x (k)) . (8)
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Minimization of quadratic function

An equivalent approach is to minimize the quadratic function

F1(x) = 1
2
xTAx − xTb ,

which attains its minimum when ∇F1(x) = Ax − b = 0, and which
does not involve the unknown x∗. It is easy to check that
F1(x) = 1

2F (x)− 1
2c , where c = x∗TAx∗ is a constant independent

of k , hence equivalence.
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Quadratic function – Jacobi and Gauss–Seidel

Both the Jacobi and the Gauss–Seidel methods satisfy (8), precisely

(Ae(k+1), e(k+1)) = (Ae(k), e(k))− (Cy (k), y (k)) < (Ae(k), e(k)) ,

where for Gauss-Seidel: C = D > 0, y (k) := (L0 + D)−1Ae(k);

and for Jacobi: C = 2D − A > 0, y (k) := D−1Ae(k).
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A-orthogonal projection

A-orthogonal projection method: Next, we strengthen the
descent condition (8), namely given x (k) and some d (k) (called a
search direction), we will seek x (k+1) from the set of vectors on the
line ` = {x (k)+αd (k)}α∈R such that it makes the value of
F (x (k+1)) not just smaller than F (x (k)), but as small as possible
(with respect to this set), namely

x (k+1) := arg min
α

F (x (k) + αd (k)) . (9)
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A-orthogonal projection

Lemma 10
The minimizer in (9) is given by the formula

x (k+1) = x (k) + αkd (k) , αk =
(r (k),d (k))

(Ad (k),d (k))
. (10)
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A-orthogonal projection

Proof. From the definition of F , it follows that in (9) we should
choose the point x (k+1) ∈ ` that minimizes the A-distance between
x∗ and the points y ∈ `. Geometrically, it is clear that the minimum
occurs when x (k+1) is the A-orthogonal projection of x∗ onto the
line ` = {x (k) + αd (k)}, i.e., when

x∗ − x (k+1) ⊥A d (k) ⇒ A(x∗ − x (k+1)) ⊥ d (k)

⇒ r (k+1) = r (k) − αkAd (k) ⊥ d (k) .

This gives expression for αk in (10). �
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