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Partial differential equations of evolution
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Solving the diffusion equation

We consider the solution of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1. By Taylor’s expansion

∂u(x ,t)
∂t

= 1
k

[
u(x , t + k)− u(x , t)

]
+O(k), k = ∆t ,

∂2u(x ,t)
∂x2 = 1

h2

[
u(x − h, t)− 2u(x , t) + u(x + h, t)

]
+O(h2), h = ∆x ,

so that, for the true solution, we obtain

u(x , t+k) = u(x , t)+ k
h2

[
u(x−h, t)−2u(x , t)+u(x+h, t)

]
+O(k2+kh2) .

(1)
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Numerical scheme for the diffusion equation

That motivates the numerical scheme for approximation
unm ≈ u(xm, tn) on the rectangular mesh (xm, tn) = (mh, nk):

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1...M . (2)

Here h= 1
M+1

and µ= k
h2 = ∆t

(∆x)2 is the so-called Courant number.

With µ being fixed, we have k = µh2, so that the local truncation
error of the scheme is O(h4). Substituting whenever necessary
initial conditions u0

m and boundary conditions un0 and unM+1, we
possess enough information to advance in (2) from
un := [un1 , . . . , u

n
M ] to un+1 := [un+1

1 , . . . , un+1
M ].
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Convergence

Similarly to ODEs or Poisson equation, we say that the method is
convergent if, for a fixed µ, and for every T > 0, we have

lim
h→0
|unm − u(xm, tn)| = 0 uniformly for (xm, tn) ∈ [0, 1]×[0,T ] .

In the present case, however, a method has an extra parameter µ,
and it is entirely possible for a method to converge for some choice
of µ and diverge otherwise.
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Proving convergence

Theorem 1
If µ ≤ 1

2 , then method (2) converges.

Proof. Let enm := unm − u(mh, nk) be the error of approximation, and let
en = [en1 , . . . , e

n
M ] with ‖en‖ := maxm |enm|. Convergence is equivalent to

lim
h→0

max
1≤n≤T/k

‖en‖ = 0

for every constant T > 0. Subtracting (1) from (2), we obtain

en+1
m = enm + µ(enm−1 − 2enm + enm+1) +O(h4)

= µenm−1 + (1− 2µ)enm + µenm+1 +O(h4).

Then

‖en+1‖ = max
m
|en+1

m | ≤ (2µ+ |1− 2µ|) ‖en‖+ ch4 = ‖en‖+ ch4,

by virtue of µ ≤ 1
2 . Since ‖e0‖ = 0, induction yields

‖en‖ ≤ cnh4 ≤ cT
k

h4 = cT
µ

h2 → 0 (h→ 0) �
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Stability, consistency and the Lax equivalence
theorem

Suppose that a numerical method for a partial differential equation
of evolution can be written in the form1

un+1 = Ahun,

where un ∈ RM , Ah ∈ RM×M is a matrix, and h = 1
M+1 . Fix a norm

‖ · ‖ on RM , and let ‖Ah‖ = sup
‖Ahx‖
‖x‖ be the corresponding induced

matrix norm. If we define stability as preserving the boundedness of
un with respect to the norm ‖ · ‖, then since

‖un‖ ≤ ‖An
hu

0‖ ≤ ‖Ah‖n‖u0‖,

we get:

‖Ah‖ ≤ 1 as h→ 0 ⇒ the method is stable.

1Assuming zero boundary conditions
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Stability, consistency and the Lax equivalence
theorem

If we denote the exact solution of the PDE by u(x , t) and let
ûn = (u(mk , nt))1≤m≤M , then we have ûn+1 = Ahûn +ηn where ηn

is the local truncation error. The error vector en = ûn − un satisfies

en+1 = Ahen + ηn.

Using ‖Ah‖ ≤ 1 and assuming ‖e0‖ = 0, we get

‖en‖ ≤ ‖ηn−1‖+ · · ·+ ‖η0‖.

If consistency holds, i.e., ‖ηn‖ = O(k2), then we see that
‖en‖ ≤ nck2 for some constant c > 0. Since n ≤ T/k we end up
with ‖en‖ ≤ cTk , and so ‖en‖ → 0 as k → 0 uniformly in
n ∈ [1,T/k]. This shows convergence.
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Stability, consistency and the Lax equivalence
theorem

We have thus arrived at the Lax equivalence theorem:

Theorem 2
“consistency + stability = convergence”

(more precisely what we have proved here is the implication =⇒ )
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Norms

The discussion above involves a choice of norm on RM . There are two standard
choices of norms:

I Sup-norm. Here, we choose

‖u‖ = ‖u‖∞ = max
i=1,...,M

|ui |.

It can be easily shown that the corresponding induced norm for a matrix
A ∈ RM×M is given by:

‖A‖∞→∞ := sup
x

‖Ax‖∞
‖x‖∞ = max

i=1,...,M

M∑
j=1

|Aij |.

This the choice of norm we implicitly used in the convergence proof of
Theorem 1. The matrix in this case was

Ah =



1− 2µ µ

µ
. . .

. . .

. . .
. . . µ

µ 1− 2µ


,

for which we get ‖Ah‖∞→∞ = |1− 2µ|+ 2µ ≤ 1 if µ ≤ 1/2.
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Stability, consistency and the Lax equivalence
theorem

I Normalized Euclidean norm. Another common of choice of norm is the
normalized Euclidean length, namely,

‖u‖ :=
√

1
M

∑M

i=1
|ui |2.

The reason for the factor
1
M

is to ensure that, because of the convergence
of Riemann sums, we obtain

‖u‖ :=
[

1
M

∑M
i=1 |ui |

2
]1/2

→
[∫ 1

0
|u(x)|2dx

]1/2

=: ‖u‖L2 (h = 1/(M+1)→ 0),

The induced matrix norm in this case is the spectral norm (or the operator
norm) and is denoted ‖A‖2

‖A‖2 := sup
x

‖Ax‖2

‖x‖2
.

The spectral norm of A is equal to the largest singular value of A.
Equivalently, we can write ‖A‖2 = [ρ(AAT )]1/2 where ρ is the spectral
radius:

ρ(M) := max {|λ| : λ eigenvalue of M} .
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Norm inequalities

Recall the basic norm inequalities:

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2,

‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞,

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞,

where x ∈ Cn.
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Proving stability directly

Although we can deduce from the theorem that µ ≤ 1
2 implies

stability, we will prove directly that stability ⇔ µ ≤ 1
2 . Let

un = [un1 , . . . , u
n
M ]T . We can express the recurrence (2)

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1...M ,

in the matrix form

un+1
h = Ahun

h, Ah = I + µA∗, A∗ =


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2


M×M

.
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Proving stability directly

Here A∗ is TST, with λ`(A∗) = −4 sin2 π`h
2 , hence

λ`(Ah) = 1− 4µ sin2 π`h
2 , so that its spectrum lies within the

interval [λM , λ1] = [1− 4µ cos2 πh
2 , 1− 4µ sin2 πh

2 ]. Since Ah is
symmetric, we have

‖Ah‖2 = ρ(Ah) =


|1− 4µ sin2 πh

2
| ≤ 1 , µ ≤ 1

2
,

|1− 4µ cos2 πh
2
| > 1, µ > 1

2
(h ≤ hµ) .
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Proving stability directly

We distinguish between two cases.

1) µ ≤ 1
2
: ‖un‖ ≤ ‖A‖ · ‖un−1‖ ≤ · · · ≤ ‖A‖n‖u0‖ ≤ ‖u0‖ as n→∞, for every u0.

2) µ > 1
2
: Choose u0 as the eigenvector corresponding to the largest (in modulus)

eigenvalue, |λ| > 1. Then un = λnu0, becoming unbounded as n→∞.
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Recall Euler’s method

Suppose that we want to solve the differential equation

y ′ = f (t, y), y(t0) = y0.

Euler’s method is given by

yn+1 = yn + kf (tn, yn),

where k = tn+1 − tn is the step size.
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Semidiscretization

Let um(t) = u(mh, t), m = 1...M, t ≥ 0. Approximating ∂2/∂x2 as
before, we deduce from the PDE that the semidiscretization

dum
dt

=
1

h2
(um−1 − 2um + um+1), m = 1...M (3)

carries an error of O(h2). This is an ODE system, and we can solve
it by any ODE solver. Thus, Euler’s method yields (2), while
backward Euler results in

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm.
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Semidiscretization

This approach is commonly known as the method of lines. Much
(although not all!) of the theory of finite-difference methods for
PDEs of evolution can be presented as a two-stage task: first
semidiscretize, getting rid of space variables, then use an ODE
solver.

Typically, each stage is conceptually easier than the process of
discretizing in unison in both time and in space (so-called full
discretization).
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Recall the trapezoidal rule

Suppose that we want to solve the differential equation

y ′ = f (t, y), y(t0) = y0.

The trapezoidal rule is given by the formula

yn+1 = yn + 1
2k
(
f (tn, yn) + f (tn+1, yn+1)

)
,

where k = tn+1 − tn is the step size.
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The Crank–Nicolson scheme

Discretizing the ODE (3) with the trapezoidal rule, we obtain

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1− 2unm + unm+1),

(4)
where m = 1...M. Thus, each step requires the solution of an
M×M TST system. The error of the scheme is O(k3 + kh2), so
basically the same as with Euler’s method. However, as we will see,
Crank–Nicolson enjoys superior stability features, as compared with
the method (2).
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Normal matrices

Definition 3 (Normal matrices)

We say that a matrix A is normal if A = QDQ̄T = QDQ∗, where
D is a (complex) diagonal matrix and Q is a unitary matrix
(such that QQ̄T = I , where the bar in Q̄ means complex
conjugation). In other words, a matrix is normal if it has a
complete set of orthonormal eigenvectors.

Examples of the real normal matrices, besides the familiar
symmetric matrices (A = AT ), inlclude also the matrices which are
skew-symmetric (A = −AT ), and more generally the matrices with
skew-symmetric off-diagonal part.
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Norms of normal matrices

Proposition 4

If A is normal, then ‖A‖ = ρ(A).

Proof. Let u be any vector (complex-valued as well). We can
expand it in the basis of the orthonormal eigenvectors
u =

∑n
i=1 aiq i . Then Au =

∑n
i=1 λiaiq i , and since q i are

orthonormal, we obtain

‖A‖2 := sup
u

‖Au‖2

‖u‖2
= sup

ai

{
∑n

i=1 |λiai |2}1/2

{
∑n

i=1 |ai |2}1/2
= |λmax| .

Remark 5
More generally, one can prove that, for any matrix A, we have
‖A‖2 = [ρ(AĀT )]1/2, and the previous result for normal matrices
can be deduced from that formula.
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Crank–Nicolson method for diffusion equation

Let

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1− 2unm + unm+1),

where m = 1...M. Then Bun+1 = Cun, where the matrices B and
C are Toeplitz symmetric tridiagonal (TST),

un+1 = B−1Cun,

B = I − 1
2
µA∗ ,

C = I + 1
2
µA∗ ,

A∗ =


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2


M×M

.
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Crank–Nicolson method for diffusion equation

All M×M TST matrices share the same eigenvectors, hence so does
B−1C . Moreover, these eigenvectors are orthogonal. Therefore, also
A = B−1C is normal and its eigenvalues are

λk(A) =
λk(C )

λk(B)
=

1− 2µ sin2 1
2πkh

1 + 2µ sin2 1
2πkh

⇒ |λk(A)| ≤ 1, k = 1...M.

Consequently Crank–Nicolson is stable for all µ > 0.

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs
from http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/

demos/pde_stability/pde_stability.html and solve the
diffusion equation in the interval [0, 1] with the Euler method and
with Crank–Nicolson. See the effect of unconditional stability!
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Convergence of the Crank-Nicolson method for
diffusion equation

It is not difficult to verify that the local error of the Crank-Nicolson
scheme is ηnm = O(k3 + kh2), where O(k3) is inherited from the
trapezoidal rule (compared to O(k2) for the Euler method). We
also have

‖ηn‖ = {h
∑M

m=1 |ηnm|2}1/2 = O(k3 + kh2) .

Hence, for the error vectors en we have

Ben+1 = Cen +ηn ⇒ ‖en+1‖ ≤ ‖B−1C‖ · ‖en‖+‖B−1‖ · ‖ηn‖ .

We have just proved that ‖B−1C‖ ≤ 1, and we also have
‖B−1‖ ≤ 1, because all the eigenvalues of B are greater than 1 (by
Gershgorin’s theorem). Therefore, ‖en+1‖ ≤ ‖en‖+ ‖ηn‖, and

‖en‖ ≤ ‖e0‖+ n‖η‖ = n‖η‖ ≤ cT
k

(k3 + kh2) = cT (k2 + h2).

Thus, taking k =αh will result in O(h2) error of approximation.
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The advection equation

We consider the solution of the advection equation

∂u

∂t
=
∂u

∂x
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1.

If we discretize the right-hand side by
∂u
∂x = 1

2h (u(x + h, t)− u(x − h, t)) +O(h2) we end up with the ODE

dum
dt

=
1

2h
(um+1 − um−1).
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Crank–Nicolson for advection equation

Let

un+1
m −unm = 1

4
µ(un+1

m+1−un+1
m−1)+ 1

4
µ(unm+1−unm−1), m = 1...M .

(This is the trapezoidal rule applied to the semidiscretization of
advection equation ∂u

∂t = ∂u
∂x ). In this case, un+1 = B−1Cun, where

the matrices B and C are Toeplitz antisymmetric tridiagonal,

B =


1 −1

4µ
1
4µ 1

. . .
. . .

. . . −1
4µ

1
4µ 1

 , C =


1 1

4µ

−1
4µ 1

. . .
. . .

. . . 1
4µ

−1
4µ 1

 .
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Crank–Nicolson for advection equation

Similarly to Exercise 4, the eigenvalues and eigenvectors of the
matrix

S =


α β

−β α
. . .

. . .
. . . β

−β α

 ,
are given by λk = α + 2 iβ cos kx , and wk = (im sin kmx)Mm=1,
where x = πh = π

M+1
. So, all such S are normal and share the same

eigenvectors, hence so does A = B−1C , hence A is normal and

λk(A) =
λk(C )

λk(B)
=

1 + 1
2 iµ cos kx

1− 1
2 iµ cos kx

⇒ |λk(A)| = 1, k = 1...M.

So, Crank–Nicolson is again stable for all µ > 0.
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Euler for advection equation

Finally, consider the Euler method for advection equation

un+1
m − unm = µ(unm+1 − unm), m = 1...M .

We have un+1 = Aun, where

A =


1− µ µ

1− µ . . .
. . . µ

1− µ

 ,

but A is not normal, and although its eigenvalues are bounded by 1
for µ ≤ 2 (note 1− µ is the only eigenvalue of A), it is the matrix
induced norm of A that matters. For this example, it is easier to
work with ‖A‖∞→∞ which we see is given by |1− µ|+ µ (by the
formula in Lecture 5), and this is smaller than 1 precisely when
µ ≤ 1.
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