Numerical Analysis - Part Il

Anders C. Hansen

Lecture 19
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Iterative methods for linear algebraic systems
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The methods we considered so far for solving Ax = b, namely
Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

XU+ = () 4 ¢ g0

where we were aimed at getting p(H) < 1 for the iteration matix H.

Say, for Jacobi with relaxation, we set ¢, = w and

d®) = p=1(b — Ax(¥)).

For solving Ax = b with a (positive definite) matrix A > 0, there is
a different approach to constructing good iterative methods. It is
based on succesive minimization of the quadratic function

F(x1) = ||Ix* —xW|5 = )3,

since the minimizer is clearly the exact solution. Here,

lylla:= (Ay,y)Y? := \/yT Ay is a Euclidean-type distance which
is well-defined for A > 0.
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So, at each step k, we are decreasing the A-distance between x(K)

and the exact solution x*. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent
condition

xAD) = x(K) 4 d®) = F(x(HD) < F(x(R) (1)

4/30



An equivalent approach is to minimize the quadratic function

Fi(x) = éxTAx —x'b,
which attains its minimum when VFi(x) = Ax — b =0, and which
does not involve the unknown x*. It is easy to check that

Fi(x) = F(x) — c, where ¢ = x*T Ax* is a constant independent
of k, hence equivalence.
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Both the Jacobi and the Gauss—Seidel methods satisfy (1), precisely

(Aelk+1) elkt1)y — (Aelk) (k) — (Cy(R) y(F)) < (Ael¥) e(F),

where for Gauss-Seidel: C =D > 0, y(k) .= (Lo + D)_lAe(k);

and for Jacobi: C=2D—-A>0, yk :.=p14el.
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A-orthogonal projection method: Next, we strengthen the
descent condition (1), namely given x(*) and some d¥) (called a
search direction), we will seek x(k*1) from the set of vectors on the
line £ = {x(0) +-ad(} ,cr such that it makes the value of
F(x(%+1)) not just smaller than F(x(K)), but as small as possible
(with respect to this set), namely

x5 = arg min F(x®) + ad®)) . (2)
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Lemma 1
The minimizer in (2) is given by the formula

(r(), d(R)y

(k+1) _ (k) (k) _\rna )
X x\ + a d\ P (Ad(k),d(k))'

This choice of « is referred to as exact line search.
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Proof. From the definition of F, it follows that in (2) we should
choose the point x(¥*1) € ¢ that minimizes the A-distance between
x* and the points y € £. Geometrically, it is clear that the minimum
occurs when x(k*1) is the A-orthogonal projection of x* onto the
line £ = {x() + ad®}, ie., when

x* — x| d) o A(x* — x(KHD)) 1 g (k)
= ) = () _ g Ad) L dK)

This gives expression for ay in (3). O
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The steepest descent method: This method takes

d*) =V F(x(®) = b— Ax(¥) for every k, the reason being that,
locally, the negative gradient of a quadratic function shows the
direction of the (locally) steepest descent at a given point. Thus,
the iterations have the form

x(k+1) = x(k) =+ ak(b — Ax(k)), k >0. (4)

It can be proved that the sequence (x(k)) converges to the solution
x* of the system Ax = b as required, but usually the speed of
convergence is rather slow.

The reason is that the iteration (4) decreases the value of F(x(kt1))
locally, relatively to F(x(¥)), but the global decrease, with respect
to F(x(o)), is often not that large. The use of conjugate directions
provides a method with a global minimization property.
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Steepest descent and conjugate gradient

=3 2 K 0 i 2 E 2 = 0 i 2 3
(a) Worst case scenario of steepest descent (b) Conjugate gradient method applied to the same
problem as in (a)
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Let’s revisit equation (3) for a general direction d (i.e., not necessarily
equal to the negative gradient). Assume x = x(¥), and let e(¥) = x* — x(¥)
be the error and r(¥) = b — Ax(K) = Ae() be the residual. Then we can
write (r) d) = (e%), d) 4, and so for a general search direction d with

an exact line search, the iterate takes the form x(x+1) = x(k) 4 %d.
B A

By substracting x*, the iterates in terms of the error e(k*1) are given by:

(k) _d

(k+1) _ (k) (e, d)a

e =e\ - —"-d 5
<dad>A ( )

Geometrically, this means that e(¥™1) is the projection of e(¥) onto the
hyperplane that is A-orthogonal to d, i.e., we have

(et dy, =0. (6)
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Conjugate directions

Definition 2 (Conjugate directions)
The vectors u, v € R" are conjugate with respect to a symmetric
positive definite matrix A if they are nonzero and A-orthogonal:

(u,v)a = (u,Av) = 0.
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Theorem 3
Let d© dM ... d"Y pe n nonzero pairwise conjugate
directions, and consider the sequence of iterates

(r0), dky

(k+1) _ (k) (k) _
X = x\" 4+ opd, = (d(k),Ad(k)).

Let r’8) = b — Ax(K) be the residual. Then for each k =1,...,n,

r(K) is orthogonal to span{d(o), ey d(kfl)}. In particular r(" = 0.
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Proof. Since r(k) = Ae(%) it suffices to show that e(¥) is
A-orthogonal to span{d(o)7 ol d(kfl)}. The proof is by induction
on k. For k = 0 there is nothing to prove. Assume the statement is
true for k > 0, and consider the equation (5) (with d = d(¥)).
From the induction hypothesis, and the fact that the d") are
pairwise conjugate directions, we see that e(k*1) is A-orthogonal to

d© . .. d*V Furthermore, we have already seen in (6) that
(ec+1) gk, = 0. Thus this shows that e(**1) is A-orthogonal to
d(o)7 e d) as desired. O
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So, if a sequence (d(k)) of conjugate directions is at hands, we have
an iterative procedure with good approximation properties.

The (A-orthogonal) basis of conjugate directions is constructed by
A-orthogonalization of the sequence {rg, Arg, A%rq, ..., A" 1ro} with
ro = b — Axg. This is done in the way similar to orthogonalization
of the monomial sequence {1, x, x?
relation.

,...,x" 1} using a recurrence
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Remark 4

It is possible to extend the methods for solving Ax = b with
symmetric positive definite A to any other matrices by a simple
trick. Suppose we want to solve Bx = ¢, where B € R™*" ig
nonsingular. We can convert the above system to the symmetric
and positive definite setting by defining A= BB, b= B’ ¢ and
then solving Ax = b with the conjugate gradient algorithm (or
any other method for positive definite A).
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Here it is.
(A) For any initial vector x(, set d(©) = r(0) = p — Ax(©);
(B) For k >0, calculate x(k*1) = x(¥) 4 ¢, d¥) and the residual

rkt) — () _ o, AdF) with
(r(k)7 d(k)) (7)

ay ::{r(k—H)J—d(k)}:W’ k>0.

(C) For the same k, the next conjugate direction is the vector
dHD) = ) 5, d® | with

(r1) ) Ad(F) (8)

— [ d(k+1) (K — _
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Theorem 5 (Properties of CGM)

For every m > 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r()} is the same
as the linear space spanned by the conjugate directions {d(’)}
and it coincides with the space spanned by {A’r(9)}:

span{r)}7y = span{d P}y = span{A'r@ ).

(2) The residuals  satisfy the orthogonality — conditions:
(M kDY = (¢(m d))y =0 for i < m.

(3) The directions are conjugate (A-orthogonal): (d™ d), =
(d™ AdDY =0 for i< m.
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Proof. We use induction on m > 0, the assertions being trivial for
m =0, since d® = r(® and (2)-(3) are void. Therefore, assuming
that the assertions are true for some m = k, we ask if they remain
true when m = k + 1.
(1) Formula (8)

dtD = k1) 4 g, g (k)

readily implies that equivalence of the spaces spanned by (r(i))é and
(d(i))é, is preserved when k is increased to k + 1. Similarly, from
r(kt1) = p(0) — o Ad¥) in (7), and from the inductive assumption
rk), d) e span{A'r ©)}k . it follows that

Pk D) € span{A’r(O)}k*1 To see that AK+1r(0) ¢ span{r(N}AiL
since o # 0, the claim follows by (5) if d%) has a non-zero
component from AKr(® and if not the claim follows from the
induction hypothesis.
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Proof. Cont. (2) Turning to assertion (2), we need r(k+1) | ()
for i < k, which by (1) is equivalent to

rkD) L dD for <k.
We have r(kt1) | d(®) by the definition of ay in (7), so we need
) D0 ad® L0 for <k,

and this follow from the inductive assumptions r(K) L d") and
Ad®) 1 d®.
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Proof. Cont. (3) It remains to justify (3), namely that d(<+%)
defined in (8) satisfies

d ) | AdD for i< k.

The value of By in (8) is defined to give d**1) 1 Ad) so we need

dtD) @ ) g g | AdD) for i< k.

By the inductive hypothesis d® 1 Ad") hence it remains to
establish that r(c+1) 1 Ad() for i < k. Now, the formula (7) yields
Ad) = (r() — p(i+1)) /o, therefore we require the conditions
rttD) | (r(0) — pU+1)) for j < k, and they are a consequence of the
assertion (2) for m = k + 1 obtained previously. O
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Corollary 6 (A termination property)

If the conjugate gradient method is applied in exact arithmetic, then,
for any x(©) € R", termination occurs after at most n iterations.
More precisely, termination occurs after at most s iterations, where
s = dimspan{A'rg 7;01 (which can be smaller than n).
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Proof. Assertion (2) of Theorem 5 states that residuals (r(K)),>o
form a sequence of mutually orthogonal vectors in R", therefore at
most n of them can be nonzero. Since they also belong to the space
span{A’rq 7:_01, their number is bounded by the dimension of that
space. Il
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Definition 7 (The Krylov subspaces)

Let A be an n x n matrix, v € R"” nonzero, and m € N. The
linear space Km(A, v) := span{A’v ,’-:01 is called the m-th Krylov
subspace of R".

Theorem 8 (Number of iterations in CGM)

Let A > 0, and let s be the number of its distinct eigenvalues.

Then, for any v,
dim Kpp(A,v) <s Vm. (9)

Hence, for any A > 0, the number of iterations of the CGM for
solving Ax = b is bounded by the number of distinct eigenvalues of
A.
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Proof. Inequality (9) is true not just for positive definite A > 0, but
for any A with n linearly independent eigenvectors (u;). Indeed, in
that case one can expand v = Y7, a;uj, and then group together
eigenvectors with the same eigenvalues: for each )\, we set

w, =Y ¥ aju; if Auj, = A\uj,. Then

V=3 _1aWw,, c €40,1},

hence Alv = S 1 A w,, thus for any m we get
Km(A, v) C span{wi, wy,...,ws}, and that proves (9). By
Corollary 6, the number of iteration in CGM is bounded by

dim K, (A, r(9)), hence the final conclusion. O
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Remark 9

Theorem 8 shows that, unlike other iterative schemes, the
conjugate gradient method is both iterative and direct: each
iteration produces a reasonable approximation to the exact
solution, and the exact solution itself will be recovered after n
iterations at most.
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We now simplify and reformulate the CGM-algorithm.
Firstly, we rewrite expressions for the parameters ay and S in (7)-(8) as follows:

(r®),d®y (o [Ir®?

= d®ad®) (@, gy O
B = (e AW (@) (KD, kD) () () [l RHD)2 (g D)2
T T @, ad®y T (@R e ) (@@ )y (R

Here, for 3, we used in (a) the fact that Ad() is a multiple of r(kt1) — r(k) by (7),
and in (b) orthogonality of r(k*1) to both r(¥), d(¥) proved in Theorem 5(2). Then,
for both 3 and a, we used in (c) the property (d), r(¥)) = ||r(K)||2 which follows
from (8) with index k + 1, taking in account orthogonality rlet1) 1 gk,

Secondly, we let x(©) be the zero vector.

>0.
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Here it is.

(1) Set k=0, x(© =0, r® = b, and d© = (¥,

(2) Calculate the matrlx—vector product v(¥) = Ad(¥) and
= [[F92/(d, v(0) > 0;

(3) Apply the formulae x(k+1) = x(K) 4 0, d®) and

r(kt1) = p(k) — v ().

(4) Stop if |[r(kt1)|| is acceptably small;

(5) Set dkt1) = p(kt1) 4 3, d(K) where

Bic = [lrFD2/]1r R > 0;

(6) Increase k — k + 1 and go back to (2).
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The total work is dominated by the number of iterations, multiplied
by the time it takes to compute v(kK) = Ad¥ . Thus the conjugate
gradient algorithm is highly suitable when most of the elements of A
are zero, i.e. when A is sparse.
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