
Numerical Analysis - Part II

Anders C. Hansen

Lecture 8
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Partial differential equations of evolution
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Solving the diffusion equation

We consider the solution of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1.

What if −∞ < x <∞?
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Fourier analysis of stability

Let us now assume a recurrence of the form∑s
k=r aku

n+1
m+k =

∑s
k=r bku

n
m+k , n ∈ Z+, (1)

where m ranges over Z. (Within our framework of discretizing PDEs
of evolution, this corresponds to −∞ < x <∞ in the undelying
PDE and so there are no explicit boundary conditions, but the initial
condition must be square-integrable in (−∞,∞): this is known as a
Cauchy problem.)

The coefficients ak and bk are independent of m, n, but typically
depend upon µ. We investigate stability by Fourier analysis. [Note
that it doesn’t matter what is the underlying PDE: numerical
stability is a feature of algebraic recurrences, not of PDEs!]
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Fourier analysis of stability

Let v = (vm)m∈Z ∈ `2[Z]. Its Fourier transform is the function

v̂(θ) =
∑

m∈Z e
−imθvm, −π ≤ θ ≤ π.

We equip sequences and functions with the norms

‖v‖ =
{∑

m∈Z
|vm|2

} 1
2 and ‖v̂‖∗ =

{
1

2π

∫ π

−π
|v̂(θ)|2dθ

} 1
2

.
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Parseval’s identity

Lemma 1 (Parseval’s identity)

For any v ∈ `2[Z], we have ‖v‖ = ‖v̂‖∗.
Proof. By definition,

‖v̂‖2
∗ = 1

2π

∫ π

−π

∣∣∑
m∈Z

e−imθvm
∣∣2dθ = 1

2π

∫ π

−π

∑
m∈Z

∑
k∈Z

vmv̄ke
−i(m−k)θdθ

= 1
2π

∑
m∈Z

∑
k∈Z

vmv̄k

∫ π

−π
e−i(m−k)θdθ

(∗)
=
∑
m∈Z

∑
k∈Z

vmv̄kδm−k = ‖v‖2 ,

where equality (∗) is due to the fact that

∫ π

−π
e−i`θdθ =


2π, ` = 0,

0, ` ∈ Z \ {0},
�

The implication of the lemma is that the Fourier transform is an
isometry of the Euclidean norm. This is an important reason
underlying its many applications in mathematics and beyond.
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Amplification factor

For θ ∈ [−π, π], let ûn(θ) =
∑

m∈Z e
−imθunm be the Fourier

transform of the sequence un ∈ `2[Z]. We multiply the discretized
equations (1) by e−imθ and sum up for m ∈ Z. Thus, the left-hand
side yields

∞∑
m=−∞

e−imθ
s∑

k=r

aku
n+1
m+k =

s∑
k=r

ak

∞∑
m=−∞

e−imθun+1
m+k

=
s∑

k=r

ak

∞∑
m=−∞

e−i(m−k)θun+1
m =

( s∑
k=r

ake
ikθ
)
ûn+1(θ).

(2)

Similarly manipulating the right-hand side, we deduce that

ûn+1(θ) = H(θ)ûn(θ) , where H(θ) =

∑s
k=r bke

ikθ∑s
k=r ake

ikθ
. (3)

The function H is sometimes called the amplification factor of the
recurrence (1)
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Fourier analysis of stability

Theorem 2
The method (1) is stable ⇔ |H(θ)| ≤ 1 for all θ ∈ [−π, π].
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Fourier analysis of stability (proof)

Proof. The definition of stability is equivalent to the statement that
there exists c > 0 such that ‖un‖ ≤ c for all n ∈ Z+. [Because we
are solving a Cauchy problem, equations are identical for all
h = ∆x , and this simplifies our analysis and eliminates a major
difficulty: there is no need to insist explicitly that ‖un‖ remains
uniformly bounded when h→0 ]. The Fourier transform being an
isometry, stability is thus equivalent to ‖ûn‖∗ ≤ c for all n ∈ Z+.
Iterating (3), we obtain

ûn(θ) = [H(θ)]nû0(θ), |θ| ≤ π, n ∈ Z+. (4)
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Fourier analysis of stability (proof)

Proof. (Continuing)
1) Assume first that |H(θ)| ≤ 1 for all |θ| ≤ π. Then, by (4),

|ûn(θ)| ≤ |û0(θ)|

⇒ ‖ûn‖2
∗ =

1

2π

∫ π

−π
|ûn(θ)|2dθ ≤ 1

2π

∫ π

−π
|û0(θ)|2dθ = ‖û0‖2

∗.

(5)

Hence stability.
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Fourier analysis of stability (proof)

Proof. (Continuing) 2) Suppose, on the other hand, that there
exists θ0 ∈ [−π, π] such that |H(θ0)| = 1 + 2ε > 1, say. Since H is
continuous, there exist −π ≤ θ1 < θ2 ≤ π such that |H(θ)| ≥ 1 + ε
for all θ ∈ [θ1, θ2]. We set η = θ2 − θ1 and choose as our initial
condition the function (or the `2[Z]-sequence)

û0(θ) =


√

2π
η
, θ1 ≤ θ ≤ θ2,

0, otherwise,

Then

‖ûn‖2
∗ = 1

2π

∫ π

−π
|H(θ)|2n|û0(θ)|2dθ = 1

2π

∫ θ2

θ1

|H(θ)|2n|û0(θ)|2dθ

≥ 1
2π

(1 + ε)2n
∫ θ2

θ1

2π
η
dθ = (1 + ε)2n →∞ (n→∞).

We deduce that the method is unstable. �
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Stability: Euler and the diffusion equation

Consider the Cauchy problem for the diffusion equation.

1) For the Euler method

un+1
m = unm + µ(unm−1 − 2unm + unm+1) ,

we obtain

H(θ) = 1 + µ
(
e−iθ − 2 + eiθ

)
= 1− 4µ sin2 θ

2
∈ [1− 4µ, 1] ,

thus the method is stable iff µ ≤ 1
2 .
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Stability: Backward Euler and the diffusion equation

2) For the backward Euler method

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm ,

we have

H(θ) =
[
1− µ

(
e−iθ − 2 + eiθ

)]−1
=
[
1 + 4µ sin2 θ

2

]−1
∈ (0, 1] .

thus stability for all µ.
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Stability: Crank–Nicolson and the diffusion equation

3) The Crank–Nicolson scheme

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1− 2unm + unm+1),

results in

H(θ) =
1 + 1

2µ(e−iθ − 2 + eiθ)

1− 1
2µ(e−iθ − 2 + eiθ)

=
1− 2µ sin2 θ

2

1 + 2µ sin2 θ
2

∈ (−1, 1]

Hence stability for all µ > 0.
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The advection and wave equations
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The advection equation

We look at the advection equation which we already considered in
Lecture 6.

ut = ux , t ≥ 0, (6)

where u = u(x , t). It is given with the initial condition
u(x , 0) = ϕ(x). The exact solution of (6) is simply
u(x , t) = ϕ(x + t), a unilateral shift leftwards.

This, however, does not mean that its numerical modelling is easy.
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Instability and the advection equation

1) Downwind instability: Consider the discretization
∂um(t)
∂x
≈ 1

2h
[um(t)− um−1(t)], so coming to the ODE

u′m(t) = 1
2h

[um(t)− um−1(t)]. For the Euler method, the outcome
is

un+1
m = unm + µ(unm − unm−1), n ∈ Z+.

We can analyze the stability of this method using Fourier analysis.
The amplification factor is

H(θ) = 1 + µ− µe−iθ.

We see that for θ = π/2, |H(θ)|2 = (1 + µ)2 + µ2 > 1, and so the
method is unstable for all µ > 0.
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The upwind method

Upwind scheme: If we semidiscretize
∂um(t)
∂x

≈ 1
h

[um+1(t)− um(t)], and
solve the ODE again by Euler’s method, then the result is

un+1
m = unm + µ(unm+1 − unm), n ∈ Z+ (7)

The local error is O(k2 +kh) which is O(h2) for a fixed µ, hence
convergence if the method is stable. We can again use Fourier analysis to
analyze stability. The amplification factor is

H(θ) = 1− µ+ µeiθ

and we see that |H(θ)| = |1− µ+ µeiθ| ≤ |1− µ|+ µ = 1 for µ ∈ [0, 1].
Hence we have stability for µ ≤ 1. If µ > 1, then note that
|H(π)| = |1− 2µ| > 1, and so we have instability for µ > 1.

Matlab demo: Download the Matlab GUI for Solving the Advection
Equation, Upwinding and Stability from https:

//www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html

and solve the advection equation (6) with the different methods provided
in the demonstration. Experience what can go wrong when “winding” in
the wrong direction!
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Euler for advection equation – Upwind method

What about the case when 0 ≤ x ≤ 1 (bounded domain)?

Recall from Lecture 6 when we considerd the Euler method for the
advection equation

un+1
m − unm = µ(unm+1 − unm), m = 1...M .

We have un+1 = Aun, where

A =


1− µ µ

1− µ
. . .
. . . µ

1− µ

 ,

but A is not normal, and although its eigenvalues are bounded by 1 for
µ ≤ 2 (note 1− µ is the only eigenvalue of A), it is the matrix induced
norm of A that matters. For this example, it is easier to work with
‖A‖∞→∞ which we see is given by |1− µ|+ µ (by the formula in Lecture
5), and this is smaller than 1 precisely when µ ≤ 1.
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The leapfrog method

Leap-frog method: We semidicretize (6) as
∂um(t)
∂x
≈ 1

2h
[um+1(t)− um−1(t)], but now solve the ODE with the

second-order midpoint rule

yn+1 = yn−1 + 2kf (tn, yn), n ∈ Z+ .

The outcome is the two-step leapfrog method

un+1
m = µ (unm+1 − unm−1) + un−1

m . (8)

The local error is now O(k3+kh2) = O(h3).
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Stability of the leapfrog method with Fourier analysis

We analyse stability by the Fourier technique, assuming that we are
solving a Cauchy problem. Thus, proceeding as before,

ûn+1(θ) = µ
(
eiθ − e−iθ

)
ûn(θ) + ûn−1(θ) (9)

whence

ûn+1(θ)− 2iµ sin θ ûn(θ)− ûn−1(θ) = 0, n ∈ Z+ ,

and our goal is to determine values of µ such that |ûn(θ)| is
uniformly bounded for all n, θ.
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Stability of the leapfrog method with Fourier analysis

This is a difference equation wn+1 + bwn + cwn−1 = 0 with the
general solution wn = c1λ

n
1 + c2λ

n
2, where λ1, λ2 are the roots of the

characteristic equation λ2 + bλ+ c = 0, and c1, c2 are constants,
dependent on the initial values w0 and w1. If λ1 = λ2, then solution
is wn = (c1 + c2n)λn. In our case, we obtain

λ1,2(θ) = iµ sin θ ±
√

1− µ2 sin2 θ .

Stability is equivalent to |λ1,2(θ)| ≤ 1 for all θ and this is true if and
only if µ ≤ 1.
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The wave equation

Consider the wave equation

∂2u

∂t2
=
∂2u

∂x2
t ≥ 0,

given with initial conditions u(x , 0) and ut(x , 0) = ∂u
∂t

(x , 0). The
usual approximation looks as follows

un+1
m − 2unm + un−1

m = µ(unm+1 − 2unm + unm−1) ,

with the Courant number being now µ = k2/h2.
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Stability using Fourier analysis

The Fourier analysis (for Cauchy problem) provides

ûn+1(θ)− 2ûn(θ) + ûn−1(θ) = −4µ sin2 θ
2 û

n(θ) ,

with the characteristic equation λ2 − 2(1− 2µ sin2 θ
2 )λ+ 1 = 0. The

product of the roots is one, therefore stability (that requires the
moduli of both λ to be at most one) is equivalent to the roots being
complex conjugate, so we require

(1− 2µ sin2 θ
2 )2 ≤ 1.

This condition is achieved if and only if µ = k2/h2 ≤ 1.

Recall: For any quadratic equation ax2 + bx + c = 0 whose roots are α and β,
the sum of the roots, α+ β = − b

a
. The product of the roots, α× β = c

a
.
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The diffusion equation in two space

dimensions
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The diffusion equation in two space dimensions

We are solving

∂u

∂t
= ∇2u, 0 ≤ x , y ≤ 1, t ≥ 0, (10)

where u = u(x , y , t), together with initial conditions at t = 0 and
Dirichlet boundary conditions at ∂Ω, where Ω = [0, 1]2 × [0,∞). It
is straightforward to generalize our derivation of numerical
algorithms, e.g. by the method of lines.
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Recall the five point formula

We have the five-point method

���
���
���

��� ���
−4

1

1

1 1 ui ,j = ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1 − 4ui ,j ,

discretising the two dimensional Laplacian.
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The diffusion equation in two space dimensions

Thus, let u`,m(t) ≈ u(`h,mh, t), where h = ∆x = ∆y , and let
un`,m ≈ u`,m(nk) where k = ∆t. The five-point formula results in

u′`,m = 1
h2 (u`−1,m + u`+1,m + u`,m−1 + u`,m+1 − 4u`,m),

or in the matrix form

u ′ = 1
h2A∗u, u = (u`,m) ∈ RN , (11)

where A∗ is the block TST matrix of the five-point scheme:

A∗ =


H I

I
. . .

. . .. . .

. . . I

I H

 , H =


−4 1

1
. . .

. . .. . .

. . . 1

1 −4

 .

28 / 29



The diffusion equation in two space dimensions

Thus, the Euler method yields

un+1
`,m = un`,m + µ(un`−1,m + un`+1,m + un`,m−1 + un`,m+1 − 4un`,m), (12)

or in the matrix form

un+1 = Aun, A = I + µA∗

where, as before, µ = k
h2 = ∆t

(∆x)2 . The local error is

η = O(k2+kh2) = O(h4). To analyse stability, we notice that A is
symmetric, hence normal, and its eigenvalues are related to those of
A∗ by the rule

λk,`(A) = 1 + µλk,`(A∗)
Prop. 1.12

= 1− 4µ
(

sin2 πkh
2

+ sin2 π`h
2

)
.

Consequently,

sup
h>0

ρ(A) = max{1, |1− 8µ|}, hence µ ≤ 1
4 ⇔ stability.
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