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Numerical Analysis – Lecture 8
Problem 2.18 (The advection equation) We look at the advection equation which we already considered
in Lecture 6.

ut = ux, t ≥ 0, (2.6)

where u = u(x, t). It is given with the initial condition u(x, 0) = ϕ(x). The exact solution of (2.6) is
simply u(x, t) = ϕ(x + t), a unilateral shift leftwards. This, however, does not mean that its numerical
modelling is easy.

Example 2.19 (Downwind instability) 1) Downwind instability: Consider the discretization ∂um(t)
∂x

≈
1
2h

[um(t) − um−1(t)], so coming to the ODE u′m(t) = 1
2h

[um(t) − um−1(t)]. For the Euler method, the
outcome is

un+1
m = unm + µ(unm − unm−1), n ∈ Z+.

We can analyze the stability of this method using Fourier analysis. The amplification factor is

H(θ) = 1 + µ− µe−iθ.

We see that for θ = π/2, |H(θ)|2 = (1 + µ)2 + µ2 > 1, and so the method is unstable for all µ > 0.

Method 2.20 (Upwind method) Upwind scheme: If we semidiscretize ∂um(t)
∂x

≈ 1
h
[um+1(t)− um(t)], and

solve the ODE again by Euler’s method, then the result is

un+1
m = unm + µ(unm+1 − unm), n ∈ Z+ (2.7)

The local error is O(k2+kh) which is O(h2) for a fixed µ, hence convergence if the method is stable. We
can again use Fourier analysis to analyze stability. The amplification factor is

H(θ) = 1− µ+ µeiθ

and we see that |H(θ)| = |1−µ+µeiθ| ≤ |1−µ|+µ = 1 for µ ∈ [0, 1]. Hence we have stability for µ ≤ 1.
If µ > 1, then note that |H(π)| = |1− 2µ| > 1, and so we have instability for µ > 1.

Matlab demo: Download the Matlab GUI for Solving the Advection Equation, Upwinding and Stability from
https://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html and solve the
advection equation (2.6) with the different methods provided in the demonstration. Experience what
can go wrong when “winding” in the wrong direction!

What about the case when 0 ≤ x ≤ 1 (bounded domain)? Recall from Lecture 6 when we considered
the Euler method for the advection equation

un+1
m − unm = µ(unm+1 − unm), m = 1...M .

We have un+1 = Aun, where

A =


1− µ µ

1− µ
. . .
. . . µ

1− µ

 ,
but A is not normal, and although its eigenvalues are bounded by 1 for µ ≤ 2 (note 1 − µ is the only
eigenvalue of A), it is the matrix induced norm of A that matters. For this example, it is easier to work
with ‖A‖∞→∞ which we see is given by |1−µ|+µ (by the formula in Lecture 5), and this is smaller than
1 precisely when µ ≤ 1.

Method 2.21 (The leapfrog method) Leap-frog method: We semidicretize (2.6) as ∂um(t)
∂x

≈ 1
2h

[um+1(t)−
um−1(t)], but now solve the ODE with the second-order midpoint rule

yn+1 = yn−1 + 2kf(tn,yn), n ∈ Z+ .
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The outcome is the two-step leapfrog method

un+1
m = µ (unm+1 − unm−1) + un−1m . (2.8)

The local error is now O(k3+kh2) = O(h3).
We analyse stability by the Fourier technique, assuming that we are solving a Cauchy problem. Thus,

proceeding as before,
ûn+1(θ) = µ

(
eiθ − e−iθ

)
ûn(θ) + ûn−1(θ) (2.9)

whence
ûn+1(θ)− 2iµ sin θ ûn(θ)− ûn−1(θ) = 0, n ∈ Z+ ,

and our goal is to determine values of µ such that |ûn(θ)| is uniformly bounded for all n, θ.
This is a difference equation wn+1 + bwn + cwn−1 = 0 with the general solution wn = c1λ

n
1 + c2λ

n
2 ,

where λ1, λ2 are the roots of the characteristic equation λ2+bλ+c = 0, and c1, c2 are constants, dependent
on the initial values w0 and w1. If λ1 = λ2, then solution is wn = (c1 + c2n)λ

n. In our case, we obtain

λ1,2(θ) = iµ sin θ ±
√
1− µ2 sin2 θ .

Stability is equivalent to |λ1,2(θ)| ≤ 1 for all θ and this is true if and only if µ ≤ 1.

Problem 2.22 (The wave equation) Consider the wave equation

∂2u

∂t2
=
∂2u

∂x2
t ≥ 0,

given with initial conditions u(x, 0) and ut(x, 0) =
∂u
∂t

(x, 0). The usual approximation looks as follows

un+1
m − 2unm + un−1m = µ(unm+1 − 2unm + unm−1) ,

with the Courant number being now µ = k2/h2.
The Fourier analysis (for Cauchy problem) provides

ûn+1(θ)− 2ûn(θ) + ûn−1(θ) = −4µ sin2 θ2 û
n(θ) ,

with the characteristic equation λ2 − 2(1− 2µ sin2 θ2 )λ+ 1 = 0. The product of the roots is one, therefore
stability (that requires the moduli of both λ to be at most one) is equivalent to the roots being complex
conjugate, so we require

(1− 2µ sin2 θ2 )
2 ≤ 1.

This condition is achieved if and only if µ = k2/h2 ≤ 1.
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