Mathematical Tripos Part II: Michaelmas Term 2020 Numerical Analysis – Examples' Sheet 1

1. The Laplace operator $\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2$ is approximated by the nine-point formula

$$h^{2}\nabla^{2}u(ih,jh) \approx -\frac{10}{3}u_{i,j} + \frac{2}{3}\left(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}\right) \\ + \frac{1}{6}\left(u_{i+1,j+1} + u_{i+1,j-1} + u_{i-1,j+1} + u_{i-1,j-1}\right),$$

where $u_{i,j} \approx u(ih, jh)$. Find the error of this approximation when u is any infinitely-differentiable function. Show that the error is smaller if u happens to satisfy Laplace's equation $\nabla^2 u = 0$.

2. Determine the order (in the form $O((\Delta x)^p)$) of the finite difference approximation to $\partial^2/\partial x \partial y$ given by the computational stencil

3. Let $M \ge 2$ and $N \ge 2$ be integers and let $u \in \mathbb{R}^{M \times N}$ have the components $u_{m,n}$, $1 \le m \le M$, $1 \le n \le N$, where two subscripts occur because we associate the components with the interior points of a rectangular grid. Further, let $u_{m,n}$ be zero on the boundary of the grid, which means $u_{m,n} = 0$ if either $m \in \{0, M+1\}$ or $n \in \{0, N+1\}$ Thus, for any real constants α, β and γ , we can define a linear transformation A from $\mathbb{R}^{M \times N}$ to $\mathbb{R}^{M \times N}$ by the equations

$$(Au)_{m,n} = \alpha u_{m,n} + \beta (u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1}) + \gamma (u_{m-1,n-1} + u_{m+1,n-1} + u_{m-1,n+1} + u_{m+1,n+1}), \quad 1 \le m \le M, 1 \le n \le N.$$

We now let the components of \boldsymbol{u} have the special form $u_{m,n} = \sin(\frac{mk\pi}{M+1})\sin(\frac{n\ell\pi}{N+1})$, where k and ℓ are fixed integers. Prove that \boldsymbol{u} is an eigenvector of A and find its eigenvalue. Hence deduce that, if α, β and γ provide the nine-point formula of Exercise 1, and if M and N are large, then the least modulus of an eigenvalue is approximately $4\sin^2(\frac{\pi}{2(M+1)}) + 4\sin^2(\frac{\pi}{2(N+1)})$.

4. Verify that the $n \times n$ tridiagonal matrix

	α	β	0	•••	0
	β	α	β	•.	÷
A =	0	·	·	·	0
	:	·	β	α	β
	0		0	β	α

has the eigenvalues $\lambda_k = \alpha + 2\beta \cos \frac{k\pi}{n+1}$, k = 1, ..., n. Hence, deduce $\rho(A) = |\alpha| + 2|\beta| \cos \frac{\pi}{n+1}$. [*Hint: Show that* $v \in \mathbb{R}^n$ *with the components* $v_i = \sin ix$, i = 1, ..., n, where $x = \frac{\pi k}{n+1}$, satisfies the eigenvalue equation $A\mathbf{v} = \lambda_k \mathbf{v}$.]

- 5. Let *A* be the $m^2 \times m^2$ matrix that occurs in the five-point difference method for Laplace's equation on a square grid. By applying the orthogonal similarity transformation of Hockney's method, find a tridiagonal matrix, say *T*, that is similar to *A*, and derive expressions for each element of *T*. Hence, deduce the eigenvalues of *T*. Verify that they agree with the eigenvalues of Proposition 1.12
- 6. Let

2	/0	y_1	y_2	y_3	y_4	y_5	y_6	y_7	=	2	0	6	-2	6	0	6	2

By applying the FFT algorithm, calculate $x_{\ell} = \sum_{j=0}^{7} w_8^{j\ell} y_j$ for $\ell = 0, 2, 4, 6$, where $w_8 = \exp \frac{2\pi i}{8}$. Check your results by direct calculation. [*Hint: Because all values of* ℓ *are even, you can omit some parts of the usual FFT algorithm.*] 7. Let $u(x,t) : \mathbb{R}^2 \to \mathbb{R}^2$ be an infinitely-differentiable solution of the convection-diffusion equation $u_t = u_{xx} - bu_x$, where the subscripts denote partial derivatives and where *b* is a positive constant, and let u(x,0) for $0 \le x \le 1$ and u(0,t), u(1,t) for t > 0 be given. A difference method sets $h = \Delta x = \frac{1}{M+1}$ and $k = \Delta t = \frac{T}{N}$, where *M* and *N* are positive integers and *T* is a fixed bound on *t*. Then it calculates the estimates $u_m^n \approx u(mh, nk), 1 \le m \le M, 1 \le n \le N$, by applying the formula

$$u_m^{n+1} = u_m^n + \mu \left(u_{m-1}^n - 2u_m^n + u_{m+1}^n \right) - \frac{1}{2} (\Delta x) b\mu \left(u_{m+1}^n - u_{m-1}^n \right),$$

where $\mu = \frac{\Delta t}{(\Delta x)^2}$, the values of u_m^n being to set to u(mh, nk) when (mh, nk) is on the boundary. Show that, subject to μ being constant, the local truncation error of the formula is $\mathcal{O}(h^4)$. Let e(h, k) be the greatest of the errors $|u(mh, nk) - u_m^n|$, $1 \le m \le M$, $1 \le n \le N$. Prove convergence from first principles: if $h \to 0$ and $\mu \le \frac{1}{2}$ is constant, then e(h, k) also tends to zero. [*Hint: Relate the maximum error at each time level to the maximum error at the previous time level.*]

8. Let v(x, y) be a solution of Laplace's equation $v_{xx} + v_{yy} = 0$ on the unit square $0 \le x, y \le 1$, and let u(x, y, t) solve the diffusion equation $u_t = u_{xx} + u_{yy}$, where the subscripts denote partial derivatives. Further, let u satisfy the boundary conditions $u(\xi, \eta, t) = v(\xi, \eta)$ at all points (ξ, η) on the boundary of the unit square for all $t \ge 0$, Prove that, if u and v are sufficiently differentiable, then the integral

$$\phi(t) = \int_0^1 \int_0^1 [u(x, y, t) - v(x, y)]^2 \, dx \, dy, \quad t \ge 0,$$

has the property $\phi'(t) \leq 0$. Then prove that $\phi(t)$ tends to zero as $t \to \infty$. [*Hint: In the first part, try to replace* u_{xx} and u_{yy} when they occur by $u_{xx} - v_{xx}$ and $u_{yy} - v_{yy}$ respectively.]

9. Let $u(x,t) : \mathbb{R}^2 \to \mathbb{R}^2$ be a sufficiently differentiable function that satisfies the diffusion equation $u_t = u_{xx}$, and let θ be a positive constant. Using the notation $u_m^n \approx u(mh, nk)$, where $\mu = \frac{k}{h^2} = \frac{\Delta t}{(\Delta x)^2}$ is constant, we consider the implicit finite-difference scheme

$$u_m^{n+1} - \frac{1}{2}(\mu - \theta) \left(u_{m-1}^{n+1} - 2u_m^{n+1} + u_{m+1}^{n+1} \right) = u_m^n + \frac{1}{2}(\mu + \theta) \left(u_{m-1}^n - 2u_m^n + u_{m+1}^n \right).$$

Show that its local error is $\mathcal{O}(h^4)$, unless $\theta = \frac{1}{6}$ (the Crandall method), which makes the local error of order $\mathcal{O}(h^6)$. Is it possible for the order to be even higher?

10. The Crank-Nicolson formula is applied to the diffusion equation $u_t = u_{xx}$ on a rectangular mesh $(mh, nk), 0 \le m \le M + 1, n \ge 0$, where $h = \Delta x = \frac{1}{M+1}$. We assume zero boundary conditions u(0,t) = u(1,t) = 0 for all $t \ge 0$. Prove that the estimates $u_m^n \approx u(mh, nk)$ satisfy the equation

$$\sum_{m=1}^{M} \left[\left(u_m^{n+1} \right)^2 - \left(u_m^n \right)^2 \right] = -\frac{1}{2} \frac{\Delta t}{(\Delta x)^2} \sum_{m=1}^{M+1} \left[\left(u_m^{n+1} - u_{m-1}^{n+1} \right) + \left(u_m^n - u_{m-1}^n \right) \right]^2, \quad n = 0, 1, 2, \dots$$

Because the right hand side is nonpositive, it follows that $\sum_{m=1}^{M} (u_m^n)^2$ is a monotonically decreasing function of n. We see that this property is analogous to part of Exercise 8 if $v \equiv 0$ there. [Hint: Substitute the value of $u_m^{n+1} - u_m^n$ that is given by the Crank-Nicolson formula into the elementary equation

$$\sum_{m=1}^{M} \left[\left(u_m^{n+1} \right)^2 - \left(u_m^n \right)^2 \right] = \sum_{m=1}^{M} \left(u_m^{n+1} - u_m^n \right) \left(u_m^{n+1} + u_m^n \right)$$

and use $u_{m+1}^n - 2u_m^n + u_{m-1}^n = (u_{m+1}^n - u_m^n) - (u_m^n - u_{m-1}^n)$. It is also helpful occasionally to change the index m of the summation by one.]