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Numerical Analysis — Lecture 18

Approach 4.20 (Minimization of quadratic function) The methods we considered so far for solv-
ing Az = b, namely Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

2+ — 20 4o d®) |

where we were aimed at getting p(H) < 1 for the iteration matix H. Say, for Jacobi with relaxation,
we set ¢, = wand d® = D~1(b— Azx®).

For solving Az = b with a (positive definite) matrix A > 0, there is a different approach
to constructing good iterative methods. It is based on succesive minimization of the quadratic

function
F(a®) = [lz* —a®|% = e,

since the minimizer is clearly the exact solution. Here, ||y[a := (Ay,y)'/? := /yTAy is a
Euclidean-type distance which is well-defined for A > 0. So, at each step k, we are decreas-
ing the A-distance between z(*) and the exact solution z*. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent condition

et = 20 o d® = ety < Pa®). (4.5)
An equivalent approach is to minimize the quadratic function

Fi(z) = %IETAw — a:Tb,

which attains its minimum when VFi(x) = Az — b = 0, and which does not involve the unknown x*.
It is easy to check that Fi(z) = 1F(z) — ic, where ¢ = "7 Az" is a constant independent of k, hence
equivalence.

Example 4.21 Both the Jacobi and the Gauss-Seidel methods satisfy (4.5), precisely
(Ae(k+1)7e(k+1)) - (Ae(k),e(k)) _ (Cy(k)7y(k)) < (Ae(’“)7e(k))7
where for Gauss-Seidel: C =D >0, y®) = (Lo + D) *4e®);
and forJacobi: C=2D—-A>0, y* =D 14el,

Method 4.22 (A-orthogonal projection) Next, we strengthen the descent condition (4.5), namely
given z® and some d*) (called a search direction), we will seek x(*+1) from the set of vectors
on the line £ = {£" +ad®} e such that it makes the value of F'(z(**1)) not just smaller than
F(x™®), but as small as possible (with respect to this set), namely

25D .= arg min F(z® + ad®) . (4.6)
Lemma 4.23 The minimizer in (4.6) is given by the formula

(r®) d®))

(k+1) _ (k) (k) = - J
x =@+ opd™ Ok = (Ad(k), d(k)) ’

(4.7)

(This choice of «y, is referred to as exact line search.)

Proof. From the definition of F, it follows that in (4.6) we should choose the point D) ey
that minimizes the A-distance between x* and the points y € ¢. Geometrically, it is clear that the
minimum occurs when z(*+1) is the A-orthogonal projection of z* onto the line ¢ = {z*) +ad™},
i.e., when

o —z®t) 1, d® = A —2*Y) LdP = pEED — B gy Ad® | @)

This gives expression for oy, in (4.7). O
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Method 4.24 (The steepest descent method) This method takes d*) = —~VF, (x*)) = b — Az
for every k, the reason being that, locally, the negative gradient of a quadratic function shows the
direction of the (locally) steepest descent at a given point. Thus, the iterations have the form

2D = 2®) Loy (b— Az®)),  k>0. (4.8)

It can be proved that the sequence (x(*)) converges to the solution x* of the system Az = b as
required, but usually the speed of convergence is rather slow. The reason is that the iteration (4.8)
decreases the value of F(z(*+1)) locally, relatively to F(z*)), but the global decrease, with respect
to F(z(©)), is often not that large. The use of conjugate directions provides a method with a global
minimization property.
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(a) Worst case scenario of steepest descent (b) Conjugate gradient method applied to the same
problem as in (a)

Conjugate directions Let’s revisit equation (4.7) for a general direction d (i.e., not necessarily
equal to the negative gradient). Assume x = (%), and let e*) = z* — (%) be the error and r¥) =
b — Az®) = Ae®) be the residual. Then we can write (r(*), d) = (e*), d) 4, and so for a general

search direction d with an exact line search, the iterate takes the form z(*+t1) = () 4 %d.
) A
By substracting x*, the iterates in terms of the error e**1) are given by:
(k)
okt _ gty _ (€, d)a (4.9)

<d7 d>A

Geometrically, this means that e(**!) is the projection of e(¥)

orthogonal to d, i.e., we have

onto the hyperplane that is A-

(e D) d) 4 = 0. (4.10)

Definition 4.25 (Conjugate directions) The vectors u,v € R" are conjugate with respect to a sym-
metric positive definite matrix A if they are nonzero and A-orthogonal: (u, v) 4 := (u, Av) = 0.

The observation above allows us to prove the following important result.

Theorem 4.26 Let d©,dV, ..., d""~V be n nonzero pairwise conjugate directions, and consider the
sequence of iterates

(r®) d*))
<d(k)7Ad(k)>'
Let r*) = b—Ax®) be the residual. Then foreach k = 1, ... n, v®) is orthogonal to span{d®, ..., d* =1},
In particular 7™ = 0.

2D = 2™ 4 d®, ay =
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Proof. Since r(*) = Ae®, it suffices to show that e(*) is A-orthogonal to span{d”,... d*~1}.
The proof is by induction on k. For & = 0 there is nothing to prove. Assume the statement is
true for £ > 0, and consider the equation (4.9) (with d = d™). From the induction hypothesis,
and the fact that the d'*) are pairwise conjugate directions, we see that e(*+1) is A-orthogonal to
d(o), R d*~Y . Purthermore, we have already seen in (4.10) that (eh+1)] d(k))A = 0. Thus this
shows that e* 1) is A-orthogonal to d(o), ey d'® as desired. O

So, if a sequence (d*)) of conjugate directions is at hands, we have an iterative procedure with
good approximation properties.

The (A-orthogonal) basis of conjugate directions is constructed by A-orthogonalization of the
sequence {rg, Arg, A%rq, ..., A" 1ro} with 7o = b — Az,. This is done in the way similar to or-
thogonalization of the monomial sequence {1, z,z?, ...,2" !} using a recurrence relation.

Remark 4.27 It is possible to extend the methods for solving Az = b with symmetric positive
definite A to any other matrices by a simple trick. Suppose we want to solve Bx = ¢, where
B € R™*"™ is nonsingular. We can convert the above system to the symmetric and positive definite
setting by defining A = BTB, b = B¢ and then solving Az = b with the conjugate gradient
algorithm (or any other method for positive definite A).
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