
Numerical Analysis - Part II

Anders C. Hansen

Lecture 22

1 / 27

Eigenvalues and eigenvectors

2 / 27

Motivation – The Schrödinger equation

One of the word’s most famous eigenvalue problems: The time
independent Schrödinger equation[

−~2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r).

3 / 27

Introduction to matrix eigenvalue calculations

Let A be a real n× n matrix. The eigenvalue equation is Aw = λw ,
where λ is a scalar, which may be complex if A is not symmetric.
There exists a nonzero vector w ∈ Rn satisfying this equation if and
only if det(A− λI) = 0. The function p(λ) = det(A− λI), λ ∈ C, is
a polynomial of degree n, but calculating the eigenvalues by finding
the roots of p is a disaster area because of loss of accuracy due to
rounding errors.

4 / 27

Introduction to matrix eigenvalue calculations

If the polynomial has some multiple roots and if A is not symmetric,
then the number of linearly independent eigenvectors may be fewer
than n, but there are always n mutually orthogonal real eigenvectors
in the symmetric case.

We assume in all cases, however, that the eigenvalue equations
Aw i = λiw i , i = 1..n, are satisfied by eigenvectors w i that are
linearly independent, which can be achieved by making an arbitrarily
small change to A if necessary.

5 / 27

The power method

The iterative algorithms that will be studied for the calculation of
eigenvalues and eigenvectors are all closely related to the power
method, which has the following basic form for generating a single
eigenvalue and eigenvector of A.

We pick a nonzero vector x (0) in Rn. Then, for k = 0, 1, 2, . . ., we
let x (k+1) be a nonzero multiple of Ax (k), typically to satisfy
‖x (k+1)‖ = 1 so that

x (k+1) = Ax (k)/‖Ax (k)‖, k = 0, 1, 2, . . .

This method is oriented on finding an eigenvector corresponding to
the largest eigenvalue as the the following theorem shows.

6 / 27

The power method – Theoretical results

Theorem 1
Let Aw i =λiw i , where the eigenvalues of A satisfy
|λ1|≤· · ·≤|λn−1|< |λn| and the eigenvectors are of the unit length
‖w i‖=1. Assume x (0) =

∑n
i=1 ciw i with cn 6=0. Then

x (k) → ±wn as k →∞.

Proof. Given x (0) as in the assumption, x (k) is a multiple of

Akx (0) =
∑n

i=1 ciλ
k
i w i = cnλ

k
n

(
wn +

∑n−1
i=1

ci
cn

(λi
λn

)kw i

)
.

Since ‖x (k)‖=‖wn‖=1, we conclude that x (k) = ±wn +O(ρk),

where the sign is that of cnλ
k
n and the ratio ρ = |λn−1|

|λn| < 1
characterizes the rate of convergence. �

7 / 27

The power method in algorithmic form

Here are the details of an implementation of the procedure.

0. Pick x (0) ∈ Rn satisfying ‖x (0)‖ = 1. Let ε be a small positive
tolerance. Set k = 0.

1. Calculate x̃ (k+1) = Ax (k) and set λ = x (k)TAx (k)

x (k)T x (k) .

(This λ is called the Raleigh quotient and it minimizes f (µ) =

‖x̃ (k+1) − µx (k)‖ over µ.

2. If f (λ) ≤ ε, accept λ as an eigenvalue and x (k) as the corre-
sponding eigenvector.

3. Otherwise, let x (k+1) = x̃ (k+1)/‖x̃ (k+1)‖, increase k by one
and go back to 1.

8 / 27

The power method – Halting criterion

The termination occurs because, by the previous theorem, we have

‖x̃ (k+1) − λx (k)‖ = min
µ
‖x̃ (k+1) − µx (k)‖ ≤ ‖x̃ (k+1) − λnx (k)‖

= ‖Ax (k) − λnx (k)‖ = ‖Awn − λnwn‖+O(ρk) = O(ρk)→ 0.

9 / 27

Deficiencies of the power method

The power method may perform adequately if cn 6=0 and
|λn−1| < |λn|, where we are using the notation of Theorem 1, but
often it is unacceptably slow. The difficulty of cn = 0 is that,
theoretically, in this case the method should find an eigenvector wm

with the largest m such that cm 6= 0, but practically computer
rounding errors can introduce a small nonzero component of wn

into the sequence x (k), and then wn may be found eventually, but
one has to wait for the small component to grow.

Moreover, |λn−1| = |λn| is not uncommon when A is real and
nonsymmetric, because the spectral radius of A may be due to a
complex conjugate pair of eigenvalues. Next, we will study the
inverse iterations (with shifts), because they can be highly useful,
particularly in the more efficient methods for eigenvalue calculations
that will be considered later.

10 / 27

Inverse iteration

This method is highly useful in practice. It is similar to the power
method, except that, instead of x (k+1) being a multiple of Ax (k),
we make the choice

(A− sI)x (k+1) = x (k), k = 0, 1, . . . , (1)

where s is a scalar that may depend on k and ‖x (k)‖ = 1. Therefore
the calculation of x (k+1) from x (k) requires the solution of an n × n
system of linear equations whose matrix is (A−sI). Further, if s is a
constant and if A− sI is nonsingular, we deduce from (1) that x (k)

is a multiple of (A− sI)−kx (0).

11 / 27

Inverse iteration

We again let x (0) =
∑n

i=1 ciw i , as in the proof of Theorem 1,
assuming that w i , i = 1..n, are linearly independent eigenvectors of
A that satisfy Aw i = λiw i . Therefore we note that the eigenvalue
equation implies (A− sI)w i = (λi − s)w i , which in turn implies
(A− sI)−1w i = (λi − s)−1w i . It follows that x (k) is a multiple of

(A− sI)−kx (0) =
n∑

i=1

ci (A− sI)−kw i =
n∑

i=1

ci (λi − s)−kw i .

Thus, if the m-th number in the set {|λi − s|} is the smallest and if
cm is nonzero, then x (k) tends to be a multiple of wm as k →∞.

We see that the speed of convergence can be excellent if s is very
close to λm. Further, it can be made even faster by adjusting s
during the calculation. Typical details are given in the following
implementation.

12 / 27

Typical implementation of inverse iteration

0. Set s to an estimate of an eigenvalue of A. Prescribe x (0) 6= 0, let
0 < ε� 1 and set k = 0.
1. Calculate (with pivoting if necessary) the LU factorization of A− sI .
2. Stop if U is singular because then s is an eigenvalue of A, while its
eigenvector is any vector in the null space of U: it can be found easily, U
being upper triangular.
3. Calculate x (k+1) by solving (A− sI)x (k+1) = LUx (k+1) = x (k) using the
LU factorization from 1.
4. Set η to the number that minimizes f (µ) = ‖x (k) − µx (k+1)‖.
5. Stop if f (η) ≤ ε‖x (k+1)‖. Since f (η) = ‖Ax (k+1) − (s + η)x (k+1)‖, we
let s + η be the calculated eigenvalue of A and x (k+1)/‖x (k+1)‖ be its
eigenvector.
6. Otherwise, replace x (k+1) by x (k+1)/‖x (k+1)‖, increase k by one, and
either return to 3 without changing s or to 1 after replacing s by s + η.

13 / 27

Upper Hessenberg matrix

A matrix of the following form

Hn =

h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n

...
. . .

. . .
. . .

...

0 · · · 0 hn,n−1 hn,n

.

is called an upper Hessenberg matrix.

14 / 27

Further on inverse iteration

The inverse iteration algorithm is very efficient if A is an upper
Hessenberg matrix: every element of A under the first subdiagonal
is zero (i.e. aij =0 if j< i−1). In this case the LU factorization in 1
requires just O(n2) or O(n) operations when A is nonsymmetric or
symmetric, respectively.

Thus the replacement of s by s + η in 6 need not be expensive, so
fast convergence can often be achieved easily. There are standard
ways of giving A this convenient form which will be considered later.

15 / 27

Spectrum preserved under similarity transforms

Theorem 2
Let A and S be n × n matrices, S being nonsingular. Then w is an
eigenvector of A with eigenvalue λ if and only if ŵ = Sw is an
eigenvector of Â = SAS−1 with the same eigenvalue.

Proof.

Aw = λw ⇔ AS−1(Sw) = λw ⇔ (SAS−1)(Sw) = λ(Sw).

�

16 / 27

Deflation

Suppose that we have found one solution of the eigenvector
equation Aw = λw , where A is again n × n. Then deflation is the
task of constructing an (n−1)× (n−1) matrix, B say, whose
eigenvalues are the other eigenvalues of A. Specifically, we apply a
similarity transformation S to A such that the first column of
Â = SAS−1 is λ times the first coordinate vector e1, because it
follows from the characteristic equation for eigenvalues and from
Theorem 2 that we can let B be the bottom right (n − 1)× (n − 1)
submatrix of Â = SAS−1. In particular,

SAS−1 = Â =

λ β

0 B

.

17 / 27

Deflation

We write the condition on S as (SAS−1)e1 = λe1. Then the last
equation in the proof of Theorem 2 shows that it is sufficient if S
has the property Sw = ce1, where c is any nonzero scalar.

18 / 27

Algorithm for deflation for symmetric A

Suppose that A is symmetric and w ∈ Rn, λ ∈ R are given so that
Aw = λw . We seek a nonsingular matrix S such that

Sw = ce1

and such that SAS−1 is also symmetric. The last condition holds if
S is orthogonal, since then S−1 = ST . It is suitable to pick a
Householder reflection, which means that S has the form

Hu = I − 2uuT/‖u‖2, where u ∈ Rn.

19 / 27

Algorithm for deflation for symmetric A

Specifically, we recall from the Numerical Analysis IB course that
Householder reflections are orthogonal and that, because Huu = −u
and Huv = v if uTv = 0, they reflect any vector in Rn with respect
to the (n−1)-dimensional hyperplane orthogonal to u. So, for any
two vectors x and y of equal lengths,

Hux = y , where u = x − y .

Hence,(
I − 2

uuT

‖u‖2

)
w = ±‖w‖e1 , where u = w ∓ ‖w‖e1 .

Since the bottom n−1 components of u and w coincide, the
calculation of u requires only O(n) computer operations. Further,
the calculation of SAS−1 can be done in only O(n2) operations,
taking advantage of the form S = I − 2uuT/‖u‖2, even if all the
elements of A are nonzero.

20 / 27

Algorithm for deflation for symmetric A

After deflation, we may find an eigenvector, ŵ say, of SAS−1. Then
the new eigenvector of A, according to Theorem 2, is S−1ŵ = Sŵ ,
because Householder matrices, like all symmetric orthogonal
matrices, are involutions: S2 = I .

21 / 27

Givens rotations

The notation Ω[i ,j] denotes the following n × n matrix

Ω[i ,j] =

1 . . .

c s
. . .

− s c
. . .

↑ ↑ 1

i j

, c2 + s2 = 1.

Generally, for any vector ak ∈ Rn, we can find a matrix Ω[i ,j] such that

Ω[i ,j]a =

1 . . .

c s
. . .

− s c
. . .

↑ ↑ 1

i j

a1k
:

aik
:

ajk
:

ank

=

a1k
:

r ←i
:

0 ←j

:

ank

c = aik√
a2
ik+a2

jk

,

s =
ajk√
a2
ik+a2

jk

,

r =
√

a2
ik+a2

jk .

22 / 27

Givens rotations

1) We can choose Ω[i ,j] so that any prescribed element ãjk in the

j-th row of Ã = Ω[i ,j]A is zero.
2) The rows of Ã = Ω[i ,j]A are the same as the rows of A, except
that the i-th and j-th rows of the product are linear combinations of
the i-th and j-th rows of A.
3) The columns of Â = ÃΩ[i ,j]T are the same as the columns of Ã,
except that the i-th and j-th columns of Â are linear combinations
of the i-th and j-th columns of Ã.
4) Ω[i ,j] is an orthogonal matrix, thus Â = Ω[i ,j]AΩ[i ,j]T inherits the
eigenvalues of A.
5) If A is symmetric, then so is Â.

23 / 27

Transformation to upper Hessenberg – Givens

Transformation to an upper Hessenberg form: We replace A by Â = SAS−1,
where S is a product of Givens rotations Ω[i ,j] chosen to annihilate subsubdiagonal
elements aj ,i−1 in the (i−1)-st column:

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Ω[2,3]×→

∗ ∗ ∗ ∗

• • • •

0 • • •

∗ ∗ ∗ ∗

×Ω[2,3]T

→

∗ • • ∗

∗ • • ∗

0 • • ∗

∗ • • ∗

Ω[2,4]×→

∗ ∗ ∗ ∗

• • • •

0 ∗ ∗ ∗

0 • • •

×Ω[2,4]T

→

∗ • ∗ •

∗ • ∗ •

0 • ∗ •

0 • ∗ •

Ω[3,4]×→

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 • • •

0 0 • •

×Ω[3,4]T

→

∗ ∗ • •

∗ ∗ • •

0 ∗ • •

0 0 • •

The •-elements have changed through a single transformation while the ∗-elements remained the same.

It is seen that every element that we have set to zero remains zero, and the final
outcome is indeed an upper Hessenberg matrix. If A is symmetric then so will be the
outcome of the calculation, hence it will be tridiagonal. In general, the cost of this
procedure is O(n3).

24 / 27

Transformation to upper Hessenberg – Householder

Alternatively, we can transform A to upper Hessenberg using Householder reflections,
rather than Givens rotations. In that case we deal with a column at a time, taking u
such that, with Hu = I − 2uuT/‖u‖2, the i-th column of B̃ = HuB is consistent with
the upper Hessenberg form. Such a u has its first i coordinates vanishing, therefore
B̂ = B̃HT

u has the first i columns unchanged, and all new and old zeros (which are in
the first i columns) stay untouched.

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

H1×→

∗ ∗ ∗ ∗ ∗

• • • • •

0 • • • •

0 • • • •

0 • • • •

×HT

1→

∗ • • • •

∗ • • • •

0 • • • •

0 • • • •

0 • • • •

H2×→

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 • • • •

0 0 • • •

0 0 • • •

×HT

2→

∗ ∗ • • •

∗ ∗ • • •

0 ∗ • • •

0 0 • • •

0 0 • • •

H3×→

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 • • •

0 0 0 • •

×HT

3→

∗ ∗ ∗ • •

∗ ∗ ∗ • •

0 ∗ ∗ • •

0 0 ∗ • •

0 0 0 • •

25 / 27

The QR algorithm

The “plain vanilla” version of the QR algorithm is as follows. Set A0 = A.
For k = 0, 1, . . . calculate the QR factorization Ak = QkRk (here Qk is
n × n orthogonal and Rk is n × n upper triangular) and set Ak+1 = RkQk .
The eigenvalues of Ak+1 are the same as the eigenvalues of Ak , since we
have

Ak+1 = RkQk = Q−1
k (QkRk)Qk = Q−1

k AkQk , (2)

a similarity transformation. Moreover, Q−1
k = QT

k , therefore if Ak is
symmetric, then so is Ak+1.
If for some k ≥ 0 the matrix Ak+1 can be regarded as ”deflated”, i.e. it
has the block form

Ak+1 =

 B C

D E

 ,
where B,E are square and D≈0, then we calculate the eigenvalues of B
and E separately (again, with QR, except that there is nothing to calculate
for 1×1 and 2×2 blocks). As it turns out, such a ”deflation” occurs
surprisingly often.

26 / 27

The QR iteration for upper Hessenberg matrices

If Ak is upper Hessenberg, then its QR factorization by means of the
Givens rotations produces the matrix

Rk = QT
k Ak = Ω[n−1,n] · · ·Ω[2,3]Ω[1,2]Ak ,

which is upper triangular. The QR iteration sets
Ak+1 = RkQk = RkΩ[1,2]TΩ[2,3]T · · ·Ω[n−1,n]T , and it follows that
Ak+1 is also upper Hessenberg, because

∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 0 ∗ ∗

0 0 0 ∗

×Ω[1,2]T

→

• • ∗ ∗

• • ∗ ∗

0 0 ∗ ∗

0 0 0 ∗

×Ω[2,3]T

→

∗ • • ∗

∗ • • ∗

0 • • ∗

0 0 0 ∗

×Ω[3,4]T

→

∗ ∗ • •

∗ ∗ • •

0 ∗ • •

0 0 • •

Thus a strong advantage of bringing A to the upper Hessenberg
form initially is that then, in every iteration in QR algorithm, Qk is a
product of just n−1 Givens rotations. Hence each iteration of the
QR algorithm requires just O(n2) operations.

27 / 27

