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Numerical Analysis – Lecture 6

Definition 2.4 (Normal matrices) We say that a matrix A is normal if A = QDQ̄T , where D is
a (complex) diagonal matrix and Q is a unitary matrix (such that QQ̄T = I , where the bar in
Q̄ means complex conjugation). In other words, a matrix is normal if it has a complete set of
orthonormal eigenvectors.

Examples of the real normal matrices, besides the familiar symmetric matrices (A = AT ),
inlclude also the matrices which are skew-symmetric (A = −AT ), and more generally the matrices
with skew-symmetric off-diagonal part.

Proposition 2.5 If A is normal, then ‖A‖ = ρ(A).

Proof. Let u be any vector (complex-valued as well). We can expand it in the basis of the or-
thonormal eigenvectors u =

∑n
i=1 aiqi . Then Au =

∑n
i=1 λiaiqi, and since qi are orthonormal,

we obtain

‖A‖2 := sup
u

‖Au‖2
‖u‖2

= sup
ai

{
∑n

i=1 |λiai|2}1/2

{
∑n

i=1 |ai|2}1/2
= |λmax| .

Remark 2.6 More generally, one can prove that, for any matrix A, we have ‖A‖2 = [ρ(AĀT )]1/2,
and the previous result for normal matrices can be deduced from that formula.

Example 2.7 (Crank–Nicolson method for diffusion equation) Let

un+1
m − 1

2
µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1 − 2unm + unm+1), m = 1...M.

Then Bun+1 = Cun, where the matrices B and C are Toeplitz symmetric tridiagonal (TST),

un+1 = B−1Cun,
B = I − 1

2
µA∗ ,

C = I + 1
2
µA∗ ,

A∗ =


−2 1

1
. . . . . .. . . . . . 1

1 −2


M×M

.

All M ×M TST matrices share the same eigenvectors, hence so does B−1C. Moreover, these
eigenvectors are orthogonal. Therefore, also A = B−1C is normal and its eigenvalues are

λk(A) =
λk(C)

λk(B)
=

1− 2µ sin2 1
2πkh

1 + 2µ sin2 1
2πkh

⇒ |λk(A)| ≤ 1, k = 1...M.

Consequently Crank–Nicolson is stable for all µ > 0.
Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.damtp.
cam.ac.uk/user/hf323/M21-II-NA/demos/pde_stability/pde_stability.html and
solve the diffusion equation in the interval [0, 1] with the Euler method and with Crank–Nicolson.
See the effect of unconditional stability!

Example 2.8 (Convergence of the Crank-Nicolson method for diffusion equation) It is not dif-
ficult to verify that the local error of the Crank-Nicolson scheme is ηnm = O(k3+kh2), whereO(k3)
is inherited from the trapezoidal rule (compared to O(k2) for the Euler method). We also have

‖ηn‖ = {h
∑M

m=1 |ηnm|2}1/2 = O(k3 + kh2) .

Hence, for the error vectors en we have

Ben+1 = Cen + ηn ⇒ ‖en+1‖ ≤ ‖B−1C‖ · ‖en‖+ ‖B−1‖ · ‖ηn‖ .

11



We have just proved that ‖B−1C‖ ≤ 1, and we also have ‖B−1‖ ≤ 1, because all the eigenvalues
of B are greater than 1 (by Gershgorin’s theorem). Therefore, ‖en+1‖ ≤ ‖en‖+ ‖ηn‖, and

‖en‖ ≤ ‖e0‖+ n‖η‖ = n‖η‖ ≤ cT
k

(k3 + kh2) = cT (k2 + h2).

Thus, taking k=αh will result in O(h2) error of approximation.

We consider the solution of the advection equation

∂u

∂t
=
∂u

∂x
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x, 0) = u0(x) for t = 0 and Dirichlet boundary conditions u(0, t) = φ0(t) at
x = 0 and u(1, t) = φ1(t) at x = 1.

Example 2.9 (Crank–Nicolson for advection equation) Let

un+1
m − unm = 1

4
µ(un+1

m+1 − u
n+1
m−1) + 1

4
µ(unm+1 − unm−1), m = 1...M .

(This is the trapezoidal rule applied to the semidiscretization of advection equation ∂u
∂t = ∂u

∂x ). In
this case, un+1 = B−1Cun, where the matrices B and C are Toeplitz antisymmetric tridiagonal,

B =


1 − 1

4µ
1
4µ 1

. . .
. . . . . . − 1

4µ
1
4µ 1

 , C =


1 1

4µ

− 1
4µ 1

. . .
. . . . . . 1

4µ

− 1
4µ 1

 .
Similarly to Exercise 4, the eigenvalues and eigenvectors of the matrix

S =


α β

−β α
. . .

. . . . . . β
−β α

 ,
are given by λk = α+ 2 iβ cos kx, and wk = (im sin kmx)Mm=1, where x = πh = π

M+1
. So, all such

S are normal and share the same eigenvectors, hence so does A = B−1C, hence A is normal and

λk(A) =
λk(C)

λk(B)
=

1 + 1
2 iµ cos kx

1− 1
2 iµ cos kx

⇒ |λk(A)| = 1, k = 1...M.

So, Crank–Nicolson is again stable for all µ > 0.

Example 2.10 (Euler for advection equation) Finally, consider the Euler method for advection
equation

un+1
m − unm = µ(unm+1 − unm), m = 1...M .

We have un+1 = Aun, where

A =


1− µ µ

1− µ
. . .
. . . µ

1− µ

 ,
but A is not normal, and although its eigenvalues are bounded by 1 for µ ≤ 2 (note 1 − µ is the
only eigenvalue of A), it is the matrix induced norm of A that matters. For this example, it is
easier to work with ‖A‖∞→∞ which we see is given by |1 − µ| + µ (by the formula in Lecture 5),
and this is smaller than 1 precisely when µ ≤ 1.
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