Numerical Analysis - Part Il

Anders C. Hansen

Lecture 23
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Eigenvalues and eigenvectors
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Theorem 1

Let A and S be n x n matrices, S being nonsingular. Then w is an
eigenvector of A with eigenvalue X if and only if w=Sw isan
eigenvector of A = SAS™! with the same eigenvalue.

Proof.
Aw = w & ASTH(Sw)=Aiw & (SASTH(Sw)=\(Sw).

g
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Suppose that we have found one solution of the eigenvector
equation Aw = Aw, where A is again n x n. Then deflation is the
task of constructing an (n—1) x (n—1) matrix, B say, whose
eigenvalues are the other eigenvalues of A. Specifically, we apply a
similarity transformation S to A such that the first column of

A= SAS~1is ) times the first coordinate vector e, because it
follows from the characteristic equation for eigenvalues and from
Theorem 1 that we can let B be the bottom right (n — 1) x (n —1)
submatrix of A= SAS~1. In particular,

A B

SASTl = A= .
0 B
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We write the condition on S as (SAS~1)e; = \ej. Then the last
equation in the proof of Theorem 1 shows that it is sufficient if S
has the property Sw = cei, where ¢ is any nonzero scalar.
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Suppose that A is symmetric and w € R", A € R are given so that
Aw = Aw. We seek a nonsingular matrix S such that Sw = ce;
and such that SAS™! is also symmetric. The last condition holds if
S is orthogonal, since then S1 =87 Itis suitable to pick a
Householder reflection, which means that S has the form

H,=1—2uu"/||u|?, where ucR".
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Specifically, we recall from the Numerical Analysis IB course that
Householder reflections are orthogonal and that, because H,u = —u
and Hyv = v if uTv = 0, they reflect any vector in R" with respect
to the (n—1)-dimensional hyperplane orthogonal to u. So, for any
two vectors x and y of equal lengths,

Hux =y, where u=x-—y.

Hence,

uu’
(I — 2Hu||2> w=*t|w|ei, where u=wF|wle;.
Since the bottom n—1 components of u and w coincide, the
calculation of u requires only O(n) computer operations. Further,
the calculation of SAS~! can be done in only O(n?) operations,
taking advantage of the form S = | — 2uu’ /||u||?, even if all the
elements of A are nonzero.
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After deflation, we may find an eigenvector, w say, of SAS~ 1. Then
the new eigenvector of A, according to Theorem 1, is S lw=Sw,
because Householder matrices, like all symmetric orthogonal
matrices, are involutions: S% = I.
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The notation QU] denotes the following n x n matrix

Qlivl —

i

4

i

Generally, for any vector a; € R”, we can find a matrix QU] such that

Qlivlg —

a1k

ank

i

J

_ ik
2, 27
/@it

ajk

s= 2, 2
V3T 3

— (2.2
r = a,.kJrajk.
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1) We can choose Ql'J] so that any prescribed element 3 in the
j-th row of A zg[iJ]A is zero.
2) The rows of A= QUJIA are the same as the rows of A, except

that the j-th and j-th rows of the product are linear combinations of
the i-th and j-th rows of A.

3) The columns of A = AQUIIT are the same as the columns of A,

except that the i-th and j-th columns of A are linear combinations
of the i-th and j-th columns of A.

4) Qlil is an orthogonal matrix, thus A = QU AQUIT inherits the
eigenvalues of A.

5) If A'is symmetric, then so is A.
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Transformation to an upper Hessenberg form: We replace A by A= SAS1,
where S is a product of Givens rotations QUW] chosen to annihilate subsubdiagonal

elements a; ;1 in the (/—1)-st column:

%k % % ¢k ok k * @@k 5k ok ok xOke®
skkok | g3, | eee@ |  gp3T | xeex [ gpa, |eeee | opaT [ xexe
N = — —

% k% Oeee Oeex 0% 5 Oexe

% % sk % * % K % * @@ % Oeee Oexe

* ok k % **koe
QB | kE kR | L QBAT | kxee
— =

Qeee Oxee

0Qee 0Qee

The e-elements have changed through a single transformation while the x-elements remained the same.

It is seen that every element that we have set to zero remains zero, and the final
outcome is indeed an upper Hessenberg matrix. If A is symmetric then so will be the
outcome of the calculation, hence it will be tridiagonal. In general, the cost of this

procedure is O(n3).
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Alternatively, we can transform A to upper Hessenberg using Householder reflections,
rather than Givens rotations. In that case we deal with a cglumn at a time, taking u
such that, with H, = | — 2uuT /||ul|?, the i-th column of B = H,B is consistent with
the upper Hessenberg form. Such a u has its first i coordinates vanishing, therefore
B= BH[ has the first i columns unchanged, and all new and old zeros (which are in
the first i columns) stay untouched.

* %k koK K * %k ok K K EX X X X * ok K K K xteee * ok K ok K x%t0e
* %k k kK XXy xe00e EEEE xteee EEEE EEET X
Hy x x H{ Ha x xHy Hz x xHJ
sxkxx%x| — |Qoeee| — [Qeeee| — |Qeeee| — [Oxeee| — |Oxxxx| — [Oxxeoe
* ok ok ok ok Oeecee Oeecee 0Qeee 0Qeee 0Qeee 0O0xee
Kk K K K Qeecee Oeecee 0Qeee 0Qeee 000ee 000ee
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The “plain vanilla” version of the QR algorithm is as follows. Set Ay = A.
For k =0,1,... calculate the QR factorization Ax = QxRk (here Qy is
n x n orthogonal and Ry is n X n upper triangular) and set Ax11 = Ri Qk.
The eigenvalues of Ayy1 are the same as the eigenvalues of Ay, since we
have

Ais1 = ReQ = Q  (QuRk) Qk = Q' Ak Qx, (1)

a similarity transformation. Moreover, Qk_l = QkT, therefore if Ay is
symmetric, then so is Axy1.

If for some k > 0 the matrix Ax 1 can be regarded as "deflated”, i.e. it
has the block form

B C
Ak+1 - )
E

where B, E are square and D~0, then we calculate the eigenvalues of B
and E separately (again, with QR, except that there is nothing to calculate
for 1x1 and 2x2 blocks). As it turns out, such a "deflation” occurs
surprisingly often.
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If A is upper Hessenberg, then its QR factorization by means of the
Givens rotations produces the matrix

Rk - Q/Z—Ak = Q[n—l,n] . 9[213]9[172]/4/( ,

which is upper triangular. The QR iteration sets
As1 = RQi = RQIATQRIIT ... QIn=1nIT "and it follows that
Ag+1 is also upper Hessenberg, because

¥ ok ok % ® e x x * o e x **xo®

Ok kx| (quaAT [ @@ %% [ op3T [ x @ @ % [ o347 [ x x @ @
— — —

00 * % 00 * % ODeex Oxee

000 x 000 x 000 % 0Qee

Thus a strong advantage of bringing A to the upper Hessenberg
form initially is that then, in every iteration in QR algorithm, Qf is a
product of just n—1 Givens rotations. Hence each iteration of the
QR algorithm requires just O(n?) operations.
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We bring A to the upper Hessenberg form, so that the QR
algorithm commences from a symmetric tridiagonal matrix Ag, and
then the technique on the previous slide is applied for every k as
before. Since both the upper Hessenberg structure and symmetry is
retained, each Ay, 1 is also symmetric tridiagonal too.

It follows that, whenever a Givens rotation QU4 combines either
two adjacent rows or two adjacent columns of a matrix, the total
number of nonzero elements in the new combination of rows or
columns is at most five. Thus there is a bound on the work of each
rotation that is independent of n. Hence each QR iteration requires
just O(n) operations.
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To analyse the matrices Ax that occur in the QR algorithm 5.13, we
introduce

Q= QQ1-- Qx, Ri = RiRi—1- - Ro, k=0,1,.... (2)

Note that Q is orthogonal and Ry upper triangular.
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Lemma 2 (Fundamental properties of Q, and Ry)

Ak+1 Is related to the original matrix A by the similarity transformation
Aky1 = QkTAQk. Further, QiRy is the QR factorization of AkK*+1.

Proof We prove the first assertion by induction. By (1), we have

= Qf AoQo = Qf AQo. Assuming Ax = Q] ;AQk_1, equations (1)-(2)
prowde the first identity

A1 = QL AQr = Q) (Q/_1AQk_1)Qx = Q) AQx .

The second assertion is true for k = 0, since QuRo = QoRy = Ag = A.
Again, we use induction, assuming Qx_1Rx_1 = Ak, Thus, using the
definition (2) and the first statement of the lemma, we deduce that

QRe = (k1 Q) (RkRk—1) = Qx1AkRk—1 = Qu_1( Q) _1AQk—_1)Rk—1
= AQuo1Ri1 = A AF = A
and the lemma is true. O
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Assume that the eigenvalues of A have different magnitudes,
|/\1’ < |/\2’ <0< ’)\n’, and let e; = 27:1 CiWw; = 27;1 Ciw;

(3)
be the expansion of the first coordinate vector in terms of the

normalized eigenvectors of A, where m is the greatest integer such
that ¢, # 0.
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Consider the first columns of both sides of the matrix equation
Ak+1 — OkRk-

By the power method arguments, the vector A“*le; is a multiple of
ST ci(Mi/Am) Ttwy, so the first column of AXT! tends to be a
multiple of wp, for k > 1. On the other hand, if g, is the first
column of Qy, then, since Ry is upper triangular, the first column of
QiR is a multiple of q,.

Therefore q, tends to be a multiple of w,. Further, because both
q, and w, have unit length, we deduce that q, = tw, + hy,
where h, tends to zero as k — oco. Therefore,

Ady = Mm@y +0(1), k= o0, (4)

https://en.wikipedia.org/wiki/Big_0_notation
http://www.damtp.cam.ac.uk/research/afha/anders/JFA_
Final.pdf
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Theorem 3 (The first column of Ay)

Let conditions (3) be satisfied. Then, as k — oo, the first column of
Ai tends to \me1, making Ay suitable for deflation.

Proof. By Lemma 2, the first column of Ax41 is C_)kTAlel, and,
using (4), we deduce that

- — - 4 — *
Acsrer = QF AQver = Q) Aqi 2 Q7 Pmaito(1)] & Amer+o(1),

where in (%) we used that @kqu = e; by orthogonality of @, and
that ||Qkx||2 = ||x]||2 because an orthogonal mapping is an isometry.
O

https://blogs.mathworks.com/cleve/2019/08/05/
the-qr-algorithm-computes-eigenvalues-and-singular-values/
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In practice, the statement of Theorem 3 is hardly ever important,
because usually, as k — oo, the off-diagonal elements in the bottom
row of Ax,1 tend to zero much faster than the off-diagonal
elements in the first column. The reason is that, besides the
connection with the power method, the QR algorithm also enjoys a
close relation with inverse iteration.

Let again

A1l <X < <|As|, andlet el =37 v =" _cv]

(5)
be the expansion of the last coordinate row vector e in the basis of
normalized left eigenvectors of A, i.e. v,-TA = )\,-v,-T, where s is the
least integer such that ¢s # 0.
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Assuming that A is nonsingular, we can write the equation

AL = Qg Ry in the form A=() =R, 1 Q. Consider the bottom
rows of both sides of this equation: e/ A=(k+1) = (e[l?;l)@[.

By the inverse iteration arguments, the vector eTA*(k“) is a
multiple of S°7__ ci(As/Ai)*F1v], so the bottom row of A~(k+1)
tends to be multlple of v/. On the other hand, let ka be the
bottom row of Qk S|nce Ry is upper triangular, its inverse R
upper triangular too, hence the bottom row of R 1Qk ,is a muIt|pIe
of pl.

Therefore, p/ tends to a multiple of v[, and, because of their unit
lengths, we have p[ = ivsT + h,z-, where h, — 0, i.e.,

plA=Xp] +0(1), k— 0. (6)
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Theorem 4 (The bottom row of Ay)

Let conditions (5) be satisfied. Then, as k — oo, the bottom row of
Ay tends to )\se,,T, making Ay suitable for deflation.

Proof. By Lemma 2, the bottom row of Ag.1 is eZQZAQk, and
similarly to the previous proof we obtain

— — - (6 —
er A1 = e QU AQ = pI Ak & \p] +o(1)] Qi = Ase] +o(1).
(7)
the last equality by orthogonality of Q. O
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As we saw in previous lectures, there is a huge difference between
power iteration and inverse iteration: the latter can be accelerated
arbitrarily through the use of shifts. The better we can estimate

Sk = As, the more we can accomplish by a step of inverse iteration
with the shifted matrix A — s,/. Theorem 4 shows that the bottom
right element (Ax)nn becomes a good estimate of \s. So, in the
single shift technique, the matrix Ay is replaced by Ay —sk/, where
sk = (Ak)nn, before the QR factorization:

Ak — skl = QRu,
Akt1 = RiQu+ skl
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A good approximation sx =(Ag)nn to the eigenvalue \s generates
even better approximation of sx11 = (Ak+1)nn to As, and
convergence is accelerating at a higher and higher rate (it will be
the so-called cubic convergence [As — sky1| < v [Xs — sk|®). Note
that, similarly to the original QR iteration, we have

Acs1 = QI (QuRk + sk Qi = QF Ak Q.

hence Axy1 = QF AQx, but note also that QxRy # A*TL, but we
have instead o
QR = [Ty—o(A — sml)

https://uk.mathworks.com/content/dam/mathworks/
tag-team/0Objects/t/72899_92026v00Cleve _QR_Algorithm_
Sum_1995.pdf
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