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Mathematical Tripos Part II: Michaelmas Term 2024
Numerical Analysis — Lecture 20

Technique 4.33 (Preconditioning) In Ax = b, we change variables, x = PT%, where P is a non-
singular n x n matrix, and multiply both sides with P. Thus, instead of Ax = b, we are solving
the linear system

PAPTZ=Pb & Ai=5b. (4.11)

Note that symmetry and positive definiteness of 4 imply that A = PAPT is also symmetric and
positive definite since (Ay,y) = (PAPTy,y) = (APTy, PTy) > 0. Therefore, we can apply con-
jugate gradients to the new system. This results in the solution Z, hence * = PTZ. This procedure
is called the preconditioned conjugate gradient method and the matrix P is called the preconditioner.

The condition number of a matrix A is the value x(4) := || A||-||A~!||, so for a symmetric positive
definite matrix A it is the ratio between its largest and smallest eigenvalues,
Amax(4)
A)=——=>1.
K( ) )\min(A) -

The closer is this number to 1, the faster is convergence of CGM. More precisely, for the rate of
convergnce of CGM, we have the uppper estimate

k(A) —1
le®la <20 1e@s,  p=pa= YDy (412)
VE(A) +1

The main idea of preconditioning is to pick P in (4.11) so that k(A) is much smaller than x(A),
thus accelerating convergence.
To this end, we note that the similarity transform B — C'~! BC preserves spectrum, hence

k(A) = k(PAPT) = (P~ '[PAPT|P) = x(APT P),

and if we set
S57hi=P'P=(QQ")",

then it is suggestive to choose S as an approximation to A which is easy to Cholesky-factorize,
ie, S = QQT (or already in this form), and then take P = Q~'. Then APTP = AS~!is close to
identity, hence

k(A) = k(APTP) = k(I) =1 = k(A) < k(A),

and the preconditioned system (4.11) will be solved much faster because of (4.12).

Each step in the CGM for solving Az = b requires one matrix-vector product Ay, so with
P = @', additional expense in each step of the CGM for the preconditioned system (4.11) while
computing Ay = PAPTy is two additional computations

u=Ply=Q "y, wv=Pz=Q 'z

for some y, z € R", but note that computing Q' z is the same as solving the linear system Qv = z,
which is cheap (via forward substitution) as () is a lower triangular matrix.

Example 4.34 1) The simplest choice of S is D = diag A, then P = D~1/2in (4.11).

2) Another possibility is to choose S as a band matrix with small bandwidth. For example,
solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal
part of A.

3) One can also take P = L', where L is the lower triangular part of A (maybe imposing
some changes). For example, for the Poisson equation, with m = 20 hence dealing with 400 x 400
system, we take P! as the lower triangular part of A, but change the diagonal elements from 4
to 2. Then we get a computer precision after just 30 iterations.
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Example 4.35 For the tridiagonal system Az = b below, we choose the preconditioner as follows.
2-1 1 1-1
-1 2. -1 1 s -1 27
A= - . Q= N ., S=0QT = SR

-1 2 -1 1 -1 2

The matrix S coincides with A except at the (1,1)-entry. The matrix A = Q1AQ™T for the
preconditioned CGM has just two distinct eigenvalues, and we recover the exact solution just in

two steps. To see the latter, note that A is similar to Q"TQ1A = S~1A4, hence it has the same
spectrum. Since A = S + ejel, we have S™1A = I + ue? | a rank-1 perturbation of the identity
matrix, with all eigenvalues but one equal 1 (the remaining one equal 1 + u;).

Remark 4.36 (Rate of convergence of CGM ) Here, we prove (4.12). As we have seen, every di-
rection d'”) in CGM is a linear combination of the vectors (A%r(©))i_, therefore, any vector of the
form 2% = z(© 4 Zi:ol a;d"” can be represented as

7*) = 20 4 S e Al () (4.13)
Approximation of this kind also arises from various iterative methods of the form
g* ) =z 5 az® —b),

in particular for the steepest descent method.

Subtracting both parts of (4.13) from the exact solution z* we obtain &*) = e(©) -3 ¢, Ai-(0),

and since r(©) = Ae(®), we can express the error e*) = z* — z(¥)

as
e® = (1= A1) e = Py(A) e, (4.14)

where P, is a polynomial of degree < k, which satisfies P, (0) = 1.

Now we make use of the following.

Theorem 4.37 (Non-examinable) Given A € R"*", A > 0, let {d™}7""! be a set of the conjugate
directions, i.e., (Ad(k), d(i)) = 0 fori < k, and consider

F(a®) = [z —a™|5 = |le™ %

Then the value of F(x(™+1)) obtained through the CGM coincides with the minimum of F (y) taken over
ally = 2O + S epd™ simultaneously, namely

k=0
Hence, at the k-th stage, the CGM produces the vector %) that minimizes the functional
F@") =[5 = (42, e)

over all vectors %) of the form 2% = z(© + Zf;ol a;d?, hence over all e*) of the form (4.14).
Expressing e® as e = > y;w;, where (w;) are orthonormal eigenvectors of A, we find from

(4.14) that ek — > YiPe(Ai)w;, and Ae™) — > YiPe(Ai) \iw;, and respectively

[EPI5 = Si[Pe)PAn? < max [PO]? le

Hence, because of the minimization property of CGM,

le® |4 = min|[e™ |4 < min max [P,(N)]]le?] .
Py, Py Aeo(A)
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Now, assume that, for the spectrum o(A), we know the largest and the smallest eigenvalues, or
some lower and upper bounds, say, 0 < m < XA < M. Then the following minimization problem,
on the class of polynomials of degree k, arises:

P(0) =1, a;en[lrg)z(w] | P (x)| — min .

This problem has a classical solution P; = T}, where T} is the Chebyshev polynomial on the
interval [m, M|, which is obtained by dilation and translation of the standard Chebyshev polyno-
mial T}, given on the interval [-1, 1]:

Ty () = cos kb, x = cos, 6 €0,7].

One can show that |} (z)| < 2p* on the interval [m, M], hence the rate of convergence of CGM
admits the following estimate:

_ VM—ym

(k) k|| o(0)
le®la < 2 |e0)la,  p=LHE

<1,  o(A)€m, M].
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