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Numerical Analysis – Lecture 10
Technique 2.31 (Splitting for the 2D diffusion equation) Recall that for the 2D diffusion equa-
tion

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂x2

using the five-point discretisation scheme for the Laplacian yields the following ODE

du

dt
=

1

h2
(Ax +Ay)u

where the matrices Ax and Ay are expressed as Ax = G ⊗ I and Ay = I ⊗ G, where ⊗ is the
Kronecker product, and G is the M ×M tridiagonal matrix

G =


−2 1

1
. . . . . .. . . . . . 1

1 −2

 ∈ RM×M .

It is straightforward to verify thatAx andAy commute; namelyAxAy = AyAx = G⊗G (check
out the basic rules of multiplication with the kronecker product https://en.wikipedia.org/
wiki/Kronecker_product). This should not come as a suprise since the operators ∂2/∂x2 and
∂2/∂y2, which Ax/h

2 and Ay/h
2 approximate, are known to commute. So we can write

ek(Ax+Ay)/h
2

= ekAx/h
2

ekAy/h
2

.

This means that the solution of the semi-discretized diffusion equation in 2D, with zero boundary
conditions, satisfies

un+1 = ekAx/h
2

ekAy/h
2

un. (2.17)

The split Crank-Nicolson scheme: In the split Crank-Nicolson scheme, we approximate each
exponential map in (2.17) by the rational function

r(z) = (1 + z/2)(1− z/2)−1,

which leads to
un+1 = (I +

µ
2
Ax)(I − µ

2
Ax)

−1(I +
µ
2
Ay)(I − µ

2
Ay)

−1un. (2.18)

Note that computing un+1/2 = (I +
µ
2
Ay)(I − µ

2
Ay)

−1un can be done efficiently in O(M2) time
as Ay is block-diagonal, and the matrices G are tridiagonal (each tridiagonal solve requiresO(M)
time, and we haveM of these). Computing un+1 = (I+

µ
2
Ax)(I− µ

2
Ax)

−1un+1/2 can also be done
in O(M2) time, since Ax is also block-diagonal provided we appropriately permute the rows and
columns so that the grid ordering is by rows instead of columns. This means that the update step
(2.18) of Split-Crank-Nicolson can be performed in time O(M2) and only requires tridiagonal
matrix solves (no FFT needed).

Stability: One can easily verify stability of the split Crank-Nicolson scheme. Indeed, we can
write

‖r(µAx)r(µAy)‖2 ≤ ‖r(µAx)‖2‖r(µAy)‖2 ≤ 1

since, as seen in previous lectures, ‖r(µAx)‖2 = ‖(I + µ
2
Ax)(I − µ

2
Ax)

−1‖2 ≤ 1 since Ax is sym-
metric and its eigenvalues are ≤ 0. (Same for ‖r(µAy)‖2.)

Exercise: Check the consistency of the scheme

un+1 = r(µAx)r(µAy)u
n.

In particular, show that split Crank-Nicolson has the ‘same’ local error as the classical Crank-
Nicolson scheme. That is the local error is O(k3 + kh2).
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Example 2.32 Consider the general diffusion equation

∂u

∂t
= ∇> (a(x, y)∇u) + f(x, y) =

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
+ f(x, y), (2.19)

where a(x, y) > α > 0 and f(x, y) are given, together with initial conditions on [0, 1]2 and Dirichlet
boundary conditions along ∂[0, 1]2×[0,∞). Replace each space derivative by central differences at
midpoints,

dg(ξ)

dξ
≈
g(ξ + 1

2
h)− g(ξ − 1

2
h)

h
,

resulting in the ODE system

u′`,m = 1
h2

[
a`− 1

2 ,m
u`−1,m + a`+ 1

2 ,m
u`+1,m + a`,m− 1

2
u`,m−1 + a`,m+ 1

2
u`,m+1

−
(
a`− 1

2 ,m
+ a`+ 1

2 ,m
+ a`,m− 1

2
+ a`,m+ 1

2

)
u`,m

]
+ f`,m.

(2.20)

Assuming zero boundary conditions, we have a system u′ = Au, and the matrix A can be split as
A = 1

h2 (Ax +Ay). Here, Ax and Ay are again constructed from the contribution of discretizations
in the x- and y-directions respectively, namely Ax includes all the a`± 1

2 ,m
terms, and Ay consists

of the remaining a`,m± 1
2

components. The resulting operators Ax and Ay do not necessarily com-
mute, and so the splitting scheme

un+1 = ekAx/h
2

ekAy/h
2

un

will carry an error of O(k2).
Strang splitting : One can obtain better splitting approximations of et(B+C). For example it is

not hard to prove that e
1
2 tBetCe

1
2 tB gives a O(t3) approximation of et(B+C), i.e.,

et(B+C) = e
1
2 tBetCe

1
2 tB +O(t3). (2.21)

Technique 2.33 (Splitting methods) Recall that, for z1, z2 ∈ C, we have ez1+z2 = ez1ez2 and had
this been true for the matrices, i.e. that etA = et(B+C) = etBetC , we could have approximated each
component of the exponent of A = Ax +Ay with the trapezoidal rule, say, to produce

un+1 =
(
I − 1

2
µAx

)−1(
I + 1

2
µAx

)(
I − 1

2
µAy

)−1(
I + 1

2
µAy

)
un , µ = k/h2 , (2.22)

and since both I − 1
2
µAx and I − 1

2
µAy are tridiagonal, this system can be solved very cheaply.

Unfortunately, the assumption that et(B+C) = etBetC is, in general, false. Not all hope is lost,
though, and we will demonstrate that, suitably implemented, splitting is a powerful technique to
reduce drastically the expense of numerical solution.

Method 2.34 (Splitting of inhomogeneous systems) Our exposition so far has been limited to
the case of zero boundary conditions. In general, the linear ODE system is of the form

u′ = Au+ b, u(0) = u0, (2.23)

where b originates in boundary conditions (and, possibly, in a forcing term f(x, y) in the original
PDE (2.19)). Note that our analysis should accommodate b = b(t), since boundary conditions
might vary in time! The exact solution of (2.23) is provided by the variation of constants formula

u(t) = etAu(0) +

∫ t

0

e(t−s)Ab(s) ds, t ≥ 0,

therefore

u(tn+1) = ekAu(tn) +

∫ tn+1

tn

e(tn+1−s)Ab(s) ds .

The integral on the right-hand side can be evaluated using quadrature.
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For example, the trapezoidal rule
∫ k

0
g(τ) dτ = 1

2
k[g(0) + g(k)] +O(k3) gives

u(tn+1) ≈ ekAu(tn) +
1
2
k[ekAb(tn) + b(tn+1)],

with a local error of O(k3). We can now replace exponentials with their splittings. For example,
Strang’s splitting (2.21), together with the rational function approximation r(z) = (1 + z/2)/(1−
z/2) of the exponential map, results in

un+1 = r
(1
2
kB
)
r
(
kC
)
r
(1
2
kB
)[
un + 1

2
kbn

]
+ 1

2
kbn+1.

As before, everything reduces to (inexpensive) solution of tridiagonal systems.
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