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Numerical Analysis — Lecture 9

Problem 2.25 (The diffusion equation in two space dimensions) We are solving

Ou 9

EZVu, 0<z,y<1, t>0, (2.11)
where u = u(z,y,t), together with initial conditions at ¢ = 0 and Dirichlet boundary conditions
at 99, where Q = [0,1]% x [0, 00). It is straightforward to generalize our derivation of numerical

algorithms, e.g. by the method of lines. Thus, let us ., (t) = w(¢h, mh,t), where h = Az = Ay, and
let uy,,, ~ wugm(nk) where k = At. The five-point formula results in

/ 1
Upm = ﬁ(uf—lym + Upt1,m T Uem—1 + Ugm41 — 4“[,777,),

or in the matrix form
u = %A*u, u = (ugm) € RY, (2.12)

where A, is the block TST matrix of the five-point scheme:

H I —41
A=l | H= L 1
I H 1 -4
Thus, the Euler method yields
uZ‘fnl = Uf (UG F UG 1 UG 1 U 1 — UG ), (2.13)

or in the matrix form
u"tt = Au”, A=1+ pA,

where, as before, y = % = (AA—;)Q The local error is n = O(k*+kh?) = O(h?'). To analyse stability,

we notice that A is symmetric, hence normal, and its eigenvalues are related to those of A, by the
rule

Moo (A) =1+ pdpe(A) 21— 4y (sin2 TR | sin? ”TE") .
Consequently,

sup p(A) = max{1, |1 — 8ul}, hence p< i & stability.
h>0

Method 2.26 (Fourier analysis) Fourier analysis generalizes to two dimensions: of course, we
now need to extend the range of (z,y) in (2.11) from 0 < z,y < 1to z,y € R. A 2D Fourier

transform reads _
a(a w) _ Z uLmefl(fGerd))
£,meEZ

and all our results readily generalize. In particular, the Fourier transform is an isometry from
62 [Zz} to Lg([—ﬂ', 71']2), i.e.

(3 k)" =slall =l o= (555 [ 0.0 pavas) ™

LmEZ

and the method is stable iff | H (6, ¢)| < 1 for all 8, € [—m,w]. The proofs are an easy elaboration
on the one-dimensional theory. Insofar as the Euler method (2.13) is concerned,

HO,9) =1+p (e +e e ™ e —4) =1 —dp(sin® & +sin? L),
and we again deduce stability if and only if ; <

1
-
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Method 2.27 (Crank-Nicolson for 2D) Applying the trapezoidal rule to our semi-dicretization
(2.12) we obtain the two-dimensional Crank-Nicolson method:

(I — uA)um™t = (I + pA)u”, (2.14)

in which we move from the n-th to the (n+1)-st level by solving the system of linear equations
Bu"t! = Cu", or u"™' = B~!'Cu™. For stability, similarly to the one-dimensional case, the
eigenvalue analysis implies that A = B~!C is normal and shares the same eigenvectors with B
and C, hence

MC) _ 14 3uM(AY)
NB) ~ 1- Lun(A,)

and the method is stable for all i.. The same result can be obtained through the Fourier analysis.

A(A) =

IMA)] < 1as AM(A,) <0

Matlab demo: Download the Matlab GUI for Solving the Wave and Diffusion Equations in 2D
fromhttp://www.damtp.cam.ac.uk/user/hf323/M21-I11-NA/demos/pdes_2d/pdes_
2d.html|and solve the diffusion equation for different initial conditions. For the numerical
solution of the equation you can choose from the Euler method and the Crank-Nicolson scheme.
The GUI allows you to solve the wave equation as well. Compare the behaviour of solutions!

Technique 2.28 (Splitting) In all the examples of semi-discretization we have seen so far, we al-
ways reach a linear system of ODE of the form:

u' = Au, u(0) = uo. (2.15)
The solution of this linear system of ODE is given by
u(t) = ety (2.16)

where the matrix exponential function is defined by e® := Y77 %Bk . It is easily verified that
de!4 /dt = Aet”, therefore is indeed a solution of (2.15).

If A can be diagonalized A = VDV ™1, then !4 = Ve!PV~! where ! is the diagonal matrix
consisting diag (e’”#*). As such one can compute the solution of exactly. However comput-
ing an eigenvalue decomposition can be costly, and so one would like to consider more efficient
methods, based on the solution of sparse linear systems instead.

Observe that one-step methods for solving are approximating a matrix exponential. In-
deed, with k£ = At, we have:

Euler: u" ™t = (I +kA)u, e =1+2+0(2?%);
Implicit Euler: «"*! = (I — kA) ", e =(1—-2)"1+0(z?);
471+%z

Trapezoidal:  w™t! = (I — 1kA) ™" (I + 1kA)um, e =

+0(2%).

1
1—52

In practice the matrix A is very sparse, and this can be exploited when solving linear systems e.g.,
for the implicit Euler or Trapezoidal Rule.

In many cases, the matrix A is naturally expressed as a sum of two matrices, A = B + C. For
example, when discretizing the diffusion equation in 2D with zero boundary conditions, we have

A= %(Az + A,) where #Ai € RM*xM? corresponds to the 3-point discretization of 6‘9—;, and
LA, € RMM corresponds to the 3-point discretization of g—;. In matrix notations, if the grid
points are ordered by columns, then we have:

9T I a -21
A= | T LAy = L= L [ JerMm @y
I —2I G 1 -9
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http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html
http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html

Remark: It is convenient to note that A, = G ® I and A, = I ® G, where ® is the Kronecker
product of matrices (kron in Matlab) defined by

AllB A12B . AlmAB
A21B A22B e AQmAB

A@B: ) ERnAnBXmAmB
AwaB ... ... Awm.B

where A € R*"4*™4 and B € R"8*X™M5,

In general, exp(t(B + C)) # exp(tB) exp(tC). Equality holds however when B and C' com-
mute.

Proposition 2.29 For any matrices B, C,
HBHO) = otBetC 4 Li2(0B — BO) + O(F?). (2.18)

If B and C commute, then eP+¢ = ePeC,

tB otC (B+0).

Proof. We Taylor-expand both expressions e and e’

eBel® = (I +tB+t*B%/2 4+ O(t*))(I +tC + t>C? /2 + O(t?))
=I1+t(B+0O)+ 5(32 +C? +2BC) + O(t?)

and

BT — T+ 4B+ C)+ 5(B+C)? + O(t%)

t_
2
£ 5 (B?+C?+ BC +CB) + O(t*).

=I+tB+C)+

Equation (2.18) follows.
When B and C commute, we can write:

eXPB+C inlB—FC ii(” ()Bn kck>:§:i1|< )Bn—kck_
k

n=0 n=0 =0 k=0n=~k
n n!
Recall th = —
ecall that (k) k!(n—k)!'so
S 1 n—k vk S m k_ B C
exp(B + C) g;k'( —k)!B C kZm;)mB C" =c"e
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