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Partial differential equations of evolution
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Solving the diffusion equation

We consider the solution of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1. By Taylor’s expansion

∂u(x ,t)
∂t

= 1
k

[
u(x , t + k)− u(x , t)

]
+O(k), k = ∆t ,

∂2u(x ,t)
∂x2 = 1

h2

[
u(x − h, t)− 2u(x , t) + u(x + h, t)

]
+O(h2), h = ∆x ,

so that, for the true solution, we obtain

u(x , t+k) = u(x , t)+ k
h2

[
u(x−h, t)−2u(x , t)+u(x+h, t)

]
+O(k2+kh2) .

(1)
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Numerical scheme for the diffusion equation

That motivates the numerical scheme for approximation
unm ≈ u(xm, tn) on the rectangular mesh (xm, tn) = (mh, nk):

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1...M . (2)

Here h= 1
M+1

and µ= k
h2 = ∆t

(∆x)2 is the so-called Courant number.

With µ being fixed, we have k = µh2, so that the local truncation
error of the scheme is O(h4). Substituting whenever necessary
initial conditions u0

m and boundary conditions un0 and unM+1, we
possess enough information to advance in (2) from
un := [un1 , . . . , u

n
M ] to un+1 := [un+1

1 , . . . , un+1
M ].
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Convergence

Similarly to ODEs or Poisson equation, we say that the method is
convergent if, for a fixed µ, and for every T > 0, we have

lim
h→0
|unm − u(xm, tn)| = 0 uniformly for (xm, tn) ∈ [0, 1]×[0,T ] .

In the present case, however, a method has an extra parameter µ,
and it is entirely possible for a method to converge for some choice
of µ and diverge otherwise.
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Proving convergence

Theorem 1
If µ ≤ 1

2 , then method (2) converges.

Proof. Let enm := unm − u(mh, nk) be the error of approximation, and let
en = [en1 , . . . , e

n
M ] with ‖en‖ := maxm |enm|. Convergence is equivalent to

lim
h→0

max
1≤n≤T/k

‖en‖ = 0

for every constant T > 0. Subtracting (1) from (2), we obtain

en+1
m = enm + µ(enm−1 − 2enm + enm+1) +O(h4)

= µenm−1 + (1− 2µ)enm + µenm+1 +O(h4).

Then

‖en+1‖ = max
m
|en+1

m | ≤ (2µ+ |1− 2µ|) ‖en‖+ ch4 = ‖en‖+ ch4,

by virtue of µ ≤ 1
2 . Since ‖e0‖ = 0, induction yields

‖en‖ ≤ cnh4 ≤ cT
k

h4 = cT
µ

h2 → 0 (h→ 0) �
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Stability, consistency and the Lax equivalence
theorem

Suppose that a numerical method for a partial differential equation
of evolution can be written in the form1

un+1 = Ahun,

where un ∈ RM , Ah ∈ RM×M is a matrix, and h = 1
M+1 . Fix a norm

‖ · ‖ on RM , and let ‖Ah‖ = sup
‖Ahx‖
‖x‖ be the corresponding induced

matrix norm. If we define stability as preserving the boundedness of
un with respect to the norm ‖ · ‖, then since

‖un‖ ≤ ‖An
hu

0‖ ≤ ‖Ah‖n‖u0‖,

we get:

‖Ah‖ ≤ 1 as h→ 0 ⇒ the method is stable.

1Assuming zero boundary conditions
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Stability, consistency and the Lax equivalence
theorem

If we denote the exact solution of the PDE by u(x , t) and let
ûn = (u(mk , nt))1≤m≤M , then we have ûn+1 = Ahûn +ηn where ηn

is the local truncation error. The error vector en = ûn − un satisfies

en+1 = Ahen + ηn.

Using ‖Ah‖ ≤ 1 and assuming ‖e0‖ = 0, we get

‖en‖ ≤ ‖ηn−1‖+ · · ·+ ‖η0‖.

If consistency holds, i.e., ‖ηn‖ = O(k2), then we see that
‖en‖ ≤ nck2 for some constant c > 0. Since n ≤ T/k we end up
with ‖en‖ ≤ cTk , and so ‖en‖ → 0 as k → 0 uniformly in
n ∈ [1,T/k]. This shows convergence.
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Stability, consistency and the Lax equivalence
theorem

We have thus arrived at the Lax equivalence theorem:

Theorem 2
“consistency + stability = convergence”

(more precisely what we have proved here is the implication =⇒ )
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Norms

The discussion above involves a choice of norm on RM . There are two standard
choices of norms:

I Sup-norm. Here, we choose

‖u‖ = ‖u‖∞ = max
i=1,...,M

|ui |.

It can be easily shown that the corresponding induced norm for a matrix
A ∈ RM×M is given by:

‖A‖∞→∞ := sup
x

‖Ax‖∞
‖x‖∞ = max

i=1,...,M

M∑
j=1

|Aij |.

This the choice of norm we implicitly used in the convergence proof of
Theorem 1. The matrix in this case was

Ah =



1− 2µ µ

µ
. . .

. . .

. . .
. . . µ

µ 1− 2µ


,

for which we get ‖Ah‖∞→∞ = |1− 2µ|+ 2µ ≤ 1 if µ ≤ 1/2.
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Stability, consistency and the Lax equivalence
theorem

I Normalized Euclidean norm. Another common of choice of norm is the
normalized Euclidean length, namely,

‖u‖ :=
√

1
M

∑M

i=1
|ui |2.

The reason for the factor
1
M

is to ensure that, because of the convergence
of Riemann sums, we obtain

‖u‖ :=
[

1
M

∑M
i=1 |ui |

2
]1/2

→
[∫ 1

0
|u(x)|2dx

]1/2

=: ‖u‖L2 (h = 1/(M+1)→ 0),

The induced matrix norm in this case is the spectral norm (or the operator
norm) and is denoted ‖A‖2

‖A‖2 := sup
x

‖Ax‖2

‖x‖2
.

The spectral norm of A is equal to the largest singular value of A.
Equivalently, we can write ‖A‖2 = [ρ(AAT )]1/2 where ρ is the spectral
radius:

ρ(M) := max {|λ| : λ eigenvalue of M} .
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Proving stability directly

Although we can deduce from the theorem that µ ≤ 1
2 implies

stability, we will prove directly that stability ⇔ µ ≤ 1
2 . Let

un = [un1 , . . . , u
n
M ]T . We can express the recurrence (2)

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1...M ,

in the matrix form

un+1
h = Ahun

h, Ah = I + µA∗, A∗ =


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2


M×M

.
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Proving stability directly

Here A∗ is TST, with λ`(A∗) = −4 sin2 π`h
2 , hence

λ`(Ah) = 1− 4µ sin2 π`h
2 , so that its spectrum lies within the

interval [λM , λ1] = [1− 4µ cos2 πh
2 , 1− 4µ sin2 πh

2 ]. Since Ah is
symmetric, we have

‖Ah‖2 = ρ(Ah) =


|1− 4µ sin2 πh

2
| ≤ 1 , µ ≤ 1

2
,

|1− 4µ cos2 πh
2
| > 1, µ > 1

2
(h ≤ hµ) .
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Proving stability directly

We distinguish between two cases.

1) µ ≤ 1
2
: ‖un‖ ≤ ‖A‖ · ‖un−1‖ ≤ · · · ≤ ‖A‖n‖u0‖ ≤ ‖u0‖ as n→∞, for every u0.

2) µ > 1
2
: Choose u0 as the eigenvector corresponding to the largest (in modulus)

eigenvalue, |λ| > 1. Then un = λnu0, becoming unbounded as n→∞.
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Recall Euler’s method

Suppose that we want to solve the differential equation

y ′ = f (t, y), y(t0) = y0.

Euler’s method is given by

yn+1 = yn + kf (tn, yn),

where k = tn+1 − tn is the step size.
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Semidiscretization

Let um(t) = u(mh, t), m = 1...M, t ≥ 0. Approximating ∂2/∂x2 as
before, we deduce from the PDE that the semidiscretization

dum
dt

=
1

h2
(um−1 − 2um + um+1), m = 1...M (3)

carries an error of O(h2). This is an ODE system, and we can solve
it by any ODE solver. Thus, Euler’s method yields (2), while
backward Euler results in

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm.
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Semidiscretization

This approach is commonly known as the method of lines. Much
(although not all!) of the theory of finite-difference methods for
PDEs of evolution can be presented as a two-stage task: first
semidiscretize, getting rid of space variables, then use an ODE
solver.

Typically, each stage is conceptually easier than the process of
discretizing in unison in both time and in space (so-called full
discretization).
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Recall the trapezoidal rule

Suppose that we want to solve the differential equation

y ′ = f (t, y), y(t0) = y0.

The trapezoidal rule is given by the formula

yn+1 = yn + 1
2k
(
f (tn, yn) + f (tn+1, yn+1)

)
,

where k = tn+1 − tn is the step size.
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The Crank–Nicolson scheme

Discretizing the ODE (3) with the trapezoidal rule, we obtain

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1− 2unm + unm+1),

(4)
where m = 1...M. Thus, each step requires the solution of an
M×M TST system. The error of the scheme is O(k3 + kh2), so
basically the same as with Euler’s method. However, as we will see,
Crank–Nicolson enjoys superior stability features, as compared with
the method (2).
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The Crank–Nicolson scheme

Note further that (4) is an implicit method: advancing each time
step requires to solve a linear algebraic system. However, the matrix
of the system is TST and its solution by sparse Cholesky
factorization can be done in O(M) operations.
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