Mathematical Tripos Part II: Michaelmas Term 2024

Numerical Analysis – Lecture 22

Theorem 5.8 Let A and S be $n \times n$ matrices, S being nonsingular. Then w is an eigenvector of A with eigenvalue λ if and only if $\hat{w} = Sw$ is an eigenvector of $\hat{A} = SAS^{-1}$ with the same eigenvalue.

Proof. $Aw = \lambda w \quad \Leftrightarrow \quad AS^{-1}(Sw) = \lambda w \quad \Leftrightarrow \quad (SAS^{-1})(Sw) = \lambda(Sw).$

Definition 5.9 (Deflation) Suppose that we have found one solution of the eigenvector equation $Aw = \lambda w$, where A is again $n \times n$. Then *deflation* is the task of constructing an $(n-1) \times (n-1)$ matrix, B say, whose eigenvalues are the other eigenvalues of A. Specifically, we apply a similarity transformation S to A such that the first column of $\hat{A} = SAS^{-1}$ is λ times the first coordinate vector e_1 , because it follows from the characteristic equation for eigenvalues and from Theorem 5.8 that we can let B be the bottom right $(n-1) \times (n-1)$ submatrix of $\hat{A} = SAS^{-1}$.

We write the condition on *S* as $(SAS^{-1})e_1 = \lambda e_1$. Then the last equation in the proof of Theorem 5.8 shows that it is sufficient if *S* has the property $Sw = ce_1$, where *c* is any nonzero scalar.

Technique 5.10 (Algorithm for deflation for symmetric *A*) Suppose that *A* is symmetric and $w \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$ are given so that $Aw = \lambda w$. We seek a nonsingular matrix *S* such that $Sw = ce_1$ and such that SAS^{-1} is also symmetric. The last condition holds if *S* is orthogonal, since then $S^{-1} = S^T$. It is suitable to pick a *Householder reflection*, which means that *S* has the form

$$H_u = I - 2\boldsymbol{u}\boldsymbol{u}^T / \|\boldsymbol{u}\|^2$$
, where $\boldsymbol{u} \in \mathbb{R}^n$.

Specifically, we recall from the Numerical Analysis IB course that Householder reflections are orthogonal and that, because $H_u u = -u$ and $H_u v = v$ if $u^T v = 0$, they reflect any vector in \mathbb{R}^n with respect to the (n-1)-dimensional hyperplane orthogonal to u. So, for any two vectors x and y of equal lengths,

$$H_{\boldsymbol{u}}\boldsymbol{x} = \boldsymbol{y}, \text{ where } \boldsymbol{u} = \boldsymbol{x} - \boldsymbol{y},$$

Hence,

$$I - 2 \frac{\boldsymbol{u} \boldsymbol{u}^T}{\|\boldsymbol{u}\|^2} \mathbf{w} = \pm \|\boldsymbol{w}\| \boldsymbol{e}_1, \text{ where } \boldsymbol{u} = \boldsymbol{w} \mp \|\boldsymbol{w}\| \boldsymbol{e}_1.$$

Since the bottom n-1 components of u and w coincide, the calculation of u requires only O(n) computer operations. Further, the calculation of SAS^{-1} can be done in only $O(n^2)$ operations, taking advantage of the form $S = I - 2uu^T / ||u||^2$, even if all the elements of A are nonzero.

After deflation, we may find an eigenvector, \hat{w} say, of SAS^{-1} . Then the new eigenvector of A, according to Theorem 5.8, is $S^{-1}\hat{w} = S\hat{w}$, because Householder matrices, like all symmetric orthogonal matrices, are *involutions*: $S^2 = I$.

Revision 5.11 (Givens rotations) The notation $\Omega^{[i,j]}$ denotes the following $n \times n$ matrix

$$\Omega^{[i,j]} = \begin{bmatrix} 1 & & & \\ & c & s & \\ & -s & c & \\ & \uparrow & \uparrow & 1 \end{bmatrix}, \quad c^2 + s^2 = 1.$$

Generally, for any vector $a_k \in \mathbb{R}^n$, we can find a matrix $\Omega^{[i,j]}$ such that

$$\Omega^{[i,j]}\boldsymbol{a} = \begin{bmatrix} 1 \\ \ddots \\ c \\ s \\ -s \\ \cdot \\ \vdots \\ i \\ j \end{bmatrix} \begin{bmatrix} a_{1k} \\ \vdots \\ a_{ik}^{i} \\ \vdots \\ a_{ik}^{i} \\ \vdots \\ a_{nk}^{i} \end{bmatrix} = \begin{bmatrix} a_{1k} \\ \vdots \\ r \\ \vdots \\ 0 \\ \vdots \\ a_{nk} \end{bmatrix} \stackrel{\leftarrow i}{=} \begin{bmatrix} a_{1k} \\ \vdots \\ r \\ \vdots \\ 0 \\ \vdots \\ a_{nk} \end{bmatrix} \stackrel{\leftarrow i}{=} \begin{bmatrix} a_{1k} \\ \vdots \\ r \\ \vdots \\ -j \\ r \\ -j \\ r = \sqrt{a_{ik}^2 + a_{jk}^2},$$

1) We can choose $\Omega^{[i,j]}$ so that any prescribed element \tilde{a}_{jk} in the *j*-th row of $\tilde{A} = \Omega^{[i,j]} \times A$ is zero.

2) The rows of $\widetilde{A} = \Omega^{[i,j]} \times A$ are the same as the rows of A, except that the *i*-th and *j*-th rows of the product are linear combinations of the *i*-th and *j*-th rows of A.

3) The columns of $\widehat{A} = \widehat{A} \times \Omega^{[i,j]T}$ are the same as the columns of \widehat{A} , except that the *i*-th and *j*-th columns of \widehat{A} are linear combinations of the *i*-th and *j*-th columns of \widetilde{A} .

4) $\Omega^{[i,j]}$ is an orthogonal matrix, thus $\widehat{A} = \Omega^{[i,j]} A \Omega^{[i,j]T}$ inherits the eigenvalues of A.

5) If *A* is symmetric, then so is \widehat{A} .

Method 5.12 (Transformation to an upper Hessenberg form) We replace A by $\hat{A} = SAS^{-1}$, where S is a product of Givens rotations $\Omega^{[i,j]}$ chosen to annihilate subsubdiagonal elements $a_{j,i-1}$ in the (i-1)-st column:

* ***] [0.0]	****	[0, 0]/T	* • • *	[0,4]	****	[0, 4]/T	* • * •	[0,4]	* * * *	[0, 4]/T	**••	
****	$\left \begin{array}{c} \Omega^{[2,3]} \times \\ \rightarrow \end{array} \right $	••••	$\stackrel{\times\Omega^{[2,3]I}}{\rightarrow}$	*••* 0••*	$\stackrel{\Omega^{[2,4]}\times}{\rightarrow}$	•••• 0***	$\stackrel{\times\Omega^{[2,4]I}}{\rightarrow}$	*●*● 0●*●	$\stackrel{\Omega^{[3,4]}\times}{\rightarrow}$	**** 0•••	$\stackrel{\times\Omega^{[3,4]I}}{\rightarrow}$	**•• 0*••	
****]	****		*••*		0•••		$0 \bullet * \bullet$		00••		00••	

The •-elements have changed through a single transformation while the *-elements remained the same. It is seen that every element that we have set to zero remains zero, and the final outcome is indeed an upper Hessenberg matrix. If A is symmetric then so will be the outcome of the calculation, hence it will be tridiagonal. In general, the cost of this procedure is $O(n^3)$.

Alternatively, we can transform A to upper Hessenberg using Householder reflections, rather than Givens rotations. In that case we deal with a column at a time, taking u such that, with $H_u = I - 2uu^T / ||u||^2$, the *i*-th column of $\tilde{B} = H_u B$ is consistent with the upper Hessenberg form. Such a u has its first *i* coordinates vanishing, therefore $\hat{B} = \tilde{B}H_u^T$ has the first *i* columns unchanged, and all new and old zeros (which are in the first *i* columns) stay untouched.

·**] [****]	[*●●●]	[****]	[**●●]	[****]	[***●]
<** •••••	T * • • • •	****	**•••	****	***••
$** \stackrel{H_1 \times}{\rightarrow} 0 \bullet \bullet \bullet \bullet \stackrel{\times}{\rightarrow}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} 0 \bullet \bullet \bullet \bullet \begin{bmatrix} H_2 \times \\ \rightarrow \end{bmatrix}$	$0 \bullet \bullet \bullet \bullet \xrightarrow{\times H_2}$	$0 \ast \bullet \bullet \bullet \xrightarrow{H_3 \times}$	$0**** \rightarrow \overset{\times H_3}{\rightarrow}$	0**••
		00			00*••

Algorithm 5.13 (The QR algorithm) The "plain vanilla" version of the QR algorithm is as follows. Set $A_0 = A$. For k = 0, 1, ... calculate the QR factorization $A_k = Q_k R_k$ (here Q_k is $n \times n$ orthogonal and R_k is $n \times n$ upper triangular) and set $A_{k+1} = R_k Q_k$.

The eigenvalues of A_{k+1} are the same as the eigenvalues of A_k , since we have

$$A_{k+1} = R_k Q_k = Q_k^{-1} (Q_k R_k) Q_k = Q_k^{-1} A_k Q_k,$$
(5.2)

a similarity transformation. Moreover, $Q_k^{-1} = Q_k^T$, therefore if A_k is symmetric, then so is A_{k+1} . If for some $k \ge 0$ the matrix A_{k+1} can be regarded as "deflated", i.e. it has the block form

$$A_{k+1} = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right],$$

where B, E are square and $D \approx O$, then we calculate the eigenvalues of B and E separately (again, with QR, except that there is nothing to calculate for 1×1 and 2×2 blocks). As it turns out, such a "deflation" occurs surprisingly often.

Technique 5.14 (The QR iteration for upper Hessenberg matrices) If A_k is upper Hessenberg, then its QR factorization by means of the Givens rotations produces the matrix

$$R_{k} = Q_{k}^{T} A_{k} = \Omega^{[n-1,n]} \cdots \Omega^{[2,3]} \Omega^{[1,2]} A_{k}$$

which is upper triangular. The QR iteration sets $A_{k+1} = R_k Q_k = R_k \Omega^{[1,2]T} \Omega^{[2,3]T} \cdots \Omega^{[n-1,n]T}$, and it follows that A_{k+1} is also upper Hessenberg, because

[****]	[••**]	* • • *]]	[∗∗●]
$0 * * * \times \Omega^{[1,2]^T}$	$\bullet \bullet * * \times \Omega^{[2,3]T}$	* • • *	$\times \Omega^{[3,4]T}$	* * • •
$ 00** \rightarrow$	$ 00 * * \rightarrow$	0 • • *	\rightarrow	0 * • •
000*	000*	000*		00••

Thus a strong advantage of bringing *A* to the upper Hessenberg form initially is that then, in every iteration in QR algorithm, Q_k is a product of just n-1 Givens rotations. Hence each iteration of the QR algorithm requires just $O(n^2)$ operations.