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Numerical Analysis — Lecture 23

Theorem 5.8 Let A and S be n x n matrices, S being nonsingular. Then w is an eigenvector of A with
eigenvalue X if and only if W = Sw is an eigenvector of A = SAS™! with the same eigenvalue.

Proof. Aw= w & AS ' (Sw)=\w & (SAS™H(Sw) = A\(Sw). O

Definition 5.9 (Deflation) Suppose that we have found one solution of the eigenvector equation
Aw = A\w, where A is again n x n. Then deflation is the task of constructing an (n—1) x (n—1)
matrix, B say, whose eigenvalues are the other eigenvalues of A. Specifically, we apply a similarity
transformation S to A such that the first column of A = SAS~! is A times the first coordinate
vector e, because it follows from the characteristic equation for eigenvalues and from Theorem
5.8 that we can let B be the bottom right (n — 1) x (n — 1) submatrix of A=SAS L.

We write the condition on S as (SAS~!)e; = Aej. Then the last equation in the proof of
Theorem 5.8 shows that it is sufficient if S has the property Sw = ce;, where c is any nonzero
scalar.

Technique 5.10 (Algorithm for deflation for symmetric A) Suppose that A is symmetricand w €
R™, A € R are given so that Aw = Aw. We seek a nonsingular matrix .S such that Sw = ce;
and such that SAS~! is also symmetric. The last condition holds if S is orthogonal, since then
S—1 = ST, 1tis suitable to pick a Householder reflection, which means that S has the form

H, =TI —2uu”/|u|?, where ucR"

Specifically, we recall from the Numerical Analysis IB course that Householder reflections are
orthogonal and that, because H,u = —u and H,v = v if uTv = 0, they reflect any vector in R"
with respect to the (n—1)-dimensional hyperplane orthogonal to u. So, for any two vectors « and
y of equal lengths,

Hy,xz =y, where u=x—y.

Hence,

uu’
<I - 2||u||2> w = t|w|le;, where u=wF|w|e;.
Since the bottom n—1 components of u and w coincide, the calculation of u requires only O(n)
computer operations. Further, the calculation of SAS™! can be done in only O(n?) operations,
taking advantage of the form S = I — 2uu” /||u||?, even if all the elements of A are nonzero.

After deflation, we may find an eigenvector, w say, of SAS~!. Then the new eigenvector of
A, according to Theorem 5.8, is S ~lw = Sw, because Householder matrices, like all symmetric
orthogonal matrices, are involutions: S = I.

Revision 5.11 (Givens rotations) The notation Q[+l denotes the following n x n matrix
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Generally, for any vector a; € R", we can find a matrix Q") such that
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1) We can choose Q1] so that any prescribed element @, in the j-th row of A = Q1] x A is
Zero.

2) The rows of A = Qlidl x A are the same as the rows of A, except that the i-th and j-th rows
of the product are linear combinations of the i-th and j-th rows of A.

3) The columns of A = A x Q)T are the same as the columns of 4, except that the i-th and
j-th columns of A are linear combinations of the i-th and j-th columns of A.

4) Ol"7] is an orthogonal matrix, thus A = QI3 AQ[I1T inherits the eigenvalues of A.

5) If A is symmetric, then so is A.

Method 5.12 (Transformation to an upper Hessenberg form) We replace A by A = SAS™', where S'is a
product of Givens rotations Q7! chosen to annihilate subsubdiagonal elements a;,;; in the (i—1)-st column:
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The e-elements have changed through a single transformation while the *-elements remained the same.

It is seen that every element that we have set to zero remains zero, and the final outcome is indeed an
upper Hessenberg matrix. If A is symmetric then so will be the outcome of the calculation, hence it will be
tridiagonal. In general, the cost of this procedure is O(n?).

Alternatively, we can transform A to upper Hessenberg using Householder reflections, rather than Givens
rotations. In that case we deal with a column at a time, taking u such that, with H, = I — 2uu”/||u||?, the
i-th column of B = H,, B is consistent with the upper Hessenberg form. Such a u has its first i coordinates
vanishing, therefore B = BH T has the first ¢ columns unchanged, and all new and old zeros (which are in
the first ¢ columns) stay untouched.
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Algorithm 5.13 (The QR algorithm) The “plain vanilla” version of the QR algorithm is as follows. Set Ay =
A. For k =0,1,... calculate the QR factorization Ay = QxR (here Qi is n x n orthogonal and Ry isn x n
upper triangular) and set Ay 11 = Rr Q.

The eigenvalues of A1 are the same as the eigenvalues of Ay, since we have

Aps1 = ReQr = Q' (QuRr)Qk = Q' ArQu, (5.2)

a similarity transformation. Moreover, Q,:l = Q7T therefore if Ay, is symmetric, then so is Ax41.
If for some k > 0 the matrix Ax41 can be regarded as “deflated”, i.e. it has the block form

B C
A1 = [ D E } '
where B, E are square and D~ O, then we calculate the eigenvalues of B and E separately (again, with QR,

except that there is nothing to calculate for 1 x 1 and 2 x 2 blocks). As it turns out, such a “deflation” occurs
surprisingly often.

Technique 5.14 (The QR iteration for upper Hessenberg matrices) If Ay is upper Hessenberg, then its QR
factorization by means of the Givens rotations produces the matrix

Rp = Qf Ax = Q" b olPflQih2l g

which is upper triangular. The QR iteration sets Ayy1 = RpQp = RQ2TQRAT ... Qr=1nIT and it
follows that A1 is also upper Hessenberg, because

* %k ok ® @ % x * o @ % X
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Thus a strong advantage of bringing A to the upper Hessenberg form initially is that then, in every iteration
in QR algorithm, @ is a product of just n —1 Givens rotations. Hence each iteration of the QR algorithm
requires just O(n?) operations.
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