Mathematical Tripos Part II: Michaelmas Term 2020
 Numerical Analysis - Lecture 23

Theorem 5.8 Let A and S be $n \times n$ matrices, S being nonsingular. Then \boldsymbol{w} is an eigenvector of A with eigenvalue λ if and only if $\widehat{\boldsymbol{w}}=S \boldsymbol{w}$ is an eigenvector of $\widehat{A}=S A S^{-1}$ with the same eigenvalue.

Proof. $\quad A \boldsymbol{w}=\lambda \boldsymbol{w} \quad \Leftrightarrow \quad A S^{-1}(S \boldsymbol{w})=\lambda \boldsymbol{w} \quad \Leftrightarrow \quad\left(S A S^{-1}\right)(S \boldsymbol{w})=\lambda(S \boldsymbol{w})$.
Definition 5.9 (Deflation) Suppose that we have found one solution of the eigenvector equation $A \boldsymbol{w}=\lambda \boldsymbol{w}$, where A is again $n \times n$. Then deflation is the task of constructing an $(n-1) \times(n-1)$ matrix, B say, whose eigenvalues are the other eigenvalues of A. Specifically, we apply a similarity transformation S to A such that the first column of $\widehat{A}=S A S^{-1}$ is λ times the first coordinate vector e_{1}, because it follows from the characteristic equation for eigenvalues and from Theorem 5.8 that we can let B be the bottom right $(n-1) \times(n-1)$ submatrix of $\widehat{A}=S A S^{-1}$.

We write the condition on S as $\left(S A S^{-1}\right) \boldsymbol{e}_{1}=\lambda \boldsymbol{e}_{1}$. Then the last equation in the proof of Theorem 5.8 shows that it is sufficient if S has the property $S \boldsymbol{w}=c \boldsymbol{e}_{1}$, where c is any nonzero scalar.

Technique 5.10 (Algorithm for deflation for symmetric A) Suppose that A is symmetric and $\boldsymbol{w} \in$ $\mathbb{R}^{n}, \lambda \in \mathbb{R}$ are given so that $A \boldsymbol{w}=\lambda \boldsymbol{w}$. We seek a nonsingular matrix S such that $S \boldsymbol{w}=c \boldsymbol{e}_{1}$ and such that $S A S^{-1}$ is also symmetric. The last condition holds if S is orthogonal, since then $S^{-1}=S^{T}$. It is suitable to pick a Householder reflection, which means that S has the form

$$
H_{u}=I-2 \boldsymbol{u} \boldsymbol{u}^{T} /\|\boldsymbol{u}\|^{2}, \quad \text { where } \quad \boldsymbol{u} \in \mathbb{R}^{n} .
$$

Specifically, we recall from the Numerical Analysis IB course that Householder reflections are orthogonal and that, because $H_{u} \boldsymbol{u}=-\boldsymbol{u}$ and $H_{u} \boldsymbol{v}=\boldsymbol{v}$ if $\boldsymbol{u}^{T} \boldsymbol{v}=0$, they reflect any vector in \mathbb{R}^{n} with respect to the ($n-1$)-dimensional hyperplane orthogonal to \boldsymbol{u}. So, for any two vectors \boldsymbol{x} and \boldsymbol{y} of equal lengths,

$$
H_{u} \boldsymbol{x}=\boldsymbol{y}, \quad \text { where } \quad \boldsymbol{u}=\boldsymbol{x}-\boldsymbol{y}
$$

Hence,

$$
\left(I-2 \frac{\boldsymbol{u} \boldsymbol{u}^{T}}{\|\boldsymbol{u}\|^{2}}\right) \boldsymbol{w}= \pm\|\boldsymbol{w}\| \boldsymbol{e}_{1}, \quad \text { where } \quad \boldsymbol{u}=\boldsymbol{w} \mp\|\boldsymbol{w}\| \boldsymbol{e}_{1}
$$

Since the bottom $n-1$ components of \boldsymbol{u} and \boldsymbol{w} coincide, the calculation of \boldsymbol{u} requires only $\mathcal{O}(n)$ computer operations. Further, the calculation of $S A S^{-1}$ can be done in only $\mathcal{O}\left(n^{2}\right)$ operations, taking advantage of the form $S=I-2 \boldsymbol{u} \boldsymbol{u}^{T} /\|\boldsymbol{u}\|^{2}$, even if all the elements of A are nonzero.

After deflation, we may find an eigenvector, $\widehat{\boldsymbol{w}}$ say, of $S A S^{-1}$. Then the new eigenvector of A, according to Theorem 5.8 , is $S^{-1} \widehat{\boldsymbol{w}}=S \widehat{\boldsymbol{w}}$, because Householder matrices, like all symmetric orthogonal matrices, are involutions: $S^{2}=I$.

Revision 5.11 (Givens rotations) The notation $\Omega^{[i, j]}$ denotes the following $n \times n$ matrix

Generally, for any vector $\boldsymbol{a}_{k} \in \mathbb{R}^{n}$, we can find a matrix $\Omega^{[i, j]}$ such that

$$
\Omega^{[i, j]} \boldsymbol{a}=\left[\begin{array}{cccc}
1 & \ddots & & \\
& c & & \\
& & \ddots & \\
& -s & & c \\
& \uparrow & & \ddots \\
& & \ddots & \\
& i & & j
\end{array}\right]\left[\begin{array}{c}
a_{1 k} \\
\vdots \\
a_{i k} \\
\vdots \\
a_{j k} \\
\vdots \\
a_{n k}
\end{array}\right]=\left[\begin{array}{c}
a_{1 k} \\
\vdots \\
\vdots \\
0 \\
\vdots \\
a_{n k}
\end{array}\right] \leftarrow i \quad \begin{aligned}
& c=\frac{a_{i k}}{\sqrt{a_{i k}^{2}+a_{j k}^{2}}}, \\
&
\end{aligned}
$$

1) We can choose $\Omega^{[i, j]}$ so that any prescribed element $\widetilde{a}_{j k}$ in the j-th row of $\widetilde{A}=\Omega^{[i, j]} \times A$ is zero.
2) The rows of $\widetilde{A}=\Omega^{[i, j]} \times A$ are the same as the rows of A, except that the i-th and j-th rows of the product are linear combinations of the i-th and j-th rows of A.
3) The columns of $\widehat{A}=\widetilde{A} \times \Omega^{[i, j] T}$ are the same as the columns of \widetilde{A}, except that the i-th and j-th columns of \widehat{A} are linear combinations of the i-th and j-th columns of \widetilde{A}.
4) $\Omega^{[i, j]}$ is an orthogonal matrix, thus $\widehat{A}=\Omega^{[i, j]} A \Omega^{[i, j] T}$ inherits the eigenvalues of A.
5) If A is symmetric, then so is \widehat{A}.

Method 5.12 (Transformation to an upper Hessenberg form) We replace A by $\widehat{A}=S A S^{-1}$, where S is a product of Givens rotations $\Omega^{[i, j]}$ chosen to annihilate subsubdiagonal elements $a_{j, i-1}$ in the (i-1)-st column:

The \bullet-elements have changed through a single transformation while the $*$-elements remained the same.
It is seen that every element that we have set to zero remains zero, and the final outcome is indeed an upper Hessenberg matrix. If A is symmetric then so will be the outcome of the calculation, hence it will be tridiagonal. In general, the cost of this procedure is $\mathcal{O}\left(n^{3}\right)$.

Alternatively, we can transform A to upper Hessenberg using Householder reflections, rather than Givens rotations. In that case we deal with a column at a time, taking \boldsymbol{u} such that, with $H_{u}=I-2 \boldsymbol{u} \boldsymbol{u}^{T} /\|\boldsymbol{u}\|^{2}$, the i-th column of $\widetilde{B}=H_{u} B$ is consistent with the upper Hessenberg form. Such a \boldsymbol{u} has its first i coordinates vanishing, therefore $\widehat{B}=\widetilde{B} H_{u}^{T}$ has the first i columns unchanged, and all new and old zeros (which are in the first i columns) stay untouched.

Algorithm 5.13 (The QR algorithm) The "plain vanilla" version of the QR algorithm is as follows. Set $A_{0}=$ A. For $k=0,1, \ldots$ calculate the QR factorization $A_{k}=Q_{k} R_{k}$ (here Q_{k} is $n \times n$ orthogonal and R_{k} is $n \times n$ upper triangular) and set $A_{k+1}=R_{k} Q_{k}$.

The eigenvalues of A_{k+1} are the same as the eigenvalues of A_{k}, since we have

$$
\begin{equation*}
A_{k+1}=R_{k} Q_{k}=Q_{k}^{-1}\left(Q_{k} R_{k}\right) Q_{k}=Q_{k}^{-1} A_{k} Q_{k}, \tag{5.2}
\end{equation*}
$$

a similarity transformation. Moreover, $Q_{k}^{-1}=Q_{k}^{T}$, therefore if A_{k} is symmetric, then so is A_{k+1}.
If for some $k \geq 0$ the matrix A_{k+1} can be regarded as "deflated", i.e. it has the block form

$$
A_{k+1}=\left[\begin{array}{cc}
B & C \\
D & E
\end{array}\right],
$$

where B, E are square and $D \approx O$, then we calculate the eigenvalues of B and E separately (again, with QR , except that there is nothing to calculate for 1×1 and 2×2 blocks). As it turns out, such a "deflation" occurs surprisingly often.
Technique 5.14 (The QR iteration for upper Hessenberg matrices) If A_{k} is upper Hessenberg, then its QR factorization by means of the Givens rotations produces the matrix

$$
R_{k}=Q_{k}^{T} A_{k}=\Omega^{[n-1, n]} \cdots \Omega^{[2,3]} \Omega^{[1,2]} A_{k},
$$

which is upper triangular. The QR iteration sets $A_{k+1}=R_{k} Q_{k}=R_{k} \Omega^{[1,2] T} \Omega^{[2,3] T} \ldots \Omega^{[n-1, n] T}$, and it follows that A_{k+1} is also upper Hessenberg, because

Thus a strong advantage of bringing A to the upper Hessenberg form initially is that then, in every iteration in QR algorithm, Q_{k} is a product of just $n-1$ Givens rotations. Hence each iteration of the QR algorithm requires just $\mathcal{O}\left(n^{2}\right)$ operations.

