Mathematical Tripos Part II: Michaelmas Term 2024

Numerical Analysis – Lecture 18

Approach 4.20 (Minimization of quadratic function) The methods we considered so far for solving Ax = b, namely Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

$$x^{(k+1)} = x^{(k)} + c_k d^{(k)}$$

where we were aimed at getting $\rho(H) < 1$ for the iteration matix *H*. Say, for Jacobi with relaxation, we set $c_k = \omega$ and $d^{(k)} = D^{-1}(b - Ax^{(k)})$.

For solving Ax = b with a (positive definite) matrix A > 0, there is a different approach to constructing good iterative methods. It is based on succesive minimization of the quadratic function

$$F(\boldsymbol{x}^{(k)}) := \| \boldsymbol{x}^* - \boldsymbol{x}^{(k)} \|_A^2 = \| \boldsymbol{e}^{(k)} \|_A^2,$$

since the minimizer is clearly the exact solution. Here, $\|\boldsymbol{y}\|_A := (A\boldsymbol{y}, \boldsymbol{y})^{1/2} := \sqrt{\boldsymbol{y}^T A \boldsymbol{y}}$ is a Euclidean-type distance which is well-defined for A > 0. So, at each step k, we are decreasing the A-distance between $x^{(k)}$ and the exact solution x^* . Thus, for a symmetric positive definite A > 0, we choose an iterative method that provides the descent condition

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + c_k \mathbf{d}^{(k)} \Rightarrow F(\mathbf{x}^{(k+1)}) < F(\mathbf{x}^{(k)}).$$
 (4.5)

An equivalent approach is to minimize the quadratic function

$$F_1(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T A \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{b},$$

which attains its minimum when $\nabla F_1(x) = Ax - b = 0$, and which does not involve the unknown x^* . It is easy to check that $F_1(\boldsymbol{x}) = \frac{1}{2}F(\boldsymbol{x}) - \frac{1}{2}c$, where $c = \boldsymbol{x}^{*T}A\boldsymbol{x}^*$ is a constant independent of k, hence equivalence.

Example 4.21 Both the Jacobi and the Gauss–Seidel methods satisfy (4.5), precisely

$$(Ae^{(k+1)}, e^{(k+1)}) = (Ae^{(k)}, e^{(k)}) - (Cy^{(k)}, y^{(k)}) < (Ae^{(k)}, e^{(k)}),$$

where for Gauss-Seidel: $C = D > 0$, $y^{(k)} := (L_0 + D)^{-1}Ae^{(k)};$
and for Jacobi: $C = 2D - A > 0$, $y^{(k)} := D^{-1}Ae^{(k)}.$

Method 4.22 (A-orthogonal projection) Next, we strengthen the descent condition (4.5), namely given $x^{(k)}$ and some $d^{(k)}$ (called a *search direction*), we will seek $x^{(k+1)}$ from the set of vectors on the line $\ell = \{ \boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)} \}_{\alpha \in \mathbb{R}}$ such that it makes the value of $F(\boldsymbol{x}^{(k+1)})$ not just smaller than $F(\boldsymbol{x}^{(k)})$, but as small as possible (with respect to this set), namely

$$\boldsymbol{x}^{(k+1)} := \arg\min_{\alpha} F(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)}).$$
(4.6)

Lemma 4.23 The minimizer in (4.6) is given by the formula

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}, \qquad \alpha_k = \frac{(\boldsymbol{r}^{(k)}, \boldsymbol{d}^{(k)})}{(A\boldsymbol{d}^{(k)}, \boldsymbol{d}^{(k)})}.$$
 (4.7)

(This choice of α_k is referred to as exact line search.)

Proof. From the definition of *F*, it follows that in (4.6) we should choose the point $x^{(k+1)} \in \ell$ that minimizes the A-distance between x^* and the points $y \in \ell$. Geometrically, it is clear that the minimum occurs when $x^{(k+1)}$ is the A-orthogonal projection of x^* onto the line $\ell = \{x^{(k)} + \alpha d^{(k)}\}$, i.e., when

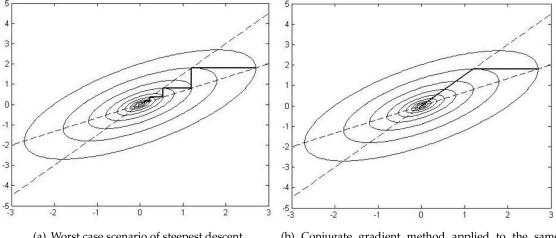
$$\boldsymbol{x}^* - \boldsymbol{x}^{(k+1)} \perp_A \boldsymbol{d}^{(k)} \quad \Rightarrow \quad A(\boldsymbol{x}^* - \boldsymbol{x}^{(k+1)}) \perp \boldsymbol{d}^{(k)} \quad \Rightarrow \quad \boldsymbol{r}^{(k+1)} = \boldsymbol{r}^{(k)} - \alpha_k A \boldsymbol{d}^{(k)} \perp \boldsymbol{d}^{(k)} .$$
So gives expression for α_k in (4.7).

This gives expression for α_k in (4.7).

Method 4.24 (The steepest descent method) This method takes $d^{(k)} = -\nabla F_1(x^{(k)}) = b - Ax^{(k)}$ for every k, the reason being that, locally, the negative gradient of a quadratic function shows the direction of the (locally) steepest descent at a given point. Thus, the iterations have the form

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k (\mathbf{b} - A \mathbf{x}^{(k)}), \qquad k \ge 0.$$
 (4.8)

It can be proved that the sequence $(x^{(k)})$ converges to the solution x^* of the system Ax = b as required, but usually the speed of convergence is rather slow. The reason is that the iteration (4.8) decreases the value of $F(\mathbf{x}^{(k+1)})$ locally, relatively to $F(\mathbf{x}^{(k)})$, but the global decrease, with respect to $F(\mathbf{x}^{(0)})$, is often not that large. The use of *conjugate directions* provides a method with a global minimization property.



(a) Worst case scenario of steepest descent

(b) Conjugate gradient method applied to the same problem as in (a)

Conjugate directions Let's revisit equation (4.7) for a general direction d (i.e., not necessarily equal to the negative gradient). Assume $x = x^{(k)}$, and let $e^{(k)} = x^* - x^{(k)}$ be the error and $r^{(k)} =$ $b - Ax^{(k)} = Ae^{(k)}$ be the residual. Then we can write $\langle r^{(k)}, d \rangle = \langle e^{(k)}, d \rangle_A$, and so for a general search direction d with an exact line search, the iterate takes the form $x^{(k+1)} = x^{(k)} + \frac{\langle e^{(k)}, d \rangle_A}{\langle d, d \rangle_A} d$. By substracting x^* , the iterates in terms of the error $e^{(k+1)}$ are given by:

$$e^{(k+1)} = e^{(k)} - \frac{\langle e^{(k)}, d \rangle_A}{\langle d, d \rangle_A} d.$$
(4.9)

Geometrically, this means that $e^{(k+1)}$ is the projection of $e^{(k)}$ onto the hyperplane that is Aorthogonal to *d*, i.e., we have

$$\langle \boldsymbol{e}^{(k+1)}, \boldsymbol{d} \rangle_A = 0. \tag{4.10}$$

Definition 4.25 (Conjugate directions) The vectors $u, v \in \mathbb{R}^n$ are *conjugate* with respect to a symmetric positive definite matrix A if they are nonzero and A-orthogonal: $\langle u, v \rangle_A := \langle u, Av \rangle = 0$.

The observation above allows us to prove the following important result.

Theorem 4.26 Let $d^{(0)}, d^{(1)}, \ldots, d^{(n-1)}$ be *n* nonzero pairwise conjugate directions, and consider the sequence of iterates

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}, \qquad \alpha_k = \frac{\langle \boldsymbol{r}^{(k)}, \boldsymbol{d}^{(k)} \rangle}{\langle \boldsymbol{d}^{(k)}, A \boldsymbol{d}^{(k)} \rangle}$$

Let $\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$ be the residual. Then for each k = 1, ..., n, $\mathbf{r}^{(k)}$ is orthogonal to span $\{\mathbf{d}^{(0)}, ..., \mathbf{d}^{(k-1)}\}$. In particular $\mathbf{r}^{(n)} = 0$.

Proof. Since $r^{(k)} = Ae^{(k)}$, it suffices to show that $e^{(k)}$ is *A*-orthogonal to span $\{d^{(0)}, \ldots, d^{(k-1)}\}$. The proof is by induction on *k*. For k = 0 there is nothing to prove. Assume the statement is true for $k \ge 0$, and consider the equation (4.9) (with $d = d^{(k)}$). From the induction hypothesis, and the fact that the $d^{(i)}$ are pairwise conjugate directions, we see that $e^{(k+1)}$ is *A*-orthogonal to $d^{(0)}, \ldots, d^{(k-1)}$. Furthermore, we have already seen in (4.10) that $\langle e^{(k+1)}, d^{(k)} \rangle_A = 0$. Thus this shows that $e^{(k+1)}$ is *A*-orthogonal to $d^{(0)}, \ldots, d^{(k)}$ as desired.

So, if a sequence $(d^{(k)})$ of conjugate directions is at hands, we have an iterative procedure with good approximation properties.

The (*A*-orthogonal) basis of conjugate directions is constructed by *A*-orthogonalization of the sequence $\{r_0, Ar_0, A^2r_0, ..., A^{n-1}r_0\}$ with $r_0 = b - Ax_0$. This is done in the way similar to orthogonalization of the monomial sequence $\{1, x, x^2, ..., x^{n-1}\}$ using a recurrence relation.

Remark 4.27 It is possible to extend the methods for solving Ax = b with symmetric positive definite A to any other matrices by a simple trick. Suppose we want to solve Bx = c, where $B \in \mathbb{R}^{n \times n}$ is nonsingular. We can convert the above system to the symmetric and positive definite setting by defining $A = B^T B$, $b = B^T c$ and then solving Ax = b with the conjugate gradient algorithm (or any other method for positive definite A).