Numerical Analysis - Part Il

Anders C. Hansen

Lecture 8
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Partial differential equations of evolution
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We consider the solution of the diffusion equation

ou  0%u
_ < <1 >
ot 0x2’ Osxsl, 20,

with initial conditions u(x,0) = ug(x) for t = 0 and Dirichlet
boundary conditions u(0,t) = ¢o(t) at x =0 and u(1,t) = ¢1(t) at
x =1

What if —oo < x < 00?
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Let us now assume a recurrence of the form

Zi:r akurr:ii—lk = Zi:r bkur,177+k7 ne Z+’ (1)

where m ranges over Z. (Within our framework of discretizing PDEs
of evolution, this corresponds to —co < x < oo in the undelying
PDE and so there are no explicit boundary conditions, but the initial
condition must be square-integrable in (—oo, 00): this is known as a
Cauchy problem.)

The coefficients a, and by are independent of m, n, but typically
depend upon p. We investigate stability by Fourier analysis. [Note
that it doesn’t matter what is the underlying PDE: numerical
stability is a feature of algebraic recurrences, not of PDEs!]
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Let v = (Vm)mez € l2[Z]. Its Fourier transform is the function
V(0) =3 ez € ™V, —r<0<m.

We equip sequences and functions with the norms

1
1 . T 2
W= {3 vwP}E and uvu*—{if rv(e)|2de} .

meZ -
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Lemma 1 (Parseval's identity)
For any v € (3[Z], we have |lv|| = ||V]|+.
Proof. By definition,

o2 = %/j | ey, |2do = /_ SN Ve mR0dg

meZ meZ keZ
= 2WZZVka/ eilm=k0 g O Zvavchm « = v?,
meZ keZ meZ keZ
where equality () is due to the fact that
T 2w, £=0,
/ e 0do = O
- 0, (e€zZ\{0},

The implication of the lemma is that the Fourier transform is an
isometry of the Euclidean norm. This is an important reason
underlying its many applications in mathematics and beyond.
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For € [—m, 7], let 4"(0) = 3,7, € "™ ul, be the Fourier
transform of the sequence u" € (>[Z]. We multlply the discretized
equations (1) by e and sum up for m € Z. Thus, the left-hand

side yields

oo

s
—im6 n+1 —im@ n+1
E e’ E akup’ = E ak E e "Mupt,
m=—00 k=r m=—00
()

s

o0
_ ar Z a—i(m—k)6 unl = (Zakelka> TRI(

k=r m=—o00

Similarly manipulating the right-hand side, we deduce that

Si bl )

Zk:r akelke

The function H is sometimes called the amplification factor of the
recurrence (1)

GL(0) = H(0)G"(0), where H(0) =
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Fourier analysis of stability

Theorem 2
The method (1) is stable < |H(0)| <1 forall 0 € [—m,n].
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Proof. The definition of stability is equivalent to the statement that
there exists ¢ > 0 such that ||u"|| < c for all n € Z". [Because we
are solving a Cauchy problem, equations are identical for all

h = Ax, and this simplifies our analysis and eliminates a major
difficulty: there is no need to insist explicitly that ||u"|| remains
uniformly bounded when h—0]. The Fourier transform being an
isometry, stability is thus equivalent to ||a"||« < c for all n € Z™.
lterating (3), we obtain

@) =HOVP©),  Jol<T nezt (@)
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Proof. (Continuing)
1) Assume first that |H(6)| < 1 for all |8] < w. Then, by (4),

a"(6)] < [2°(0)|

-~n 1 T ~n 1 T
o e G Ry e O
(5)

—Tr —Tr

Hence stability.
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Proof. (Continuing) 2) Suppose, on the other hand, that there
exists 0y € [—m, ] such that |H(6p)| = 1 + 2¢ > 1, say. Since H is
continuous, there exist —m < 01 < 6 < 7 such that |[H(0)| > 1+ ¢
for all 6 € [01,62]. We set n = 6, — 01 and choose as our initial
condition the function (or the ¢3[Z]-sequence)

201 <0< 0y,
1°(0) = !

0, otherwise,

Then

™ 02
a2 = %/ |H(9)|2"|ﬁ0(9)|2d9=§/ [H(0)[?"|d°(6)]>d0

—T 61

02
> %(14‘6)2"/9 277rd0:(1+6)2"—>oo (n — 00).
1

We deduce that the method is unstable. O
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Stability: Euler and the diffusion equation

Consider the Cauchy problem for the diffusion equation

1) For the Euler method
= U + (U1 = 2Up + Upia)

n+1
u, =

we obtain
. Yy
psin® 5 € [1—4u,1],

thus the method is stable iff u < %
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Stability: Backward Euler and the diffusion equation

2) For the backward Euler method

1 n+1ly _

n+1 n+ n+1 n
U = p(up™y = 2up™ +upy) = up,,

we have

H(9) = [1 —u (e_ie —2+ e”)}_l - [1 + 4ysin® g}‘l € (0,1].

thus stability for all u.
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Stability: Crank—Nicolson and the diffusion equation

3) The Crank—Nicolson scheme

up™ = S — 2™ ) = u + Su(upy — 2uf, + ),
results in
1+ Ly(ei0 — 2 4 oif 1 —2usin?
H(6) = 2:“( ) H 2 € (-1,1]

1—Ip(e i —2+ef) 14 2usin??

Hence stability for all 1z > 0.
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The advection and wave equations
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We look at the advection equation which we already considered in
Lecture 6.
Uy = Uy, t >0, (6)

where u = u(x, t). It is given with the initial condition
u(x,0) = ¢(x). The exact solution of (6) is simply
u(x,t) = @(x + t), a unilateral shift leftwards.

This, however, does not mean that its numerical modelling is easy.
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1) Downwind instability. Consider the discretization
8”#(0 ~ % [um(t) — um—1(t)], so coming to the ODE
un(t) = % [Um(t) — um—1(t)]. For the Euler method, the outcome
is

ultt = ul 4+ p(ul —ul 1), n€Zy.
We can analyze the stability of this method using Fourier analysis.
The amplification factor is

HO) =1+ p— pe ™.

We see that for = 7/2, |H(6)|?> = (1 + u)?> + p? > 1, and so the
method is unstable for all x> 0.
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Upwind scheme: If we semidiscretize 8ng(t) R~ % [Um+1(t) — um(t)], and
solve the ODE again by Euler's method, then the result is

n+1 - U +:u(um+1 un)v ne Z+ (7)
The local error is O(k>+ kh) which is O(h?) for a fixed y, hence
convergence if the method is stable. We can again use Fourier analysis to
analyze stability. The amplification factor is

HO) =1— p+ pe

and we see that |H(0)| = |1 — p + pe'| < |1 — p| +p =1 for u € [0,1].
Hence we have stability for ¢ < 1. If g > 1, then note that
|H(m)| = |1 — 2u| > 1, and so we have instability for x4 > 1.

Matlab demo: Download the Matlab GUI for Solving the Advection
Equation, Upwinding and Stability from https:
//www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html
and solve the advection equation (6) with the different methods provided
in the demonstration. Experience what can go wrong when “winding” in
the wrong direction!
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https://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html
https://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html

What about the case when 0 < x <1 (bounded domain)?

Recall from Lecture 6 when we considerd the Euler method for the
advection equation

n+1 n __ n n _
up™ —up = p(uf o — up), m=1.M.

We have u™! = Au", where

L—p p

but A is not normal, and although its eigenvalues are bounded by 1 for

w1 <2 (note 1 — p is the only eigenvalue of A), it is the matrix induced
norm of A that matters. For this example, it is easier to work with

|A]| co—s 00 Which we see is given by |1 — u| + p (by the formula in Lecture
5), and this is smaller than 1 precisely when p < 1.
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Leap-frog method We semidicretize (6) as

8“5’)(“) h [Um+1(t) — um—1(t)], but now solve the ODE with the

second-order midpoint rule
Ynt1 = Yno1+ 2kf(tn,y,), nezy.
The outcome is the two-step leapfrog method
up ™t = g (U — upy) +up (8)

The local error is now O(k3+kh?) = O(h3).
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We analyse stability by the Fourier technique, assuming that we are
solving a Cauchy problem. Thus, proceeding as before,

Zl\nJrl(e) = (eiG . efié) ﬁ”(e) + a\nfl(e) (9)
whence
") — 2ip sinO T"(0) — u"1(0) =0, ne7Z,,

and our goal is to determine values of x such that |u"(6)] is
uniformly bounded for all n, 6.
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This is a difference equation wp11 + bw,, + cw,—1 = 0 with the
general solution w, = c1 Al + ], where A1, Ao are the roots of the
characteristic equation A\ + bA + ¢ =0, and ¢1, ¢ are constants,
dependent on the initial values wg and wy. If A; = Ay, then solution
is w, = (c1 + c2n)A\". In our case, we obtain

M2(0) = ipsin® £ /1 — u2sin?0.

Stability is equivalent to |A12(60)| < 1 for all 6 and this is true if and
only if 4 < 1.
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Consider the wave equation

0%y H%u
2 " oe 20

given with initial conditions u(x,0) and u:(x,0) = 52(x,0). The
usual approximation looks as follows

n+1 n n—1 __ n n n
Upn = — 2um + Up = = :u(um+1 - 2Um + umfl) )

with the Courant number being now u = k2/h?.
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The Fourier analysis (for Cauchy problem) provides
") — 24"(0) + 1" 1(0) = —4pusin? g u"(9),

with the characteristic equation A\? — 2(1 — 2 sin? %))\ +1=0.The
product of the roots is one, therefore stability (that requires the
moduli of both X to be at most one) is equivalent to the roots being
complex conjugate, so we require

(1-2usin?8)2 < 1.

This condition is achieved if and only if u = k?/h> < 1.

Recall: For any quadratic equation ax? 4+ bx + ¢ = 0 whose roots are a and 3,
the sum of the roots, a + 3 = —g. The product of the roots, a x 8 = <.
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The diffusion equation in two space
dimensions
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We are solving

du

a:vzu, 0<x,y<1l, t>0, (10)
where u = u(x, y, t), together with initial conditions at t = 0 and
Dirichlet boundary conditions at 9, where Q = [0, 1]? x [0, 00). It
is straightforward to generalize our derivation of numerical
algorithms, e.g. by the method of lines.
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Recall the five point formula

We have the five-point method

Uij = Ui—1j + Uiy1j + Ujj—1 + Ujj1 — 4ujj,
J

discretising the two dimensional Laplacian.
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Thus, let up ,(t) = u(fh, mh, t), where h = Ax = Ay, and let
uj . & upm(nk) where k = At. The five-point formula results in

! 1
Upm = ﬁ(uﬁfl,m + Upt1,m + Upm—1 + Upm+1 — 4ué,m)7

or in the matrix form

u = #A*u, u=(u,m) € RV, (11)
where A, is the block TST matrix of the five-point scheme:

H I —41
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Thus, the Euler method yields

n+l __  n n n n n n
Uy o = U+ (U1 + U UL o1+ ULy — AU ), (12)

or in the matrix form

= Au", A=+ A,

where, as before, 1 = ﬁ = (AA—Xty. The local error is

n = O(k*+kh?) = O(h*). To analyse stability, we notice that A is
symmetric, hence normal, and its eigenvalues are related to those of
A, by the rule

Nee(A) = 1+ phice(A) =1 — 4 (Sln2 Thh 4 sin? WT%) .
Consequently,

sup p(A) = max{1,|1 — 8ul}, hence p<i < stability.
h>0
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