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Iterative methods for linear algebraic systems
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Minimization of quadratic function

The methods we considered so far for solving Ax = b, namely
Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

x (k+1) = x (k) + ckd (k) ,

where we were aimed at getting ρ(H) < 1 for the iteration matix H.
Say, for Jacobi with relaxation, we set ck = ω and
d (k) = D−1(b − Ax (k)).
For solving Ax = b with a (positive definite) matrix A > 0, there is
a different approach to constructing good iterative methods. It is
based on succesive minimization of the quadratic function

F (x (k)) := ‖x∗ − x (k)‖2A = ‖e(k)‖2A ,

since the minimizer is clearly the exact solution. Here,
‖y‖A := (Ay , y)1/2 :=

√
yTAy is a Euclidean-type distance which

is well-defined for A > 0.
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Minimization of quadratic function

So, at each step k , we are decreasing the A-distance between x (k)

and the exact solution x∗. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent
condition

x (k+1) = x (k) + ckd (k) ⇒ F (x (k+1)) < F (x (k)) . (1)
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Minimization of quadratic function

An equivalent approach is to minimize the quadratic function

F1(x) = 1
2
xTAx − xTb ,

which attains its minimum when ∇F1(x) = Ax − b = 0, and which
does not involve the unknown x∗. It is easy to check that
F1(x) = 1

2F (x)− 1
2c , where c = x∗TAx∗ is a constant independent

of k , hence equivalence.
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Quadratic function – Jacobi and Gauss–Seidel

Both the Jacobi and the Gauss–Seidel methods satisfy (1), precisely

(Ae(k+1), e(k+1)) = (Ae(k), e(k))− (Cy (k), y (k)) < (Ae(k), e(k)) ,

where for Gauss-Seidel: C = D > 0, y (k) := (L0 + D)−1Ae(k);

and for Jacobi: C = 2D − A > 0, y (k) := D−1Ae(k).

6 / 30



A-orthogonal projection

A-orthogonal projection method: Next, we strengthen the
descent condition (1), namely given x (k) and some d (k) (called a
search direction), we will seek x (k+1) from the set of vectors on the
line ` = {x (k)+αd (k)}α∈R such that it makes the value of
F (x (k+1)) not just smaller than F (x (k)), but as small as possible
(with respect to this set), namely

x (k+1) := arg min
α

F (x (k) + αd (k)) . (2)
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A-orthogonal projection

Lemma 1
The minimizer in (2) is given by the formula

x (k+1) = x (k) + αkd (k) , αk =
(r (k),d (k))

(Ad (k),d (k))
. (3)

This choice of αk is referred to as exact line search.
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A-orthogonal projection

Proof. From the definition of F , it follows that in (2) we should
choose the point x (k+1) ∈ ` that minimizes the A-distance between
x∗ and the points y ∈ `. Geometrically, it is clear that the minimum
occurs when x (k+1) is the A-orthogonal projection of x∗ onto the
line ` = {x (k) + αd (k)}, i.e., when

x∗ − x (k+1) ⊥A d (k) ⇒ A(x∗ − x (k+1)) ⊥ d (k)

⇒ r (k+1) = r (k) − αkAd (k) ⊥ d (k) .

This gives expression for αk in (3). �
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The steepest descent method

The steepest descent method: This method takes
d (k) =−∇F1(x (k)) = b − Ax (k) for every k , the reason being that,
locally, the negative gradient of a quadratic function shows the
direction of the (locally) steepest descent at a given point. Thus,
the iterations have the form

x (k+1) = x (k) + αk(b − Ax (k)), k ≥ 0 . (4)

It can be proved that the sequence (x (k)) converges to the solution
x∗ of the system Ax = b as required, but usually the speed of
convergence is rather slow.

The reason is that the iteration (4) decreases the value of F (x (k+1))
locally, relatively to F (x (k)), but the global decrease, with respect
to F (x (0)), is often not that large. The use of conjugate directions
provides a method with a global minimization property.
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Steepest descent and conjugate gradient
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Conjugate directions

Let’s revisit equation (3) for a general direction d (i.e., not necessarily
equal to the negative gradient). Assume x = x (k), and let e(k) = x∗ − x (k)

be the error and r (k) = b − Ax (k) = Ae(k) be the residual. Then we can
write 〈r (k),d 〉 = 〈e(k),d 〉A, and so for a general search direction d with

an exact line search, the iterate takes the form x (k+1) = x (k) + 〈e (k),d 〉A
〈d ,d 〉A

d .

By substracting x∗, the iterates in terms of the error e(k+1) are given by:

e(k+1) = e(k) − 〈e
(k),d 〉A
〈d ,d 〉A

d . (5)

Geometrically, this means that e(k+1) is the projection of e(k) onto the
hyperplane that is A-orthogonal to d , i.e., we have

〈e(k+1),d 〉A = 0. (6)
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Conjugate directions

Definition 2 (Conjugate directions)

The vectors u, v ∈ Rn are conjugate with respect to a symmetric
positive definite matrix A if they are nonzero and A-orthogonal:
〈u, v〉A := 〈u,Av〉 = 0.
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Conjugate gradient - Warm up

Theorem 3
Let d (0),d (1), . . . ,d (n−1) be n nonzero pairwise conjugate
directions, and consider the sequence of iterates

x (k+1) = x (k) + αkd (k), αk =
〈r (k),d (k)〉
〈d (k),Ad (k)〉

.

Let r (k) = b − Ax (k) be the residual. Then for each k = 1, . . . , n,
r (k) is orthogonal to span{d (0), . . . ,d (k−1)}. In particular r (n) = 0.
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Conjugate gradient - Warm up

Proof. Since r (k) = Ae(k), it suffices to show that e(k) is
A-orthogonal to span{d (0), . . . ,d (k−1)}. The proof is by induction
on k . For k = 0 there is nothing to prove. Assume the statement is
true for k ≥ 0, and consider the equation (5) (with d = d (k)).
From the induction hypothesis, and the fact that the d (i) are
pairwise conjugate directions, we see that e(k+1) is A-orthogonal to
d (0), . . . ,d (k−1). Furthermore, we have already seen in (6) that
〈e(k+1),d (k)〉A = 0. Thus this shows that e(k+1) is A-orthogonal to
d (0), . . . ,d (k) as desired. �

15 / 30



Conjugate gradient - Warm up

So, if a sequence (d (k)) of conjugate directions is at hands, we have
an iterative procedure with good approximation properties.
The (A-orthogonal) basis of conjugate directions is constructed by
A-orthogonalization of the sequence {r0,Ar0,A2r0, ...,An−1r0} with
r0 = b − Ax0. This is done in the way similar to orthogonalization
of the monomial sequence {1, x , x2, ..., xn−1} using a recurrence
relation.
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Conjugate gradient - Warm up

Remark 4
It is possible to extend the methods for solving Ax = b with
symmetric positive definite A to any other matrices by a simple
trick. Suppose we want to solve Bx = c , where B ∈ Rn×n is
nonsingular. We can convert the above system to the symmetric
and positive definite setting by defining A = BTB, b = BTc and
then solving Ax = b with the conjugate gradient algorithm (or
any other method for positive definite A).

17 / 30



The conjugate gradient method

Here it is.

(A) For any initial vector x (0), set d (0) = r (0) = b − Ax (0);

(B) For k ≥ 0, calculate x (k+1) = x (k) + αkd (k) and the residual

r (k+1) = r (k) − αkAd (k), with

αk := { r (k+1) ⊥ d (k)} =
(r (k),d (k))

(Ad (k),d (k))
, k ≥ 0 .

(7)

(C) For the same k , the next conjugate direction is the vector

d (k+1) = r (k+1) + βkd (k), with

βk := {d (k+1) ⊥ Ad (k)} = −(r (k+1),Ad (k))

(d (k),Ad (k))
, k ≥ 0 .

(8)
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The CGM – Theoretical aspects

Theorem 5 (Properties of CGM)

For every m ≥ 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r (i)} is the same
as the linear space spanned by the conjugate directions {d (i)}
and it coincides with the space spanned by {Ai r (0)}:

span{r (i)}mi=0 = span{d (i)}mi=0 = span{Ai r (0)}mi=0 .

(2) The residuals satisfy the orthogonality conditions:
(r (m), r (i)) = (r (m),d (i)) = 0 for i < m .

(3) The directions are conjugate (A-orthogonal): (d (m),d (i))A =
(d (m),Ad (i)) = 0 for i < m .
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The CGM – Theoretical aspects

Proof. We use induction on m ≥ 0, the assertions being trivial for
m = 0, since d (0) = r (0) and (2)-(3) are void. Therefore, assuming
that the assertions are true for some m = k , we ask if they remain
true when m = k + 1.

(1) Formula (8)
d (k+1) = r (k+1) + βkd (k)

readily implies that equivalence of the spaces spanned by (r (i))k0 and

(d (i))k0 , is preserved when k is increased to k + 1. Similarly, from

r (k+1) = r (k) − αkAd (k) in (7), and from the inductive assumption
r (k),d (k) ∈ span{Ai r (0)}ki=0, it follows that
r (k+1) ∈ span{Ai r (0)}k+1

i=0 . To see that Ak+1r (0) ∈ span{r (i)}k+1
i=0 ,

since αk 6= 0, the claim follows by (5) if d (k) has a non-zero
component from Akr (0), and if not the claim follows from the
induction hypothesis.
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The CGM – Theoretical aspects

Proof. Cont. (2) Turning to assertion (2), we need r (k+1) ⊥ r (i)

for i ≤ k, which by (1) is equivalent to

r (k+1) ⊥ d (i) for i ≤ k .

We have r (k+1) ⊥ d (k) by the definition of αk in (7), so we need

r (k+1) (7)
= r (k) − αkAd (k) ⊥ d (i) for i < k ,

and this follow from the inductive assumptions r (k) ⊥ d (i) and
Ad (k) ⊥ d (i).
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The CGM – Theoretical aspects

Proof. Cont. (3) It remains to justify (3), namely that d (k+1)

defined in (8) satisfies

d (k+1) ⊥ Ad (i) for i ≤ k .

The value of βk in (8) is defined to give d (k+1) ⊥ Ad (k), so we need

d (k+1) (8)
= r (k+1) + βkd (k) ⊥ Ad (i) for i < k .

By the inductive hypothesis d (k) ⊥ Ad (i), hence it remains to
establish that r (k+1) ⊥ Ad (i) for i < k. Now, the formula (7) yields
Ad (i) = (r (i) − r (i+1))/αi , therefore we require the conditions
r (k+1) ⊥ (r (i) − r (i+1)) for i < k , and they are a consequence of the
assertion (2) for m = k + 1 obtained previously. �
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Termination property

Corollary 6 (A termination property)

If the conjugate gradient method is applied in exact arithmetic, then,
for any x (0) ∈ Rn, termination occurs after at most n iterations.
More precisely, termination occurs after at most s iterations, where
s = dim span{Ai r0}n−1i=0 (which can be smaller than n).
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Termination property

Proof. Assertion (2) of Theorem 5 states that residuals (r (k))k≥0
form a sequence of mutually orthogonal vectors in Rn, therefore at
most n of them can be nonzero. Since they also belong to the space
span{Ai r0}n−1i=0 , their number is bounded by the dimension of that
space. �
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The Krylov subspaces

Definition 7 (The Krylov subspaces)

Let A be an n × n matrix, v ∈ Rn nonzero, and m ∈ N. The
linear space Km(A, v) := span{Aiv}m−1i=0 is called the m-th Krylov
subspace of Rn.

Theorem 8 (Number of iterations in CGM)

Let A > 0, and let s be the number of its distinct eigenvalues.
Then, for any v ,

dimKm(A, v) ≤ s ∀m . (9)

Hence, for any A > 0, the number of iterations of the CGM for
solving Ax = b is bounded by the number of distinct eigenvalues of
A.
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The Krylov subspaces

Proof. Inequality (9) is true not just for positive definite A > 0, but
for any A with n linearly independent eigenvectors (u i ). Indeed, in
that case one can expand v =

∑n
i=1 aiu i , and then group together

eigenvectors with the same eigenvalues: for each λν we set
wν =

∑mν
k=1 aiku ik if Au ik = λνu ik . Then

v =
∑s

ν=1 cνwν , cν ∈ {0, 1} ,

hence Aiv =
∑s

ν=1 cνλ
i
νwν , thus for any m we get

Km(A, v) ⊆ span{w1,w2, . . . ,w s}, and that proves (9). By
Corollary 6, the number of iteration in CGM is bounded by
dimKm(A, r (0)), hence the final conclusion. �
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The Krylov subspaces

Remark 9
Theorem 8 shows that, unlike other iterative schemes, the
conjugate gradient method is both iterative and direct: each
iteration produces a reasonable approximation to the exact
solution, and the exact solution itself will be recovered after n
iterations at most.
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Simplifying the CGM-algorithm

We now simplify and reformulate the CGM-algorithm.
Firstly, we rewrite expressions for the parameters αk and βk in (7)-(8) as follows:

αk =
(r (k),d (k))

(d (k),Ad (k))

(c)
=

‖r (k)‖2

(d (k),Ad (k))
> 0 ,

βk = −(r (k+1),Ad (k))

(d (k),Ad (k))

(a)
= −(r (k+1), r (k+1) − r (k))

(d (k), r (k+1) − r (k))
(b)
=
‖r (k+1)‖2

(d (k), r (k))
(c)
=
‖r (k+1)‖2

‖r (k)‖2
> 0 .

Here, for β, we used in (a) the fact that Ad (k) is a multiple of r (k+1) − r (k) by (7),
and in (b) orthogonality of r (k+1) to both r (k),d (k) proved in Theorem 5(2). Then,
for both β and α, we used in (c) the property (d (k), r (k)) = ‖r (k)‖2 which follows
from (8) with index k + 1, taking in account orthogonality r (k+1)⊥d (k).
Secondly, we let x (0) be the zero vector.
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Standard form of the conjugate gradient method

Here it is.

(1) Set k = 0, x (0) = 0, r (0) = b, and d (0) = r (0);
(2) Calculate the matrix-vector product v (k) = Ad (k) and
αk = ‖r (k)‖2/(d (k), v (k)) > 0;

(3) Apply the formulae x (k+1) = x (k) + αkd (k) and
r (k+1) = r (k) − αkv (k);

(4) Stop if ‖r (k+1)‖ is acceptably small;

(5) Set d (k+1) = r (k+1) + βkd (k), where
βk = ‖r (k+1)‖2/‖r (k)‖2 > 0;

(6) Increase k → k + 1 and go back to (2).
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Standard form of the conjugate gradient method

The total work is dominated by the number of iterations, multiplied
by the time it takes to compute v (k) = Ad (k). Thus the conjugate
gradient algorithm is highly suitable when most of the elements of A
are zero, i.e. when A is sparse.

30 / 30


