Numerical Analysis - Part Il

Anders C. Hansen

Lecture 20
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Iterative methods for linear algebraic systems
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Here it is.
(A) For any initial vector x(, set d(©) = r(0) = p — Ax(©);
(B) For k >0, calculate x(k*1) = x(¥) 4 ¢, d¥) and the residual

rkt) — () _ o, AdF) with
(r(), d(F)y (1)

ay ::{r(k—H)J—d(k)}:W’ k>0.

(C) For the same k, the next conjugate direction is the vector
dHD) = ) 5, d® | with

(r1) ) Ad(F) (2)

— [ d(k+1) (K — _
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Theorem 1 (Properties of CGM)

For every m > 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r()} is the same
as the linear space spanned by the conjugate directions {d(’)}
and it coincides with the space spanned by {A’r(9)}:

span{r)}7y = span{d P}y = span{A'r@ ).

(2) The residuals  satisfy the orthogonality — conditions:
(M kDY = (¢(m d))y =0 for i < m.

(3) The directions are conjugate (A-orthogonal): (d™ d), =
(d™ AdDY =0 for i< m.
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Proof. We use induction on m > 0, the assertions being trivial for
m =0, since d® = r(® and (2)-(3) are void. Therefore, assuming
that the assertions are true for some m = k, we ask if they remain
true when m = k + 1.
(1) Formula (2)

dtD = k1) 4 g, g (k)

readily implies that equivalence of the spaces spanned by (r(i))é and
(d(i))é, is preserved when k is increased to k + 1. Similarly, from
r(kt1) = p(0) — o Ad¥) in (1), and from the inductive assumption
rk), d) e span{A'r ©)}k . it follows that

Pk D) € span{A’r(O)}k*1 To see that AK+1r(0) ¢ span{r(N}AiL
since o # 0, the claim follows by (5) if d%) has a non-zero
component from AKr(® and if not the claim follows from the
induction hypothesis.
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Proof. Cont. (2) Turning to assertion (2), we need r(k+1) | ()
for i < k, which by (1) is equivalent to

rkD) L dD for <k.
We have r(kt1) | d) by the definition of ay in (1), so we need
) W 00 ad® | g0 o <k,

and this follow from the inductive assumptions r(K) L d") and
Ad®) 1 d®.
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Proof. Cont. (3) It remains to justify (3), namely that d(<+%)
defined in (2) satisfies

d ) | AdD for i< k.

The value of By in (2) is defined to give d**1) 1 Ad®) so we need

dtD) @ ) g g | AdD) for i< k.

By the inductive hypothesis d® 1 Ad") hence it remains to
establish that r(c+1) 1 Ad() for i < k. Now, the formula (1) yields
Ad) = (r() — p(i+1)) /o, therefore we require the conditions
rttD) | (r(0) — pU+1)) for j < k, and they are a consequence of the
assertion (2) for m = k + 1 obtained previously. O
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Corollary 2 (A termination property)

If the conjugate gradient method is applied in exact arithmetic, then,
for any x(©) € R", termination occurs after at most n iterations.
More precisely, termination occurs after at most s iterations, where
s = dimspan{A'rg 7;01 (which can be smaller than n).
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Proof. Assertion (2) of Theorem 1 states that residuals (r(K)),>o
form a sequence of mutually orthogonal vectors in R", therefore at
most n of them can be nonzero. Since they also belong to the space
span{A’rq 7:_01, their number is bounded by the dimension of that
space. Il
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Definition 3 (The Krylov subspaces)

Let A be an n x n matrix, v € R"” nonzero, and m € N. The
linear space Km(A, v) := span{A’v ,’-:01 is called the m-th Krylov
subspace of R".

Theorem 4 (Number of iterations in CGM)

Let A > 0, and let s be the number of its distinct eigenvalues.

Then, for any v,
dim Kpp(A,v) <s Vm. (3)

Hence, for any A > 0, the number of iterations of the CGM for
solving Ax = b is bounded by the number of distinct eigenvalues of
A.
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Proof. Inequality (3) is true not just for positive definite A > 0, but
for any A with n linearly independent eigenvectors (u;). Indeed, in
that case one can expand v = Y7, a;uj, and then group together
eigenvectors with the same eigenvalues: for each )\, we set

w, =Y ¥ aju; if Auj, = A\uj,. Then

V=3 _1aWw,, c €40,1},

hence Alv = S 1 A w,, thus for any m we get
Km(A, v) C span{wi, wy,...,ws}, and that proves (3). By
Corollary 2, the number of iteration in CGM is bounded by

dim K, (A, r(9)), hence the final conclusion. O
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Remark 5

Theorem 4 shows that, unlike other iterative schemes, the
conjugate gradient method is both iterative and direct: each
iteration produces a reasonable approximation to the exact
solution, and the exact solution itself will be recovered after n
iterations at most.
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We now simplify and reformulate the CGM-algorithm.
Firstly, we rewrite expressions for the parameters ay and S in (1)-(2) as follows:

(r®),d®y (o [Ir®?

= d®ad®) (@, gy O
B = (e AW (@) (KD, kD) () () [l RHD)2 (g D)2
T T @, ad®y T (@R e ) (@@ )y (R

Here, for 3, we used in (a) the fact that Ad(¥) is a multiple of r(kt1) — r(k) by (1),
and in (b) orthogonality of rk*1) to both (k) d(¥) proved in Theorem 1(2). Then,
for both 3 and a, we used in (c) the property (d), r(¥)) = ||r(K)||2 which follows
from (2) with index k + 1, taking in account orthogonality rlet1) 1 gk,

Secondly, we let x(©) be the zero vector.

>0.
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Here it is.

(1) Set k=0, x(© =0, r® = b, and d© = (¥,

(2) Calculate the matrlx—vector product v(¥) = Ad(¥) and
= [[F92/(d, v(0) > 0;

(3) Apply the formulae x(k+1) = x(K) 4 0, d®) and

r(kt1) = p(k) — v ().

(4) Stop if |[r(kt1)|| is acceptably small;

(5) Set dkt1) = p(kt1) 4 3, d(K) where

Bic = [lrFD2/]1r R > 0;

(6) Increase k — k + 1 and go back to (2).
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The total work is dominated by the number of iterations, multiplied
by the time it takes to compute v(kK) = Ad¥ . Thus the conjugate
gradient algorithm is highly suitable when most of the elements of A
are zero, i.e. when A is sparse.
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In Ax = b, we change variables, x = PTX, where P is a nonsingular
n X n matrix, and multiply both sides with P. Thus, instead of
Ax = b, we are solving the linear system

PAPTX=Pb < Ax=b. (4)

Note that symmetry and positive definiteness of A imply that

A = PAPT is also symmetric and positive definite since
(Ay,y) = (PAPTy,y) = (APTy,PTy) > 0. Therefore, we can
apply conjugate gradients to the new system. This results in the
solution X, hence x = PTx. This procedure is called the
preconditioned conjugate gradient method and the matrix P is
called the preconditioner.
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The condition number of a matrix A is the value

k(A) := ||A]| - ||A7Y||, so for a symmetric positive definite matrix A
it is the ratio between its largest and smallest eigenvalues,
Amax(A)
kK(A) = —————= > 1.
( ) )\min(A) -

The closer this number is to 1, the faster the convergence is of
CGM. More precisely, for the rate of convergnce of CGM, we have
the upper estimate

Jr(A) — 1
(K|, < 2,k 1e(® o VEA - 5
e la < 20" (||, p=pa A1 (5)

The main idea of preconditioning is to pick P in (4) so that x(A) is
much smaller than x(A), thus accelerating convergence.
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To this end, we note that the similarity transform B — C~1BC preserves
spectrum, hence

k(A) = k(PAPT) = k(P Y[PAPT|P) = (AP P),
and if we set
STL=PTP=(QQ")},

then it is suggestive to choose S as an approximation to A which is easy to
Cholesky-factorize,

https://en.wikipedia.org/wiki/Cholesky_decomposition

i,e.,, S=QQT (or already in this form), and then take P = Q1. Then
APTP = AS~! is close to identity, hence

K(A) = k(APTP) ~ k() =1 = k(A) < K(A),

and the preconditioned system (4) will be solved much faster because of

(5)-
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https://en.wikipedia.org/wiki/Cholesky_decomposition

Each step in the CGM for solving Ax = b requires one matrix-vector
product Ay, so with P = Q™ !, additional expense in each step of
the CGM for the preconditioned system (4) while computing

Ay = PAPTy is two additional computations

u=Py=Q Ty, v="Pz=Q !z

for some y,z € R”, but note that computing Q 1z is the same as
solving the linear system Qv = z, which is cheap (via forward
substitution) as Q is a lower triangular matrix.
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Example 6

1) The simplest choice of S is D = diag A, then P = D~1/2 in (4).
2) Another possibility is to choose S as a band matrix with small
bandwidth. For example, solving the Poisson equation with the
five-point formula, we may take S to be the tridiagonal part of A.
3) One can also take P = L%, where L is the lower triangular
part of A (maybe imposing some changes). For example, for the
Poisson equation, with m = 20 hence dealing with 400 x 400
system, we take P~1 as the lower triangular part of A, but
change the diagonal elements from 4 to % Then we get a
computer precision after just 30 iterations.
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For the tridiagonal system Ax = b below, we choose the

preconditioner as follows.

2 -1
A=|"1 2 . Q=
—1
-1 2
1-1
s=qQqT=|"1*%
—1
-1 2
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The matrix S coincides with A except at the (1, 1)-entry. The matrix
A=QlAQ T

for the preconditioned CGM has just two distinct eigenvalues, and
we recover the exact solution just in two steps. To see the latter,
note that A is similar to

QTTQTIA=S5TIA,
hence it has the same spectrum. Since A =S + eje/, we have
ST'A=1+uel,

a rank-1 perturbation of the identity matrix, with all eigenvalues but
one equal 1 (the remaining one equal 1+ uz).
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Rate of convergence of CGM

Theorem 7
Consider the CGM. We then have the upper estimate
A -1
€914 < 20 [ €@ VA

=pa= YT o,
P A= A + 1

where k) = x* — x(K) and x(K) js the k-th output of the CGM.
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Theorem 8 (Non-examinable)

Given A€ R™", A >0, let {d(k)}km:_o1 be a set of the conjugate
directions, I.e., (Ad(k), d(i)) =0 for i < k, and consider

F(xW) = |x* = x5 = ™3
Then the value of F(x(m+1)) obtained through the CGM coincides

with the minimum of F(y) taken over all y = x(©) + "1 crd®)
simultaneously, namely

arg min F(y) = x(mt) = x(O) 4 Zakd(k)

€0;--+5Cm
k=0
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Proof of Theorem 7. As we have seen, every direction d) in CGM
is a linear combination of the vectors (A°r(0)i_,, therefore, any
vector of the form ) = x(©) 4 Zf:—ol aid) can be represented as

%) = x(0) 4 Sk 1 AT (0) (6)

Subtracting both parts of (6) from the exact solution x* we obtain
et = g0 _ k1 AP, and since r(©) = Ae(®), we can express

the error 89 = x* — x(K) a5
) = (1 =k A e = P (A) e, (7)

where Py is a polynomial of degree < k, which satisfies P, (0) = 1.
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Proof. Cont. Now recall from Theorem 8 that, at the k-th stage,
the CGM produces the vector x(¥) that minimizes the functional

FxM) =163 —(Aa“”,a(“)

over all vectors x%) of the form x(¥) 0) Z, 0 a;d'", hence

over all 8%) of the form (7). Expressmg e(0 as el® ny,w,,
where (w;) are orthonormal elgenvectors of A, we find from (7) that

/e\(k) = Zi’y;Pk( )W,, and Ae Z '}/IPk( ))\iwh and
respectively

1815 = SilPeOPAn? < max [PLV)I? 13-

Hence, because of the minimization property of CGM,

W) 4 = min [8®)] 4 < mi Pe(N)] €[4
[ lla = min[[e™la < min max |Pk()] €]l
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Proof. Cont. Now, assume that, for the spectrum o(A), we know
the largest and the smallest eigenvalues, or some lower and upper
bounds, say, 0 < m < A < M. Then the following minimization
problem, on the class of polynomials of degree k, arises:

Pr(0) =1, max |Pk(x)] = min .

xE€[m,M]

This problem has a classical solution P; = T/, where T/ is the
Chebyshev polynomial on the interval [m, M], which is obtained by
dilation and translation of the standard Chebyshev polynomial Ty
given on the interval [—1,1]:

Tk(x) = cos k6, x = cos ¥, 6 € [0,m].

One can show that | T;(x)| < 2p* on the interval [m, M], hence the
rate of convergence of CGM admits the following estimate:

[e®a < 201e@a,  p=YMAT <1 o(A) € [m M].

g
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Eigenvalues and eigenvectors
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Motivation — The Schrodinger equation

One of the word's most famous eigenvalue problems: The time
independent Schrodinger equation

[;_Zzw n v<r>] w(r) = EV().
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Let A be a real n x n matrix. The eigenvalue equation is Aw = Aw,
where )\ is a scalar, which may be complex if A is not symmetric.
There exists a nonzero vector w € R” satisfying this equation if and
only if det(A — A/) = 0. The function p(\) = det(A—Al), A € C, is
a polynomial of degree n, but calculating the eigenvalues by finding
the roots of p is a disaster area because of loss of accuracy due to
rounding errors.
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If the polynomial has some multiple roots and if A is not symmetric,
then the number of linearly independent eigenvectors may be fewer
than n, but there are always n mutually orthogonal real eigenvectors
in the symmetric case.

We assume in all cases, however, that the eigenvalue equations

Aw; = \;jw;, i = 1..n, are satisfied by eigenvectors w; that are
linearly independent, which can be achieved by making an arbitrarily
small change to A if necessary.
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The iterative algorithms that will be studied for the calculation of
eigenvalues and eigenvectors are all closely related to the power
method, which has the following basic form for generating a single
eigenvalue and eigenvector of A.

We pick a nonzero vector x©) in R". Then, for k =0,1,2,..., we
let x(k*1) be a nonzero multiple of Ax(K), typically to satisfy
[x<HD || = 1 so that

(k1) :Ax(k)/HAX(k)H’ k=0,1,2,...

This method is oriented on finding an eigenvector corresponding to
the largest eigenvalue as the the following theorem shows.
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