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Iterative methods for linear algebraic systems
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The conjugate gradient method

Here it is.

(A) For any initial vector x (0), set d (0) = r (0) = b − Ax (0);

(B) For k ≥ 0, calculate x (k+1) = x (k) + αkd (k) and the residual

r (k+1) = r (k) − αkAd (k), with

αk := { r (k+1) ⊥ d (k)} =
(r (k),d (k))

(Ad (k),d (k))
, k ≥ 0 .

(1)

(C) For the same k , the next conjugate direction is the vector

d (k+1) = r (k+1) + βkd (k), with

βk := {d (k+1) ⊥ Ad (k)} = −(r (k+1),Ad (k))

(d (k),Ad (k))
, k ≥ 0 .

(2)
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The CGM – Theoretical aspects

Theorem 1 (Properties of CGM)

For every m ≥ 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r (i)} is the same
as the linear space spanned by the conjugate directions {d (i)}
and it coincides with the space spanned by {Ai r (0)}:

span{r (i)}mi=0 = span{d (i)}mi=0 = span{Ai r (0)}mi=0 .

(2) The residuals satisfy the orthogonality conditions:
(r (m), r (i)) = (r (m),d (i)) = 0 for i < m .

(3) The directions are conjugate (A-orthogonal): (d (m),d (i))A =
(d (m),Ad (i)) = 0 for i < m .
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The CGM – Theoretical aspects

Proof. We use induction on m ≥ 0, the assertions being trivial for
m = 0, since d (0) = r (0) and (2)-(3) are void. Therefore, assuming
that the assertions are true for some m = k , we ask if they remain
true when m = k + 1.

(1) Formula (2)
d (k+1) = r (k+1) + βkd (k)

readily implies that equivalence of the spaces spanned by (r (i))k0 and

(d (i))k0 , is preserved when k is increased to k + 1. Similarly, from

r (k+1) = r (k) − αkAd (k) in (1), and from the inductive assumption
r (k),d (k) ∈ span{Ai r (0)}ki=0, it follows that
r (k+1) ∈ span{Ai r (0)}k+1

i=0 . To see that Ak+1r (0) ∈ span{r (i)}k+1
i=0 ,

since αk 6= 0, the claim follows by (5) if d (k) has a non-zero
component from Akr (0), and if not the claim follows from the
induction hypothesis.
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The CGM – Theoretical aspects

Proof. Cont. (2) Turning to assertion (2), we need r (k+1) ⊥ r (i)

for i ≤ k, which by (1) is equivalent to

r (k+1) ⊥ d (i) for i ≤ k .

We have r (k+1) ⊥ d (k) by the definition of αk in (1), so we need

r (k+1) (1)
= r (k) − αkAd (k) ⊥ d (i) for i < k ,

and this follow from the inductive assumptions r (k) ⊥ d (i) and
Ad (k) ⊥ d (i).
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The CGM – Theoretical aspects

Proof. Cont. (3) It remains to justify (3), namely that d (k+1)

defined in (2) satisfies

d (k+1) ⊥ Ad (i) for i ≤ k .

The value of βk in (2) is defined to give d (k+1) ⊥ Ad (k), so we need

d (k+1) (2)
= r (k+1) + βkd (k) ⊥ Ad (i) for i < k .

By the inductive hypothesis d (k) ⊥ Ad (i), hence it remains to
establish that r (k+1) ⊥ Ad (i) for i < k. Now, the formula (1) yields
Ad (i) = (r (i) − r (i+1))/αi , therefore we require the conditions
r (k+1) ⊥ (r (i) − r (i+1)) for i < k , and they are a consequence of the
assertion (2) for m = k + 1 obtained previously. �
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Termination property

Corollary 2 (A termination property)

If the conjugate gradient method is applied in exact arithmetic, then,
for any x (0) ∈ Rn, termination occurs after at most n iterations.
More precisely, termination occurs after at most s iterations, where
s = dim span{Ai r0}n−1i=0 (which can be smaller than n).

8 / 32



Termination property

Proof. Assertion (2) of Theorem 1 states that residuals (r (k))k≥0
form a sequence of mutually orthogonal vectors in Rn, therefore at
most n of them can be nonzero. Since they also belong to the space
span{Ai r0}n−1i=0 , their number is bounded by the dimension of that
space. �
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The Krylov subspaces

Definition 3 (The Krylov subspaces)

Let A be an n × n matrix, v ∈ Rn nonzero, and m ∈ N. The
linear space Km(A, v) := span{Aiv}m−1i=0 is called the m-th Krylov
subspace of Rn.

Theorem 4 (Number of iterations in CGM)

Let A > 0, and let s be the number of its distinct eigenvalues.
Then, for any v ,

dimKm(A, v) ≤ s ∀m . (3)

Hence, for any A > 0, the number of iterations of the CGM for
solving Ax = b is bounded by the number of distinct eigenvalues of
A.
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The Krylov subspaces

Proof. Inequality (3) is true not just for positive definite A > 0, but
for any A with n linearly independent eigenvectors (u i ). Indeed, in
that case one can expand v =

∑n
i=1 aiu i , and then group together

eigenvectors with the same eigenvalues: for each λν we set
wν =

∑mν
k=1 aiku ik if Au ik = λνu ik . Then

v =
∑s

ν=1 cνwν , cν ∈ {0, 1} ,

hence Aiv =
∑s

ν=1 cνλ
i
νwν , thus for any m we get

Km(A, v) ⊆ span{w1,w2, . . . ,w s}, and that proves (3). By
Corollary 2, the number of iteration in CGM is bounded by
dimKm(A, r (0)), hence the final conclusion. �
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The Krylov subspaces

Remark 5
Theorem 4 shows that, unlike other iterative schemes, the
conjugate gradient method is both iterative and direct: each
iteration produces a reasonable approximation to the exact
solution, and the exact solution itself will be recovered after n
iterations at most.
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Simplifying the CGM-algorithm

We now simplify and reformulate the CGM-algorithm.
Firstly, we rewrite expressions for the parameters αk and βk in (1)-(2) as follows:

αk =
(r (k),d (k))

(d (k),Ad (k))

(c)
=

‖r (k)‖2

(d (k),Ad (k))
> 0 ,

βk = −(r (k+1),Ad (k))

(d (k),Ad (k))

(a)
= −(r (k+1), r (k+1) − r (k))

(d (k), r (k+1) − r (k))
(b)
=
‖r (k+1)‖2

(d (k), r (k))
(c)
=
‖r (k+1)‖2

‖r (k)‖2
> 0 .

Here, for β, we used in (a) the fact that Ad (k) is a multiple of r (k+1) − r (k) by (1),
and in (b) orthogonality of r (k+1) to both r (k),d (k) proved in Theorem 1(2). Then,
for both β and α, we used in (c) the property (d (k), r (k)) = ‖r (k)‖2 which follows
from (2) with index k + 1, taking in account orthogonality r (k+1)⊥d (k).
Secondly, we let x (0) be the zero vector.
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Standard form of the conjugate gradient method

Here it is.

(1) Set k = 0, x (0) = 0, r (0) = b, and d (0) = r (0);
(2) Calculate the matrix-vector product v (k) = Ad (k) and
αk = ‖r (k)‖2/(d (k), v (k)) > 0;

(3) Apply the formulae x (k+1) = x (k) + αkd (k) and
r (k+1) = r (k) − αkv (k);

(4) Stop if ‖r (k+1)‖ is acceptably small;

(5) Set d (k+1) = r (k+1) + βkd (k), where
βk = ‖r (k+1)‖2/‖r (k)‖2 > 0;

(6) Increase k → k + 1 and go back to (2).
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Standard form of the conjugate gradient method

The total work is dominated by the number of iterations, multiplied
by the time it takes to compute v (k) = Ad (k). Thus the conjugate
gradient algorithm is highly suitable when most of the elements of A
are zero, i.e. when A is sparse.
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Preconditioning

In Ax = b, we change variables, x = PT x̂ , where P is a nonsingular
n × n matrix, and multiply both sides with P. Thus, instead of
Ax = b, we are solving the linear system

PAPT x̂ = Pb ⇔ Âx̂ = b̂ . (4)

Note that symmetry and positive definiteness of A imply that
Â = PAPT is also symmetric and positive definite since
(Ây , y) = (PAPTy , y) = (APTy ,PTy) > 0. Therefore, we can
apply conjugate gradients to the new system. This results in the
solution x̂ , hence x = PT x̂ . This procedure is called the
preconditioned conjugate gradient method and the matrix P is
called the preconditioner.
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Condition number and convergence rate of CGM

The condition number of a matrix A is the value
κ(A) := ‖A‖ · ‖A−1‖, so for a symmetric positive definite matrix A
it is the ratio between its largest and smallest eigenvalues,

κ(A) =
λmax(A)

λmin(A)
≥ 1 .

The closer this number is to 1, the faster the convergence is of
CGM. More precisely, for the rate of convergnce of CGM, we have
the upper estimate

‖e(k)‖A ≤ 2ρk ‖e(0)‖A , ρ = ρA =

√
κ(A)− 1√
κ(A) + 1

< 1 . (5)

The main idea of preconditioning is to pick P in (4) so that κ(Â) is
much smaller than κ(A), thus accelerating convergence.

17 / 32



Preconditioning – Choosing P

To this end, we note that the similarity transform B → C−1BC preserves
spectrum, hence

κ(Â) = κ(PAPT ) = κ(P−1[PAPT ]P) = κ(APTP) ,

and if we set
S−1 := PTP =: (QQT )−1,

then it is suggestive to choose S as an approximation to A which is easy to
Cholesky-factorize,

https://en.wikipedia.org/wiki/Cholesky_decomposition

i.e., S = QQT (or already in this form), and then take P = Q−1. Then
APTP = AS−1 is close to identity, hence

κ(Â) = κ(APTP) ≈ κ(I ) = 1 ⇒ κ(Â)� κ(A) ,

and the preconditioned system (4) will be solved much faster because of
(5).
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Preconditioning – Extra cost

Each step in the CGM for solving Ax = b requires one matrix-vector
product Ay , so with P = Q−1, additional expense in each step of
the CGM for the preconditioned system (4) while computing
Ây = PAPTy is two additional computations

u = PTy = Q−Ty , v = Pz = Q−1z ,

for some y , z ∈ Rn, but note that computing Q−1z is the same as
solving the linear system Qv = z , which is cheap (via forward
substitution) as Q is a lower triangular matrix.
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Preconditioning – Examples

Example 6

1) The simplest choice of S is D = diagA, then P = D−1/2 in (4).
2) Another possibility is to choose S as a band matrix with small
bandwidth. For example, solving the Poisson equation with the
five-point formula, we may take S to be the tridiagonal part of A.
3) One can also take P = L−1, where L is the lower triangular
part of A (maybe imposing some changes). For example, for the
Poisson equation, with m = 20 hence dealing with 400× 400
system, we take P−1 as the lower triangular part of A, but
change the diagonal elements from 4 to 5

2 . Then we get a
computer precision after just 30 iterations.
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Preconditioning – Examples

For the tridiagonal system Ax = b below, we choose the
preconditioner as follows.

A =


2 −1

−1 2
. . .

. . .
. . . −1

−1 2

 , Q =


1

−1 1
. . .

. . .

−1 1

 ,

S = QQT =


1 −1

−1 2
. . .

. . .
. . . −1

−1 2

 .
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Preconditioning – Examples

The matrix S coincides with A except at the (1, 1)-entry. The matrix

Â = Q−1AQ−T

for the preconditioned CGM has just two distinct eigenvalues, and
we recover the exact solution just in two steps. To see the latter,
note that Â is similar to

Q−TQ−1A = S−1A,

hence it has the same spectrum. Since A = S + e1eT
1 , we have

S−1A = I + ueT
1 ,

a rank-1 perturbation of the identity matrix, with all eigenvalues but
one equal 1 (the remaining one equal 1 + u1).
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Rate of convergence of CGM

Theorem 7
Consider the CGM. We then have the upper estimate

‖e(k)‖A ≤ 2ρk ‖e(0)‖A , ρ = ρA =

√
κ(A)− 1√
κ(A) + 1

< 1 ,

where e(k) = x∗ − x (k) and x (k) is the k-th output of the CGM.
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Conjugate gradient - Global approach

Theorem 8 (Non-examinable)

Given A ∈ Rn×n, A > 0, let {d (k)}m−1k=0 be a set of the conjugate

directions, i.e., (Ad (k),d (i)) = 0 for i < k, and consider

F (x (k)) := ‖x∗ − x (k)‖2A = ‖e(k)‖2A .

Then the value of F (x (m+1)) obtained through the CGM coincides
with the minimum of F (y) taken over all y = x (0) +

∑m
k=0 ckd

(k)

simultaneously, namely

arg min
c0,...,cm

F (y) = x (m+1) = x (0) +
m∑

k=0

αkd (k) .
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Rate of convergence of CGM

Proof of Theorem 7. As we have seen, every direction d (i) in CGM
is a linear combination of the vectors (Asr (0))is=0, therefore, any

vector of the form x̂ (k) = x (0) +
∑k−1

i=0 aid (i) can be represented as

x̂ (k) = x (0) +
∑k−1

i=0 ciA
i r (0) . (6)

Subtracting both parts of (6) from the exact solution x∗ we obtain

ê(k) = e(0) −
∑k−1

i=0 ciA
i r (0), and since r (0) = Ae(0), we can express

the error ê(k) = x∗ − x̂ (k) as

ê(k) = (I −
∑k

i=1 ciA
i ) e(0) = Pk(A) e(0), (7)

where Pk is a polynomial of degree ≤ k , which satisfies Pk(0) = 1.
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Rate of convergence of CGM

Proof. Cont. Now recall from Theorem 8 that, at the k-th stage,
the CGM produces the vector x (k) that minimizes the functional

F (x̂ (k)) = ‖ê(k)‖2A = (Aê(k), ê(k))

over all vectors x̂ (k) of the form x̂ (k) = x (0) +
∑k−1

i=0 aid (i), hence

over all ê(k) of the form (7). Expressing e(0) as e(0) =
∑
γiw i ,

where (w i ) are orthonormal eigenvectors of A, we find from (7) that

ê(k) =
∑

i γiPk(λi )w i , and Aê(k) =
∑

i γiPk(λi )λiw i , and
respectively

‖ê(k)‖2A =
∑

i [Pk(λi )]2λiγ
2
i ≤ max

λ∈σ(A)
[Pk(λ)]2 ‖e(0)‖2A .

Hence, because of the minimization property of CGM,

‖e(k)‖A = min
Pk

‖ê(k)‖A ≤ min
Pk

max
λ∈σ(A)

|Pk(λ)| ‖e(0)‖A .
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Rate of convergence of CGM

Proof. Cont. Now, assume that, for the spectrum σ(A), we know
the largest and the smallest eigenvalues, or some lower and upper
bounds, say, 0 < m ≤ λ ≤ M. Then the following minimization
problem, on the class of polynomials of degree k , arises:

Pk(0) = 1, max
x∈[m,M]

|Pk(x)| → min .

This problem has a classical solution P∗k = T ∗k , where T ∗k is the
Chebyshev polynomial on the interval [m,M], which is obtained by
dilation and translation of the standard Chebyshev polynomial Tk

given on the interval [−1, 1]:

Tk(x) = cos kθ, x = cos θ, θ ∈ [0, π] .

One can show that |T ∗k (x)| ≤ 2ρk on the interval [m,M], hence the
rate of convergence of CGM admits the following estimate:

‖e(k)‖A ≤ 2ρk‖e(0)‖A, ρ =
√
M−
√
m√

M+
√
m
< 1, σ(A) ∈ [m,M] .

�
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Eigenvalues and eigenvectors
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Motivation – The Schrödinger equation

One of the word’s most famous eigenvalue problems: The time
independent Schrödinger equation[

−~2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r).
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Introduction to matrix eigenvalue calculations

Let A be a real n× n matrix. The eigenvalue equation is Aw = λw ,
where λ is a scalar, which may be complex if A is not symmetric.
There exists a nonzero vector w ∈ Rn satisfying this equation if and
only if det(A− λI ) = 0. The function p(λ) = det(A− λI ), λ ∈ C, is
a polynomial of degree n, but calculating the eigenvalues by finding
the roots of p is a disaster area because of loss of accuracy due to
rounding errors.
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Introduction to matrix eigenvalue calculations

If the polynomial has some multiple roots and if A is not symmetric,
then the number of linearly independent eigenvectors may be fewer
than n, but there are always n mutually orthogonal real eigenvectors
in the symmetric case.

We assume in all cases, however, that the eigenvalue equations
Aw i = λiw i , i = 1..n, are satisfied by eigenvectors w i that are
linearly independent, which can be achieved by making an arbitrarily
small change to A if necessary.
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The power method

The iterative algorithms that will be studied for the calculation of
eigenvalues and eigenvectors are all closely related to the power
method, which has the following basic form for generating a single
eigenvalue and eigenvector of A.

We pick a nonzero vector x (0) in Rn. Then, for k = 0, 1, 2, . . ., we
let x (k+1) be a nonzero multiple of Ax (k), typically to satisfy
‖x (k+1)‖ = 1 so that

x (k+1) = Ax (k)/‖Ax (k)‖, k = 0, 1, 2, . . .

This method is oriented on finding an eigenvector corresponding to
the largest eigenvalue as the the following theorem shows.

32 / 32


