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Partial differential equations of evolution
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Solving the diffusion equation

We consider the solution of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1.

What if −∞ < x <∞?
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Fourier analysis of stability

Let us now assume a recurrence of the form∑s
k=r aku

n+1
m+k =

∑s
k=r bku

n
m+k , n ∈ Z+, (1)

where m ranges over Z. (Within our framework of discretizing PDEs
of evolution, this corresponds to −∞ < x <∞ in the undelying
PDE and so there are no explicit boundary conditions, but the initial
condition must be square-integrable in (−∞,∞): this is known as a
Cauchy problem.)

The coefficients ak and bk are independent of m, n, but typically
depend upon µ. We investigate stability by Fourier analysis. [Note
that it doesn’t matter what is the underlying PDE: numerical
stability is a feature of algebraic recurrences, not of PDEs!]

4 / 33



Fourier analysis of stability

Let v = (vm)m∈Z ∈ `2[Z]. Its Fourier transform is the function

v̂(θ) =
∑

m∈Z e
−imθvm, −π ≤ θ ≤ π.

We equip sequences and functions with the norms

‖v‖ =
{∑

m∈Z
|vm|2

} 1
2 and ‖v̂‖∗ =

{
1

2π

∫ π

−π
|v̂(θ)|2dθ

} 1
2

.
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Amplification factor

For θ ∈ [−π, π], let ûn(θ) =
∑

m∈Z e
−imθunm be the Fourier

transform of the sequence un ∈ `2[Z]. We multiply the discretized
equations (1) by e−imθ and sum up for m ∈ Z. Thus, the left-hand
side yields

∞∑
m=−∞

e−imθ
s∑

k=r

aku
n+1
m+k =

s∑
k=r

ak

∞∑
m=−∞

e−imθun+1
m+k

=
s∑

k=r

ak

∞∑
m=−∞

e−i(m−k)θun+1
m =

( s∑
k=r

ake
ikθ
)
ûn+1(θ).

(2)

Similarly manipulating the right-hand side, we deduce that

ûn+1(θ) = H(θ)ûn(θ) , where H(θ) =

∑s
k=r bke

ikθ∑s
k=r ake

ikθ
. (3)

The function H is sometimes called the amplification factor of the
recurrence (1)
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Fourier analysis of stability

Theorem 1
The method (1) is stable ⇔ |H(θ)| ≤ 1 for all θ ∈ [−π, π].
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The advection and wave equations
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The advection equation

We look at the advection equation which we already considered in
Lecture 6.

ut = ux , t ≥ 0, (4)

where u = u(x , t). It is given with the initial condition
u(x , 0) = ϕ(x). The exact solution of (4) is simply
u(x , t) = ϕ(x + t), a unilateral shift leftwards.

This, however, does not mean that its numerical modelling is easy.
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Instability and the advection equation

1) Downwind instability: Consider the discretization
∂um(t)
∂x
≈ 1

h
[um(t)− um−1(t)], so coming to the ODE

u′m(t) = 1
h

[um(t)− um−1(t)]. For the Euler method, the outcome is

un+1
m = unm + µ(unm − unm−1), n ∈ Z+.

We can analyze the stability of this method using Fourier analysis.
The amplification factor is

H(θ) = 1 + µ− µe−iθ.

We see that for θ = π/2, |H(θ)|2 = (1 + µ)2 + µ2 > 1, and so the
method is unstable for all µ > 0.
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The upwind method

Upwind scheme: If we semidiscretize
∂um(t)
∂x

≈ 1
h

[um+1(t)− um(t)], and
solve the ODE again by Euler’s method, then the result is

un+1
m = unm + µ(unm+1 − unm), n ∈ Z+ (5)

The local error is O(k2 +kh) which is O(h2) for a fixed µ, hence
convergence if the method is stable. We can again use Fourier analysis to
analyze stability. The amplification factor is

H(θ) = 1− µ+ µeiθ

and we see that |H(θ)| = |1− µ+ µeiθ| ≤ |1− µ|+ µ = 1 for µ ∈ [0, 1].
Hence we have stability for µ ≤ 1. If µ > 1, then note that
|H(π)| = |1− 2µ| > 1, and so we have instability for µ > 1.

Matlab demo: Download the Matlab GUI for Solving the Advection
Equation, Upwinding and Stability from https:

//www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html

and solve the advection equation (4) with the different methods provided
in the demonstration. Experience what can go wrong when “winding” in
the wrong direction!
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The leapfrog method

Leap-frog method: We semidicretize (4) as
∂um(t)
∂x
≈ 1

2h
[um+1(t)− um−1(t)], but now solve the ODE with the

second-order midpoint rule

yn+1 = yn−1 + 2kf (tn, yn), n ∈ Z+ .

The outcome is the two-step leapfrog method

un+1
m = µ (unm+1 − unm−1) + un−1

m . (6)

The local error is now O(k3+kh2) = O(h3).
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Stability of the leapfrog method with Fourier analysis

We analyse stability by the Fourier technique, assuming that we are
solving a Cauchy problem. Thus, proceeding as before,

ûn+1(θ) = µ
(
eiθ − e−iθ

)
ûn(θ) + ûn−1(θ) (7)

whence

ûn+1(θ)− 2iµ sin θ ûn(θ)− ûn−1(θ) = 0, n ∈ Z+ ,

and our goal is to determine values of µ such that |ûn(θ)| is
uniformly bounded for all n, θ.
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Stability of the leapfrog method with Fourier analysis

This is a difference equation wn+1 + bwn + cwn−1 = 0 with the
general solution wn = c1λ

n
1 + c2λ

n
2, where λ1, λ2 are the roots of the

characteristic equation λ2 + bλ+ c = 0, and c1, c2 are constants,
dependent on the initial values w0 and w1. If λ1 = λ2, then solution
is wn = (c1 + c2n)λn. In our case, we obtain

λ1,2(θ) = iµ sin θ ±
√

1− µ2 sin2 θ .

Stability is equivalent to |λ1,2(θ)| ≤ 1 for all θ and this is true if and
only if µ ≤ 1.
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The wave equation

Consider the wave equation

∂2u

∂t2
=
∂2u

∂x2
t ≥ 0,

given with initial conditions u(x , 0) and ut(x , 0) = ∂u
∂t

(x , 0). The
usual approximation looks as follows

un+1
m − 2unm + un−1

m = µ(unm+1 − 2unm + unm−1) ,

with the Courant number being now µ = k2/h2.
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Stability using Fourier analysis

The Fourier analysis (for Cauchy problem) provides

ûn+1(θ)− 2ûn(θ) + ûn−1(θ) = −4µ sin2 θ
2 û

n(θ) ,

with the characteristic equation λ2 − 2(1− 2µ sin2 θ
2 )λ+ 1 = 0. The

product of the roots is one, therefore stability (that requires the
moduli of both λ to be at most one) is equivalent to the roots being
complex conjugate, so we require

(1− 2µ sin2 θ
2 )2 ≤ 1.

This condition is achieved if and only if µ = k2/h2 ≤ 1.

Recall: For any quadratic equation ax2 + bx + c = 0 whose roots are α and β,
the sum of the roots, α+ β = − b

a
. The product of the roots, α× β = c

a
.
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The diffusion equation in two space

dimensions
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The diffusion equation in two space dimensions

We are solving

∂u

∂t
= ∇2u, 0 ≤ x , y ≤ 1, t ≥ 0, (8)

where u = u(x , y , t), together with initial conditions at t = 0 and
Dirichlet boundary conditions at ∂Ω, where Ω = [0, 1]2 × [0,∞). It
is straightforward to generalize our derivation of numerical
algorithms, e.g. by the method of lines.
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Recall the five point formula

We have the five-point method

�
��
�
��
�
��

�
�� �
��
−4

1

1

1 1 ui ,j = ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1 − 4ui ,j ,

discretising the two dimensional Laplacian.
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The diffusion equation in two space dimensions

Thus, let u`,m(t) ≈ u(`h,mh, t), where h = ∆x = ∆y , and let
un`,m ≈ u`,m(nk) where k = ∆t. The five-point formula results in

u′`,m = 1
h2 (u`−1,m + u`+1,m + u`,m−1 + u`,m+1 − 4u`,m),

or in the matrix form

u ′ = 1
h2A∗u, u = (u`,m) ∈ RN , (9)

where A∗ is the block TST matrix of the five-point scheme:

A∗ =


H I

I
. . .

. . .. . .

. . . I

I H

 , H =


−4 1

1
. . .

. . .. . .

. . . 1

1 −4

 .
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The diffusion equation in two space dimensions

Thus, the Euler method yields

un+1
`,m = un`,m + µ(un`−1,m + un`+1,m + un`,m−1 + un`,m+1 − 4un`,m), (10)

or in the matrix form

un+1 = Aun, A = I + µA∗

where, as before, µ = k
h2 = ∆t

(∆x)2 . The local error is

η = O(k2+kh2) = O(h4). To analyse stability, we notice that A is
symmetric, hence normal, and its eigenvalues are related to those of
A∗ by the rule

λk,`(A) = 1 + µλk,`(A∗)
Prop. 1.12

= 1− 4µ
(

sin2 πkh
2

+ sin2 π`h
2

)
.

Consequently,

sup
h>0

ρ(A) = max{1, |1− 8µ|}, hence µ ≤ 1
4 ⇔ stability.
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Fourier analysis in 2D

Fourier analysis generalizes to two dimensions: of course, we now
need to extend the range of (x , y) in (8) from 0 ≤ x , y ≤ 1 to
x , y ∈ R. A 2D Fourier transform reads

û(θ, ψ) =
∑
`,m∈Z

u`,me
−i(`θ+mψ)

and all our results readily generalize.
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Fourier analysis in 2D

In particular, the Fourier transform is an isometry from `2[Z2] to
L2([−π, π]2), i.e.( ∑
`,m∈Z

|u`,m|2
)1/2

=: ‖u‖ = ‖û‖∗ :=
( 1

4π2

∫ π

−π

∫ π

−π
|û(θ, ψ)|2 dθ dψ

)1/2
,

and the method is stable iff |H(θ, ψ)| ≤ 1 for all θ, ψ ∈ [−π, π]. The
proofs are an easy elaboration on the one-dimensional theory.
Insofar as the Euler method (10) is concerned,

H(θ, ψ) = 1+µ
(
e−iθ+eiθ+e−iψ+eiψ−4

)
= 1−4µ

(
sin2 θ

2
+sin2 ψ

2

)
,

and we again deduce stability if and only if µ ≤ 1
4 .
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Parseval’s identity

Lemma 2 (Parseval’s identity)

For any v ∈ `2[Z], we have ‖v‖ = ‖v̂‖∗.
Proof. By definition,

‖v̂‖2
∗ = 1

2π

∫ π

−π

∣∣∑
m∈Z

e−imθvm
∣∣2dθ = 1

2π

∫ π

−π

∑
m∈Z

∑
k∈Z

vmv̄ke
−i(m−k)θdθ

= 1
2π

∑
m∈Z

∑
k∈Z

vmv̄k

∫ π

−π
e−i(m−k)θdθ

(∗)
=
∑
m∈Z

∑
k∈Z

vmv̄kδm−k = ‖v‖2 ,

where equality (∗) is due to the fact that

∫ π

−π
e−i`θdθ =


2π, ` = 0,

0, ` ∈ Z \ {0},
�

The implication of the lemma is that the Fourier transform is an
isometry of the Euclidean norm. This is an important reason
underlying its many applications in mathematics and beyond.
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Crank-Nicolson for 2D

Applying the trapezoidal rule to our semi-dicretization (9) we obtain
the two-dimensional Crank-Nicolson method:

(I − 1
2
µA∗) un+1 = (I + 1

2
µA∗) un , (11)

in which we move from the n-th to the (n+1)-st level by solving the
system of linear equations Bun+1 = Cun, or un+1 = B−1Cun. For
stability, similarly to the one-dimensional case, the eigenvalue
analysis implies that A = B−1C is normal and shares the same
eigenvectors with B and C , hence

λ(A) =
λ(C )

λ(B)
=

1 + 1
2µλ(A∗)

1− 1
2µλ(A∗)

⇒ |λ(A)| < 1 as λ(A∗) < 0

and the method is stable for all µ. The same result can be obtained
through the Fourier analysis.
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Crank-Nicolson for 2D

We would like to find a fast solver to the system (11). The matrix
B = I − 1

2
µA∗ has a structure similar to that of A∗, where

A∗ =


H I

I
. . .

. . .. . .

. . . I

I H

 , H =


−4 1

1
. . .

. . .. . .

. . . 1

1 −4

 .
so we may apply the Hockney method.

The total computational cost per iteration is O(M2 logM) for a
M ×M discretization grid.
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Crank-Nicolson for 2D

Matlab demo: Download the Matlab GUI for Solving the Wave
and Diffusion Equations in 2D from http://www.damtp.cam.ac.

uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html and
solve the diffusion equation (8) for different initial conditions. For
the numerical solution of the equation you can choose from the
Euler method and the Crank-Nicolson scheme. The GUI allows you
to solve the wave equation as well. Compare the behaviour of
solutions!
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Splitting

In all the examples of semi-discretization we have seen so far, we always
reach a linear system of ODE of the form:

u′ = Au, u(0) = u0. (12)

The solution of this linear system of ODE is given by

u(t) = etAu0 (13)

where the matrix exponential function is defined by eB :=
∑∞

k=0
1
k!
Bk . It

is easily verified that detA/dt = AetA, therefore (13) is indeed a solution of
(12).
If A can be diagonalized A = VDV−1, then etA = V etDV−1 where etD is
the diagonal matrix consisting diag (etDii ). As such one can compute the
solution of (12) exactly. However computing an eigenvalue decomposition
can be costly, and so one would like to consider more efficient methods,
based on the solution of sparse linear systems instead.
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Splitting

Observe that one-step methods for solving (12) are approximating a matrix
exponential. Indeed, with k = ∆t, we have:

Euler: un+1 = (I + kA)un, ez = 1 + z +O(z2);

Implicit Euler: un+1 = (I − kA)−1un, ez = (1− z)−1 +O(z2);

Trapezoidal: un+1 =
(
I − 1

2kA
)−1 (

I + 1
2kA

)
un, ez =

1+ 1
2
z

1− 1
2
z

+O(z3).

In practice the matrix A is very sparse, and this can be exploited when
solving linear systems e.g., for the implicit Euler or Trapezoidal Rule.
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Splitting

In many cases, the matrix A is naturally expressed as a sum of two
matrices, A = B + C . For example, when discretizing the diffusion
equation in 2D with zero boundary conditions, we have A = 1

h2 (Ax + Ay )

where 1
h2 Ax ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂x2 ,

and 1
h2 Ay ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂y2 . In

matrix notations, if the grid points are ordered by columns, then we have:

Ax =


−2I I

I
. . .

. . .
. . .

. . . I

I −2I

 , Ay =


G

G
. . .

G

 , G =


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2

 ∈ RM×M .

(14)
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Kronecker product

Remark: It is convenient to note that Ax = G ⊗ I and Ay = I ⊗ G ,
where ⊗ is the Kronecker product of matrices (kron in Matlab)
defined by

A⊗ B =


A11B A12B . . . A1mA

B

A21B A22B . . . A2mA
B

...

AnA1B . . . . . . AnAmA
B

 ∈ RnAnB×mAmB

where A ∈ RnA×mA and B ∈ RnB×mB .

In general, exp(t(B + C )) 6= exp(tB) exp(tC ). Equality holds
however when B and C commute.
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Splitting the exponential

Proposition 3
For any matrices B,C,

et(B+C) = etBetC +
1
2
t2(CB − BC) +O(t3). (15)

If B and C commute, then eB+C = eBeC .

Proof. We Taylor-expand both expressions etBetC and et(B+C):

etBetC = (I + tB + t2B2/2 +O(t3))(I + tC + t2C 2/2 +O(t3))

= I + t(B + C) +
t2

2
(B2 + C 2 + 2BC) +O(t3)

and

et(B+C) = I + t(B + C) +
t2

2
(B + C)2 +O(t3)

= I + t(B + C) +
t2

2
(B2 + C 2 + BC + CB) +O(t3).

Equation (15) follows.
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Splitting the exponential

Proof.
When B and C commute, we can write:

exp(B+C) =
∞∑
n=0

1

n!
(B+C)n =

∞∑
n=0

1

n!

(
n∑

k=0

(
n

k

)
Bn−kC k

)
=
∞∑
k=0

∞∑
n=k

1

n!

(
n

k

)
Bn−kC k

Recall that

(
n

k

)
=

n!

k!(n − k)!
, so

exp(B + C) =
∞∑
k=0

∞∑
n=k

1

k!(n − k)!
Bn−kC k =

∞∑
k=0

∞∑
m=0

1

k!m!
BmC k = eBeC .

�
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