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Eigenvalues and eigenvectors
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Spectrum preserved under similarity transforms

Theorem 1
Let A and S be n × n matrices, S being nonsingular. Then w is an
eigenvector of A with eigenvalue λ if and only if ŵ = Sw is an
eigenvector of Â = SAS−1 with the same eigenvalue.

Proof.

Aw = λw ⇔ AS−1(Sw) = λw ⇔ (SAS−1)(Sw) = λ(Sw).

�

3 / 25



Deflation

Suppose that we have found one solution of the eigenvector
equation Aw = λw , where A is again n × n. Then deflation is the
task of constructing an (n−1)× (n−1) matrix, B say, whose
eigenvalues are the other eigenvalues of A. Specifically, we apply a
similarity transformation S to A such that the first column of
Â = SAS−1 is λ times the first coordinate vector e1, because it
follows from the characteristic equation for eigenvalues and from
Theorem 1 that we can let B be the bottom right (n − 1)× (n − 1)
submatrix of Â = SAS−1. In particular,

SAS−1 = Â =

λ β

0 B

.
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Deflation

We write the condition on S as (SAS−1)e1 = λe1. Then the last
equation in the proof of Theorem 1 shows that it is sufficient if S
has the property Sw = ce1, where c is any nonzero scalar.
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Algorithm for deflation for symmetric A

Suppose that A is symmetric and w ∈ Rn, λ ∈ R are given so that
Aw = λw . We seek a nonsingular matrix S such that Sw = ce1

and such that SAS−1 is also symmetric. The last condition holds if
S is orthogonal, since then S−1 = ST . It is suitable to pick a
Householder reflection, which means that S has the form

Hu = I − 2uuT/‖u‖2, where u ∈ Rn.
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Algorithm for deflation for symmetric A

Specifically, we recall from the Numerical Analysis IB course that
Householder reflections are orthogonal and that, because Huu = −u
and Huv = v if uTv = 0, they reflect any vector in Rn with respect
to the (n−1)-dimensional hyperplane orthogonal to u. So, for any
two vectors x and y of equal lengths,

Hux = y , where u = x − y .

Hence,(
I − 2

uuT

‖u‖2

)
w = ±‖w‖e1 , where u = w ∓ ‖w‖e1 .

Since the bottom n−1 components of u and w coincide, the
calculation of u requires only O(n) computer operations. Further,
the calculation of SAS−1 can be done in only O(n2) operations,
taking advantage of the form S = I − 2uuT/‖u‖2, even if all the
elements of A are nonzero.
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Algorithm for deflation for symmetric A

After deflation, we may find an eigenvector, ŵ say, of SAS−1. Then
the new eigenvector of A, according to Theorem 1, is S−1ŵ = Sŵ ,
because Householder matrices, like all symmetric orthogonal
matrices, are involutions: S2 = I .
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Givens rotations

The notation Ω[i ,j] denotes the following n × n matrix

Ω[i ,j] =



1 . . .

c s
. . .

− s c
. . .

↑ ↑ 1

i j


, c2 + s2 = 1.

Generally, for any vector ak ∈ Rn, we can find a matrix Ω[i ,j] such that

Ω[i ,j]a =



1 . . .

c s
. . .

− s c
. . .

↑ ↑ 1

i j





a1k
:

aik
:

ajk
:

ank


=



a1k
:

r ←i
:

0 ←j

:

ank



c = aik√
a2
ik+a2

jk

,

s =
ajk√
a2
ik+a2

jk

,

r =
√

a2
ik+a2

jk .
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Givens rotations

1) We can choose Ω[i ,j] so that any prescribed element ãjk in the

j-th row of Ã = Ω[i ,j]A is zero.
2) The rows of Ã = Ω[i ,j]A are the same as the rows of A, except
that the i-th and j-th rows of the product are linear combinations of
the i-th and j-th rows of A.
3) The columns of Â = ÃΩ[i ,j]T are the same as the columns of Ã,
except that the i-th and j-th columns of Â are linear combinations
of the i-th and j-th columns of Ã.
4) Ω[i ,j] is an orthogonal matrix, thus Â = Ω[i ,j]AΩ[i ,j]T inherits the
eigenvalues of A.
5) If A is symmetric, then so is Â.

10 / 25



Transformation to upper Hessenberg – Givens

Transformation to an upper Hessenberg form: We replace A by Â = SAS−1,
where S is a product of Givens rotations Ω[i ,j] chosen to annihilate subsubdiagonal
elements aj ,i−1 in the (i−1)-st column:


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


Ω[2,3]×→


∗ ∗ ∗ ∗

• • • •

0 • • •

∗ ∗ ∗ ∗


×Ω[2,3]T

→


∗ • • ∗

∗ • • ∗

0 • • ∗

∗ • • ∗


Ω[2,4]×→


∗ ∗ ∗ ∗

• • • •

0 ∗ ∗ ∗

0 • • •


×Ω[2,4]T

→


∗ • ∗ •

∗ • ∗ •

0 • ∗ •

0 • ∗ •


Ω[3,4]×→


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 • • •

0 0 • •


×Ω[3,4]T

→


∗ ∗ • •

∗ ∗ • •

0 ∗ • •

0 0 • •


The •-elements have changed through a single transformation while the ∗-elements remained the same.

It is seen that every element that we have set to zero remains zero, and the final
outcome is indeed an upper Hessenberg matrix. If A is symmetric then so will be the
outcome of the calculation, hence it will be tridiagonal. In general, the cost of this
procedure is O(n3).
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Transformation to upper Hessenberg – Householder

Alternatively, we can transform A to upper Hessenberg using Householder reflections,
rather than Givens rotations. In that case we deal with a column at a time, taking u
such that, with Hu = I − 2uuT/‖u‖2, the i-th column of B̃ = HuB is consistent with
the upper Hessenberg form. Such a u has its first i coordinates vanishing, therefore
B̂ = B̃HT

u has the first i columns unchanged, and all new and old zeros (which are in
the first i columns) stay untouched.



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗


H1×→



∗ ∗ ∗ ∗ ∗

• • • • •

0 • • • •

0 • • • •

0 • • • •


×HT

1→



∗ • • • •

∗ • • • •

0 • • • •

0 • • • •

0 • • • •


H2×→



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 • • • •

0 0 • • •

0 0 • • •


×HT

2→



∗ ∗ • • •

∗ ∗ • • •

0 ∗ • • •

0 0 • • •

0 0 • • •


H3×→



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 • • •

0 0 0 • •


×HT

3→



∗ ∗ ∗ • •

∗ ∗ ∗ • •

0 ∗ ∗ • •

0 0 ∗ • •

0 0 0 • •


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The QR algorithm

The “plain vanilla” version of the QR algorithm is as follows. Set A0 = A.
For k = 0, 1, . . . calculate the QR factorization Ak = QkRk (here Qk is
n × n orthogonal and Rk is n × n upper triangular) and set Ak+1 = RkQk .
The eigenvalues of Ak+1 are the same as the eigenvalues of Ak , since we
have

Ak+1 = RkQk = Q−1
k (QkRk)Qk = Q−1

k AkQk , (1)

a similarity transformation. Moreover, Q−1
k = QT

k , therefore if Ak is
symmetric, then so is Ak+1.
If for some k ≥ 0 the matrix Ak+1 can be regarded as ”deflated”, i.e. it
has the block form

Ak+1 =

 B C

D E

 ,
where B,E are square and D≈0, then we calculate the eigenvalues of B
and E separately (again, with QR, except that there is nothing to calculate
for 1×1 and 2×2 blocks). As it turns out, such a ”deflation” occurs
surprisingly often.
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The QR iteration for upper Hessenberg matrices

If Ak is upper Hessenberg, then its QR factorization by means of the
Givens rotations produces the matrix

Rk = QT
k Ak = Ω[n−1,n] · · ·Ω[2,3]Ω[1,2]Ak ,

which is upper triangular. The QR iteration sets
Ak+1 = RkQk = RkΩ[1,2]TΩ[2,3]T · · ·Ω[n−1,n]T , and it follows that
Ak+1 is also upper Hessenberg, because

∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 0 ∗ ∗

0 0 0 ∗


×Ω[1,2]T

→


• • ∗ ∗

• • ∗ ∗

0 0 ∗ ∗

0 0 0 ∗


×Ω[2,3]T

→


∗ • • ∗

∗ • • ∗

0 • • ∗

0 0 0 ∗


×Ω[3,4]T

→


∗ ∗ • •

∗ ∗ • •

0 ∗ • •

0 0 • •


Thus a strong advantage of bringing A to the upper Hessenberg
form initially is that then, in every iteration in QR algorithm, Qk is a
product of just n−1 Givens rotations. Hence each iteration of the
QR algorithm requires just O(n2) operations.
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The QR iteration for symmetric matrices

We bring A to the upper Hessenberg form, so that the QR
algorithm commences from a symmetric tridiagonal matrix A0, and
then the technique on the previous slide is applied for every k as
before. Since both the upper Hessenberg structure and symmetry is
retained, each Ak+1 is also symmetric tridiagonal too.

It follows that, whenever a Givens rotation Ω[i ,j] combines either
two adjacent rows or two adjacent columns of a matrix, the total
number of nonzero elements in the new combination of rows or
columns is at most five. Thus there is a bound on the work of each
rotation that is independent of n. Hence each QR iteration requires
just O(n) operations.
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Notation

To analyse the matrices Ak that occur in the QR algorithm 5.13, we
introduce

Q̄k = Q0Q1 · · ·Qk , R̄k = RkRk−1 · · ·R0, k = 0, 1, . . . . (2)

Note that Q̄k is orthogonal and R̄k upper triangular.
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Fundamental properties of Q̄k and R̄k

Lemma 2 (Fundamental properties of Q̄k and R̄k)
Ak+1 is related to the original matrix A by the similarity transformation
Ak+1 = Q̄T

k AQ̄k . Further, Q̄k R̄k is the QR factorization of Ak+1.

Proof. We prove the first assertion by induction. By (1), we have
A1 = QT

0 A0Q0 = Q̄T
0 AQ̄0. Assuming Ak = Q̄T

k−1AQ̄k−1, equations (1)-(2)
provide the first identity

Ak+1 = QT
k AkQk = QT

k (Q̄T
k−1AQ̄k−1)Qk = Q̄T

k AQ̄k .

The second assertion is true for k = 0, since Q̄0R̄0 = Q0R0 = A0 = A.
Again, we use induction, assuming Q̄k−1R̄k−1 = Ak . Thus, using the
definition (2) and the first statement of the lemma, we deduce that

Q̄k R̄k = (Q̄k−1Qk)(Rk R̄k−1) = Q̄k−1Ak R̄k−1 = Q̄k−1(Q̄T
k−1AQ̄k−1)R̄k−1

= AQ̄k−1R̄k−1 = A · Ak = Ak+1

and the lemma is true. �
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Relation between QR and the power method

Assume that the eigenvalues of A have different magnitudes,

|λ1| < |λ2| < · · · < |λn|, and let e1 =
∑n

i=1 ciw i =
∑m

i=1 ciw i

(3)
be the expansion of the first coordinate vector in terms of the
normalized eigenvectors of A, where m is the greatest integer such
that cm 6= 0.
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Relation between QR and the power method

Consider the first columns of both sides of the matrix equation

Ak+1 = Q̄k R̄k .

By the power method arguments, the vector Ak+1e1 is a multiple of∑m
i=1 ci (λi/λm)k+1w i , so the first column of Ak+1 tends to be a

multiple of wm for k � 1. On the other hand, if qk is the first
column of Q̄k , then, since R̄k is upper triangular, the first column of
Q̄k R̄k is a multiple of qk .
Therefore qk tends to be a multiple of wm. Further, because both
qk and wm have unit length, we deduce that qk = ±wm + hk ,
where hk tends to zero as k →∞. Therefore,

Aqk = λmqk + o(1) , k →∞ . (4)

https://en.wikipedia.org/wiki/Big_O_notation

http://www.damtp.cam.ac.uk/research/afha/anders/JFA_

Final.pdf
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The first column of Ak

Theorem 3 (The first column of Ak)

Let conditions (3) be satisfied. Then, as k →∞, the first column of
Ak tends to λme1, making Ak suitable for deflation.

Proof. By Lemma 2, the first column of Ak+1 is Q̄T
k AQ̄ke1, and,

using (4), we deduce that

Ak+1e1 = Q̄T
k AQ̄ke1 = Q̄T

k Aqk
(4))
= Q̄T

k [λmqk+o(1)]
(∗)
= λme1+o(1) ,

where in (∗) we used that Q̄T
k qk = e1 by orthogonality of Q̄, and

that ‖Q̄kx‖2 = ‖x‖2 because an orthogonal mapping is an isometry.
�
https://blogs.mathworks.com/cleve/2019/08/05/

the-qr-algorithm-computes-eigenvalues-and-singular-values/
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Relation between QR and inverse iteration

In practice, the statement of Theorem 3 is hardly ever important,
because usually, as k →∞, the off-diagonal elements in the bottom
row of Ak+1 tend to zero much faster than the off-diagonal
elements in the first column. The reason is that, besides the
connection with the power method, the QR algorithm also enjoys a
close relation with inverse iteration.

Let again

|λ1| < |λ2| < · · · < |λn|, and let eT
n =

∑n
i=1 civ

T
i =

∑n
i=s civ

T
i

(5)
be the expansion of the last coordinate row vector eT

n in the basis of
normalized left eigenvectors of A, i.e. vT

i A = λivT
i , where s is the

least integer such that cs 6= 0.
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Relation between QR and inverse iteration

Assuming that A is nonsingular, we can write the equation
Ak+1 = Q̄k R̄k in the form A−(k+1) = R̄−1

k Q̄T
k . Consider the bottom

rows of both sides of this equation: eT
n A
−(k+1) = (eT

n R̄
−1
k )Q̄T

k .
By the inverse iteration arguments, the vector eT

n A
−(k+1) is a

multiple of
∑n

i=s ci (λs/λi )
k+1vT

i , so the bottom row of A−(k+1)

tends to be multiple of vT
s . On the other hand, let pT

k be the
bottom row of Q̄T

k . Since R̄k is upper triangular, its inverse R̄−1
k is

upper triangular too, hence the bottom row of R̄−1
k Q̄T

k , is a multiple
of pT

k .
Therefore, pT

k tends to a multiple of vT
s , and, because of their unit

lengths, we have pT
k = ±vT

s + hT
k , where hk → 0, i.e.,

pT
k A = λspT

k + o(1) , k →∞ . (6)
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The bottom row of Ak

Theorem 4 (The bottom row of Ak)

Let conditions (5) be satisfied. Then, as k →∞, the bottom row of
Ak tends to λseT

n , making Ak suitable for deflation.

Proof. By Lemma 2, the bottom row of Ak+1 is eT
n Q̄

T
k AQ̄k , and

similarly to the previous proof we obtain

eT
n Ak+1 = eT

n Q̄
T
k AQ̄k = pT

k AQ̄k
(6)
= [λspT

k +o(1)] Q̄k = λseT
n +o(1) .

(7)
the last equality by orthogonality of Q̄k . �
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Single shifts

As we saw in previous lectures, there is a huge difference between
power iteration and inverse iteration: the latter can be accelerated
arbitrarily through the use of shifts. The better we can estimate
sk ≈ λs , the more we can accomplish by a step of inverse iteration
with the shifted matrix Ak − sk I . Theorem 4 shows that the bottom
right element (Ak)nn becomes a good estimate of λs . So, in the
single shift technique, the matrix Ak is replaced by Ak−sk I , where
sk = (Ak)nn, before the QR factorization:

Ak − sk I = QkRk ,

Ak+1 = RkQk + sk I .
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Single shifts

A good approximation sk =(Ak)nn to the eigenvalue λs generates
even better approximation of sk+1 = (Ak+1)nn to λs , and
convergence is accelerating at a higher and higher rate (it will be
the so-called cubic convergence |λs − sk+1| ≤ γ |λs − sk |3). Note
that, similarly to the original QR iteration, we have

Ak+1 = QT
k (QkRk + sk I )Qk = QT

k AkQk ,

hence Ak+1 = Q̄T
k AQ̄k , but note also that Q̄k R̄k 6= Ak+1, but we

have instead
Q̄k R̄k =

∏k
m=0(A− smI )

https://uk.mathworks.com/content/dam/mathworks/

tag-team/Objects/t/72899_92026v00Cleve_QR_Algorithm_

Sum_1995.pdf
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