Prof. A. C. Hansen

Mathematical Tripos Part II: Michaelmas Term 2024
Numerical Analysis — Lecture 6

Definition 2.4 (Normal matrices) We say that a matrix A is normal if A = QDQT, where D is
a (complex) diagonal matrix and @ is a unitary matrix (such that QQ7 = I, where the bar in
@ means complex conjugation). In other words, a matrix is normal if it has a complete set of
orthonormal eigenvectors.

Examples of the real normal matrices, besides the familiar symmetric matrices (A = AT,
inlclude also the matrices which are skew-symmetric (4 = — A7), and more generally the matrices
with skew-symmetric off-diagonal part.

Proposition 2.5 If A is normal, then || A|| = p(A).

Proof. Let u be any vector (complex-valued as well). We can expand it in the basis of the or-
thonormal eigenvectors u = Y., a;q; . Then Au = "' | \;a;q;, and since gq; are orthonormal,
we obtain . o112
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Remark 2.6 More generally, one can prove that, for any matrix A, we have ||Allz = [p(AAT)]*/2,

and the previous result for normal matrices can be deduced from that formula.

Example 2.7 (Crank-Nicolson method for diffusion equation) Let
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Then Bu"*! = Cu", where the matrices B and C are Toeplitz symmetric tridiagonal (TST),
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All M x M TST matrices share the same eigenvectors, hence so does B~1C. Moreover, these
eigenvectors are orthogonal. Therefore, also A = B~!C is normal and its eigenvalues are

M(C)  1—2p sin? %Wk‘h
Me(B) 1+ 2usin? smkh

Ae(A) = = [&(4) <1, k=1.M.

Consequently Crank-Nicolson is stable for all ¢z > 0.

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.damtp.
cam.ac.uk/user/hf323/M21-11-NA/demos/pde_stability/pde_stability.html and
solve the diffusion equation in the interval [0, 1] with the Euler method and with Crank-Nicolson.
See the effect of unconditional stability!

Example 2.8 (Convergence of the Crank-Nicolson method for diffusion equation) It is not dif-
ficult to verify that the local error of the Crank-Nicolson scheme is 7, = O(k*+kh?), where O(k?)
is inherited from the trapezoidal rule (compared to O(k?) for the Euler method). We also have

n M n
0™l = {7 >y I P32 = O(K® + kB?).
Hence, for the error vectors e™ we have

Be"t' =Ce"+n" = " <(IBTIC| e[+ 1B 0"
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We have just proved that || B~!C| < 1, and we also have ||B~!|| < 1, because all the eigenvalues
of B are greater than 1 (by Gershgorin’s theorem). Therefore, ||e"*!|| < ||e”| + |||, and

le™|| < e+ nllnl| = nlnll < G- (K + kh?) = ¢T(k* + h?).
Thus, taking k= ah will result in O(h?) error of approximation.

We consider the solution of the advection equation

Ou Ou

— = — <zxr<l1 >

ot oz’ 0szsl 20,
with initial conditions u(x,0) = ug(z) for t = 0 and Dirichlet boundary conditions u(0,t) = ¢o(t) at
x=0and u(l,t) = ¢1(t) atz = 1.

Example 2.9 (Crank-Nicolson for advection equation) Let

n+1 n _ 1 n+1 n+1 1 n n o
Uy — Uy = Zu(um+1 - umfl) + Zﬂ(um+1 - um—l)a m=1.M.

(This is the trapezoidal rule applied to the semidiscretization of advection equation 2% = 9%). In

this case, u" ! = B~!Cu", where the matrices B and C are Toeplitz antisymmetric tridiagonal,
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Similarly to Exercise 4, the eigenvalues and eigenvectors of the matrix

a f
s=| Po
7504
are given by A = a+2ifBcoskr, and wy = (im sin kmx)%zl, where x = mh = ML—&-I So, all such

S are normal and share the same eigenvectors, hence so does A = B~IC, hence A is normal and

A(C) 14 Fipcosks
Ae(B) 1— Jipcosks

Ao(A) = Me(A) =1,  k=1.M.

So, Crank-Nicolson is again stable for all ;z > 0.

Example 2.10 (Euler for advection equation) Finally, consider the Euler method for advection

equation

n+1 no__ n n —
Upy = Uy, = (U — Uy, ), m=1.M.

We have u"t! = Au™, where

L—p p

I—p

but A is not normal, and although its eigenvalues are bounded by 1 for 1 < 2 (note 1 — p is the
only eigenvalue of A), it is the matrix induced norm of A that matters. For this example, it is
easier to work with || A||cc— o Which we see is given by |1 — u| + u (by the formula in Lecture 5),
and this is smaller than 1 precisely when p < 1.
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