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Iterative methods for linear algebraic systems
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Solving linear systems with iterative methods

The general iterative method for solving Ax = b is a rule
xk+1 = fk(x0, x1, . . . , xk). We will consider the simplest ones:
linear, one-step, stationary iterative schemes:

xk+1 = Hxk + v , x0, v ∈ Rn. (1)

Here one chooses H and v so that x∗, a solution of Ax = b,
satisfies x∗ = Hx∗ + v , i.e. it is the fixed point of the iteration (1)
(if the scheme converges). Standard terminology:

I the iteration matrix H,

I the error ek := x∗ − xk ,

I the residual rk := Aek = b − Axk .
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Linear systems in elliptic PDEs

As we have seen in the previous sections linear systems Ax = b,
where A is a real symmetric positive (negative) definite matrix,
frequently occur in numerical methods for solving elliptic partial
differential equations.
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Poisson’s equation on a square

A typical example we already encountered is Poisson’s equation on a
square where the five-point formula approximation yields an n × n
system of linear equations with n = m2 unknowns up,q:

up−1,q + up+1,q + up,q−1 + up,q+1 − 4up,q = h2f (ph, qh) (2)

In the natural ordering, when the grid points are arranged by
columns, A is the following block tridiagonal matrix:

A =



B I

I B I
. . .

. . .
. . .

I B I

I B


, B =



−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1

1 −4


. (3)
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The matrix A is symmetric and negative definite

Lemma 1
For any ordering of the grid points, the matrix A of the system (2)
is symmetric and negative definite.
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Poisson’s equation on a square

Note that when p or q is equal to 1 or m, then the values u0,q, up,0
or up,m+1, um+1,q are known boundary values and they should be
moved to the right-hand side, thus leaving fewer unknowns on the
left.

For any ordering of the grid points (ph, qh) we have shown in
Lemma 1 that the matrix A of this linear system is symmetric and
negative definite.
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Poisson’s equation on a square

Corollary 2

For the linear system (2), for any ordering of the grid, both Jacobi
and Gauss-Seidel methods converge.

Proof. By Lemma 1, A is symmetric and negative definite, hence
convergence of Gauss-Seidel. To prove convergence of the Jacobi
method, we need negative definiteness of the matrix 2D − A, and
that follows by the same arguments as in Lemma 1: recall that the
proof operates with the modulus of the off-diagonal elements and
does not depend on their sign. �
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Relaxation

It is often possible to improve the efficiency of the splitting method
by relaxation. Specifically, instead of letting
(A− B)x (k+1) = −Bx (k) + b, we let

(A−B)x̂ (k+1) = −Bx (k)+b, and then x (k+1) = ωx̂ (k+1)+(1−ω)x (k) k = 0, 1, . . . ,

where ω is a real constant called the relaxation parameter.

Note that ω = 1 corresponds to the standard “unrelaxed” iteration.
Good choice of ω leads to a smaller spectral radius of the iteration
matrix (compared with the ”unrelaxed” method), and the smaller
the spectral radius, the faster the iteration converges.
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Relaxation

To this end, let us express the relaxation iteration matrix Hω in
terms of H = −(A− B)−1B. We have

x̂ (k+1) = Hx (k)+v ⇒
x (k+1) = ωx̂ (k+1) + (1− ω)x (k)

= ωHx (k) + (1− ω)x (k) + ωv ,

hence
Hω = ωH + (1− ω)I .

It follows that the spectra of Hω and H are related by the rule
λω = ωλ+ (1− ω), therefore one may try to choose ω ∈ R to
minimize

ρ(Hω) = max {|ωλ+ (1− ω)| : λ ∈ σ(H)}.
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Relaxation

In general, σ(H) is unknown, but often we have some information
about it which can be utilized to find a ”good” (rather than ”best”)
value of ω. For example, suppose that it is known that σ(H) is real
and resides in the interval [α, β] where −1 < α < β < 1. In that
case we seek ω to minimize

max {|ωλ+ (1− ω)| : λ ∈ [α, β]} .
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Relaxation

It is readily seen that, for a fixed λ < 1, the function
f (ω) = ωλ+ (1− ω) is decreasing, therefore, as ω increases
(decreases) from 1 the spectrum of Hω moves to the left (to the
right) of the spectrum of H. It is clear that the optimal location of
the spectrum σ(Hω) (or of the interval [αω, βω] that contains
σ(Hω)) is the one which is centralized around the origin:

−[ωα+(1−ω)] = ωβ+(1−ω) ⇒
ωopt = 2

2−(α+β)

−αωopt = βωopt = β−α
2−(α+β) .
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Minimization of quadratic function

The methods we considered so far for solving Ax = b, namely
Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

x (k+1) = x (k) + ckd (k) ,

where we were aimed at getting ρ(H) < 1 for the iteration matix H.
Say, for Jacobi with relaxation, we set ck = ω and
d (k) = D−1(b − Ax (k)).
For solving Ax = b with a (positive definite) matrix A > 0, there is
a different approach to constructing good iterative methods. It is
based on succesive minimization of the quadratic function

F (x (k)) := ‖x∗ − x (k)‖2A = ‖e(k)‖2A ,

since the minimizer is clearly the exact solution. Here,
‖y‖A := (Ay , y)1/2 :=

√
yTAy is a Euclidean-type distance which

is well-defined for A > 0.
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Minimization of quadratic function

So, at each step k , we are decreasing the A-distance between x (k)

and the exact solution x∗. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent
condition

x (k+1) = x (k) + ckd (k) ⇒ F (x (k+1)) < F (x (k)) . (4)

14 / 28



Minimization of quadratic function

An equivalent approach is to minimize the quadratic function

F1(x) = 1
2
xTAx − xTb ,

which attains its minimum when ∇F1(x) = Ax − b = 0, and which
does not involve the unknown x∗. It is easy to check that
F1(x) = 1

2F (x)− 1
2c , where c = x∗TAx∗ is a constant independent

of k , hence equivalence.
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Quadratic function – Jacobi and Gauss–Seidel

Both the Jacobi and the Gauss–Seidel methods satisfy (4), precisely

(Ae(k+1), e(k+1)) = (Ae(k), e(k))− (Cy (k), y (k)) < (Ae(k), e(k)) ,

where for Gauss-Seidel: C = D > 0, y (k) := (L0 + D)−1Ae(k);

and for Jacobi: C = 2D − A > 0, y (k) := D−1Ae(k).
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A-orthogonal projection

A-orthogonal projection method: Next, we strengthen the
descent condition (4), namely given x (k) and some d (k) (called a
search direction), we will seek x (k+1) from the set of vectors on the
line ` = {x (k)+αd (k)}α∈R such that it makes the value of
F (x (k+1)) not just smaller than F (x (k)), but as small as possible
(with respect to this set), namely

x (k+1) := arg min
α

F (x (k) + αd (k)) . (5)
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A-orthogonal projection

Lemma 3
The minimizer in (5) is given by the formula

x (k+1) = x (k) + αkd (k) , αk =
(r (k),d (k))

(Ad (k),d (k))
. (6)

This choice of αk is referred to as exact line search.
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A-orthogonal projection

Proof. From the definition of F , it follows that in (5) we should
choose the point x (k+1) ∈ ` that minimizes the A-distance between
x∗ and the points y ∈ `. Geometrically, it is clear that the minimum
occurs when x (k+1) is the A-orthogonal projection of x∗ onto the
line ` = {x (k) + αd (k)}, i.e., when

x∗ − x (k+1) ⊥A d (k) ⇒ A(x∗ − x (k+1)) ⊥ d (k)

⇒ r (k+1) = r (k) − αkAd (k) ⊥ d (k) .

This gives expression for αk in (6). �
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The steepest descent method

The steepest descent method: This method takes
d (k) =−∇F1(x (k)) = b − Ax (k) for every k , the reason being that,
locally, the negative gradient of a quadratic function shows the
direction of the (locally) steepest descent at a given point. Thus,
the iterations have the form

x (k+1) = x (k) + αk(b − Ax (k)), k ≥ 0 . (7)

It can be proved that the sequence (x (k)) converges to the solution
x∗ of the system Ax = b as required, but usually the speed of
convergence is rather slow.

The reason is that the iteration (7) decreases the value of F (x (k+1))
locally, relatively to F (x (k)), but the global decrease, with respect
to F (x (0)), is often not that large. The use of conjugate directions
provides a method with a global minimization property.
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Steepest descent and conjugate gradient
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Conjugate directions

Let’s revisit equation (6) for a general direction d (i.e., not necessarily
equal to the negative gradient). Assume x = x (k), and let e(k) = x∗ − x (k)

be the error and r (k) = b − Ax (k) = Ae(k) be the residual. Then we can
write 〈r (k),d 〉 = 〈e(k),d 〉A, and so for a general search direction d with

an exact line search, the iterate takes the form x (k+1) = x (k) + 〈e (k),d 〉A
〈d ,d 〉A

d .

By substracting x∗, the iterates in terms of the error e(k+1) are given by:

e(k+1) = e(k) − 〈e
(k),d 〉A
〈d ,d 〉A

d . (8)

Geometrically, this means that e(k+1) is the projection of e(k) onto the
hyperplane that is A-orthogonal to d , i.e., we have

〈e(k+1),d 〉A = 0. (9)
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Conjugate directions

Definition 4 (Conjugate directions)

The vectors u, v ∈ Rn are conjugate with respect to a symmetric
positive definite matrix A if they are nonzero and A-orthogonal:
〈u, v〉A := 〈u,Av〉 = 0.
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Conjugate gradient - Warm up

Theorem 5
Let d (0),d (1), . . . ,d (n−1) be n nonzero pairwise conjugate
directions, and consider the sequence of iterates

x (k+1) = x (k) + αkd (k), αk =
〈r (k),d (k)〉
〈d (k),Ad (k)〉

.

Let r (k) = b − Ax (k) be the residual. Then for each k = 1, . . . , n,
r (k) is orthogonal to span{d (0), . . . ,d (k−1)}. In particular r (n) = 0.
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Conjugate gradient - Warm up

Proof. Since r (k) = Ae(k), it suffices to show that e(k) is
A-orthogonal to span{d (0), . . . ,d (k−1)}. The proof is by induction
on k . For k = 0 there is nothing to prove. Assume the statement is
true for k ≥ 0, and consider the equation (8) (with d = d (k)).
From the induction hypothesis, and the fact that the d (i) are
pairwise conjugate directions, we see that e(k+1) is A-orthogonal to
d (0), . . . ,d (k−1). Furthermore, we have already seen in (9) that
〈e(k+1),d (k)〉A = 0. Thus this shows that e(k+1) is A-orthogonal to
d (0), . . . ,d (k) as desired. �
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Conjugate gradient - Warm up

So, if a sequence (d (k)) of conjugate directions is at hands, we have
an iterative procedure with good approximation properties.
The (A-orthogonal) basis of conjugate directions is constructed by
A-orthogonalization of the sequence {r0,Ar0,A2r0, ...,An−1r0} with
r0 = b − Ax0. This is done in the way similar to orthogonalization
of the monomial sequence {1, x , x2, ..., xn−1} using a recurrence
relation.
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Conjugate gradient - Warm up

Remark 6
It is possible to extend the methods for solving Ax = b with
symmetric positive definite A to any other matrices by a simple
trick. Suppose we want to solve Bx = c , where B ∈ Rn×n is
nonsingular. We can convert the above system to the symmetric
and positive definite setting by defining A = BTB, b = BTc and
then solving Ax = b with the conjugate gradient algorithm (or
any other method for positive definite A).
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The conjugate gradient method

Here it is.

(A) For any initial vector x (0), set d (0) = r (0) = b − Ax (0);

(B) For k ≥ 0, calculate x (k+1) = x (k) + αkd (k) and the residual

r (k+1) = r (k) − αkAd (k), with

αk := { r (k+1) ⊥ d (k)} =
(r (k),d (k))

(Ad (k),d (k))
, k ≥ 0 .

(10)

(C) For the same k , the next conjugate direction is the vector

d (k+1) = r (k+1) + βkd (k), with

βk := {d (k+1) ⊥ Ad (k)} = −(r (k+1),Ad (k))

(d (k),Ad (k))
, k ≥ 0 .

(11)
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