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Numerical Analysis — Lecture 16

4 Iterative methods for linear algebraic systems

The general iterative method for solving Az = b is a rule ¢! = f (20 z,..., zF). We will
consider the simplest ones: linear, one-step, stationary iterative schemes:

F = Ha* + v, ', v e R". 4.1)
Here one chooses H and v so that z*, a solution of Ax = b, satisfies ** = Hx* + v, i.e. it is the
fixed point of the iteration (4.1) (if the scheme converges). Standard terminology:

k

the iteration matrix H, the error e* := x* — xF, the residual v* .= Ae* = b — Azx*.

For a given class of matrices A (e.g. positive definite matrices, or even a single particular matrix),
we are interested in convergent methods, i.e. the methods such that ¢ — x* = A71b for every
starting value °. Subtracting * = Hz* + v from (4.1) we obtain

et = Heb = ... = HF1el, (4.2)
i.e.,, a method is convergent if ¥ = H*e" — 0 for any e” € R™.
Scheme 4.1 (Iterative refinement) This is the scheme
Mt = zF — S(Ax" —b).

If S = A71, then "1 = A~'b = x*, so it is suggestive to choose S as an approximation to A~!.
The iteration matrix for this scheme is Hg = I — SA.

Scheme 4.2 (Splitting) This is the scheme
(A— B)z"™' = —Bx" + b,

with the iteration matrix H = —(A — B) ™' B. Any splitting can be viewed as an iterative refine-
ment (and vice versa) because

(A-B)z"¥*' = -BzF+b & (A-B)z**! = (A - B)z* — (Az* - b)
& zFtl=gzF - (A- B)"'(Az" - b),
so we should seek a splitting such that S = (A — B)~! approximates A~!.
Theorem 4.3 Let H € R"*". Then len;O H%z = 0 for any z € R" if and only if p(H) < 1.

Proof. 1) Let A be an eigenvalue of (the real) H, real or complex, such that |\| = p(H) > 1, and let
w be a corresponding eigenvector, i.e., Hw = Aw. Then H kw = Mw, and

1H wl|oo = [A*[[w]los > [[w]loo =: 7 > 0. (4.3)

If w is real, we choose z = w, hence ||H*z||». > 7, and this cannot tend to zero.

If w is complex, then w = w + iv with some real vectors u,v. But then at least one of the
sequences (H*u), (H*v) does not tend to zero. For if both do, then also H*w = H*u+iH*v — 0,
and this contradicts (4.3).

2) Now, let p(H) < 1, and assume for simplicity that H possesses n linearly independent
eigenvectors (w;) such that Hw; = A\jw;. Linear independence means that every z € R” can
be expressed as a linear combination of the eigenvectors, i.e., there exist (¢;) € C such that z =
Z?:l CjWwj. Thus,

ky — N \kap
HYz =30 ) cjAjwy,

and since |\;| < p(H) < 1 we have limy_, o, H*z = 0, as required. O
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Remark 4.4 (Non-examinable) The complete proof of case (2) of Theorem 4.3 exploits the so-
called Jordan normal form of the matrix H, namely H = SJS —1 where J is a block diagonal
matrix consisting of the Jordan blocks,

J1
Al
[ 2] e
J = . N Ji = 21 , JZ‘ERni'X"i, Zlnl:n

To prove that JF — 0if |\;| < 1 one should split J; = \;I + P, notice that P™ = 0 for m > n;, and
evaluate the terms of expansion (\;I + P)F = S (K)\k=m pm.,

m=0 \m

Applying Theorem 4.3 to the error estimate (4.2), we arrive at the following statement.
Theorem 4.5 Let x*, a solution of Ax = b, satisfy * = Ha* + v and we are given the scheme
bt = Ha* + v, x v e R". (4.4)
Then z* — x* for any choice of ° if and only if p(H) < 1.

Note: Of course, we would like to know not just convergence but the rate of it. For example, we
achieve convergence with
7 [ 0.99 10° }

0 099

but it will take quite a long time. We will discuss this topic briefly later on.

Method 4.6 (Jacobi and Gauss-Seidel) Both of these methods are versions of splitting which can
be applied to any A with nonzero diagonal elements. We write A as the sum of three matrices
Lo + D + Up: subdiagonal (strictly lower-triangular), diagonal and superdiagonal (strictly upper-
triangular) portions of A, respectively.

1) Jacobi method. We set A — B = D, the diagonal part of 4, and we obtain the next iteration by
solving the diagonal system

Dx* D = —(Ly + Up)z® + b, Hy=-D"Y(Lo+Up).

2) Gauss—Seidel method. We take A — B = Ly + D = L, the lower-triangular part of 4, and we
generate the sequence (z¥)) by solving the triangular system

(Lo + D)™+ = —Ugz™ +b,  Hgs =—(Lo+ D)'Up.

There is no need to invert (Lo + D), we calculate the components of z(*+1) in sequence by forward
substitution:

k+1 k+1 k .
an‘%(- ) — _Zj<iaij$;- ) _ Zj>iaijx; ) + b;, 1= 1.n.

As we mentioned above, the sequence x(*) converges to solution of Az = b if the spectral
radius of the iteration matrix, Hy = —D (Lo + Up) or Hgs = —(Lo + D)~ 'Uy, respectively, is less
than one. Our next goal is to prove that this is the case for two important classes of matrices A:

a) diagonally dominant and b) positive definite matrices.

We start with recalling the simple, but very useful Gershgorin theorem.

Revision 4.7 (Gershgorin theorem) All eigenvalues of an nxn matrix A are contained in the union of
the Gershgorin discs in the complex plane:

o(A) cu Ty, Ii:={z€C:|z—ay| <r}, i =0 laig] -
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