Modular structure of Type IIB low energy expansion

Eric D'Hoker

Cambridge - Eurostrings 2015

Bibliography

Based on

- ED, Michael Green, Pierre Vanhove, arXiv:1502.06698,

On the modular structure of the genus-one Type II superstring low energy expansion

- ED, Michael Green, Boris Pioline, Rudolfo Russo, arXiv:1405.6226; JHEP 1501 (2015) 031, Matching the $D^{6} \mathcal{R}^{4}$ interaction at two-loops
- ED, Michael Green, arXiv:1308.4597; Journal of Number Theory, Vol 144 (2014) 111-150, Zhang-Kawazumi invariants and Superstring Amplitudes

Modular Structure ...

Expansions of Type IIB Superstring Theory

- Superstring Perturbation Theory in powers of g_{s}
- holds for all energies
- but for weak coupling g_{s} only
- Classical supergravity (R)
- leading low energy expansion of string theory
- holds for all couplings g_{s}
- String induced effective interactions $\mathcal{R}^{4}, D^{4} \mathcal{R}^{4}, D^{6} \mathcal{R}^{4}$
- Evaluated in perturbation theory for $g_{s} \ll 1$
- Conjectured for all couplings via S-duality, supersmmetry and M-theory

Effective Interactions

Exchange of massive string states produces local effective interactions.

- Four-graviton amplitude in Type II at tree-level,

$$
\mathcal{A}_{0}=\kappa^{2} \mathcal{R}^{4} \frac{1}{s t u} \frac{\Gamma(1-s) \Gamma(1-t) \Gamma(1-u)}{\Gamma(1+s) \Gamma(1+t) \Gamma(1+u)}
$$

$-\kappa^{2}=$ Newton's constant in 10 dimensions;

- $\mathcal{R}^{4}=$ unique maximally supersymmetric contraction of 4 Weyl tensors
$-s_{i j}=-\alpha^{\prime} k_{i} \cdot k_{j} / 2, s=s_{12}, t=s_{13}, u=s_{14}$ with $s+t+u=0$
- Low energy expansion corresponds to $|s|,|t|,|u| \ll 1$

$$
\begin{gathered}
\frac{1}{s t u}+2 \zeta(3)+\zeta(5)\left(s^{2}+t^{2}+u^{2}\right)+2 \zeta(3)^{2} s t u+\cdots \\
\text { massless } \quad \mathcal{R}^{4} \quad D^{4} \mathcal{R}^{4} \quad D^{6} \mathcal{R}^{4}
\end{gathered}
$$

D-instantons and Eisenstein series

Cambridge 1997 ... [Green Gutperle]

- Conjectured full \mathcal{R}^{4} effective interaction from D-instanton calculation,

$$
\left(T_{2}\right)^{\frac{1}{2}} E_{\frac{3}{2}}(T) \mathcal{R}^{4} \quad T=T_{1}+i T_{2}, \quad T_{2}=\frac{1}{g_{s}}
$$

- The (non-holomorphic) Eisenstein series,

$$
E_{s}(T)=\sum_{(m, n) \neq(0,0)} \frac{\left(T_{2}\right)^{s}}{\pi^{s}|m T+n|^{2 s}}
$$

- Modular invariant under S-duality group $S L(2, \mathbb{Z})$ of Type IIB;
- satisfies a Laplace-eigenvalue equation,

$$
\Delta E_{s}=s(s-1) E_{s} \quad \Delta=4 T_{2}^{2} \partial_{T} \partial_{\bar{T}}
$$

- and admits the following asymptotics near the cusp $T_{2} \rightarrow \infty$,

$$
E_{s}(T, \bar{T})=\frac{2 \zeta(2 s)}{\pi^{s}} T_{2}^{s}+\frac{2 \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{\Gamma(s) \pi^{s-\frac{1}{2}}} T_{2}^{1-s}+\mathcal{O}\left(e^{-2 \pi T_{2}}\right)
$$

- Perturbative contributions only from genus 0 and 1.

Supersymmetry and S-duality

- Laplace-eigenvalue eq results from space-time supersymmetry [Green, Sethi, 1998]
- Eisenstein series $=$ unique modular solution with polynomial growth at cusp
- Predicts vanishing contributions for high enough loop order,

\mathcal{R}^{4}	$1 / 2 \mathrm{BPS}$	$h \geq 2$	$E_{\frac{3}{2}}$
$D^{4} \mathcal{R}^{4}$	$1 / 4 \mathrm{BPS}$	$h \geq 3$	$E_{\frac{5}{2}}$
$D^{6} \mathcal{R}^{4}$	$1 / 8 \mathrm{BPS}$	$h \geq 4$	$(\Delta-12) \mathcal{E}_{D^{6} \mathcal{R}^{4}}=\left(E_{\frac{3}{2}}\right)^{2}$
[Green, Gutperle, Vanhove 1997;	Green, Vanhove 2005]		

- Predicts relations between non-vanishing contributions (such as with tree-level),

$$
\begin{array}{rlrl}
\mathcal{R}^{4} & h & =1 &
\end{array}
$$

Focus of this talk

- $D^{6} \mathcal{R}^{4}$ at two-loops.
- involves a new modular object, the "Zhang-Kawazumi-invariant".
- Structure of $D^{2 w} \mathcal{R}^{4}$ effective interactions for $w \geq 4$.
- no longer governed by BPS;
- at one loop produces rich structure of non-holomorphic modular forms.
- natural generalization to two-loops (beyond the scope of this talk)
- In both cases, we will find that the integrands on moduli space \star of compact Riemann surfaces (without punctures), * having integrated over all vertex operator positions,
- obey families of interesting differential and algebraic equations;
- specify $D^{2 w} \mathcal{R}^{4}$ for un-compactified or compactified space-times.

$D^{6} \mathcal{R}^{4}$ at genus-two

- Start with Type II four-graviton amplitude at genus 2, [ED, Phong 2005]

$$
\begin{aligned}
\mathcal{A}_{2} & =\frac{\pi}{64} \kappa^{2} \mathcal{R}^{4} \int_{\mathcal{M}_{2}} d \mu_{2} \mathcal{B}_{2}(s, t, u \mid \Omega) \\
\mathcal{B}_{2} & =\int_{\Sigma^{4}} \mathcal{Y} \wedge \overline{\mathcal{Y}} \exp \sum_{i<j} s_{i j} G(i, j)
\end{aligned}
$$

$-\mathcal{M}_{2}$ is the moduli space with Siegel volume form $d \mu_{2}$;

- $G(i, j)$ is the scalar Green function;
$-\mathcal{Y}=(s-t) \Delta(1,3) \wedge \Delta(4,2)+2$ permutations;
- $\Delta(i, j)$ is a holomorphic $(1,0)_{i} \otimes(1,0)_{j}$ form independent of s, t, u.
- Contributions produced to local effective interactions
$-\mathcal{R}^{4} \quad$: zero, since \mathcal{Y} vanishes for $s=t=u=0$;
- $D^{4} \mathcal{R}^{4}$: non-zero, \mathcal{B}_{2} constant on \mathcal{M}_{2};
- $D^{6} \mathcal{R}^{4}$: non-zero, one power of G brought down in integral over Σ^{4};

$$
\mathcal{B}_{2}=32\left(s^{2}+t^{2}+u^{2}\right)+192 \operatorname{stu} \varphi(\Omega)+\mathcal{O}\left(s^{4}, \cdots, u^{4}\right)
$$

$-\varphi(\Omega)$ coincides with the Zhang Kawazumi invariant [ED, Green 2013].

The Zhang-Kawazumi invariant for genus-two

- Definition of the ZK-invariant
- Let A_{I}, B_{I} be canonical homology basis
$-\omega_{I}$ holó $(1,0)$ forms with $\oint_{A_{I}} \omega_{J}=\delta_{I J}$ and $\oint_{B_{I}} \omega_{J}=\Omega_{I J}=X_{I J}+i Y_{I J}$;

$$
8 \varphi(\Omega)=\sum_{I, J, K, L}\left(Y_{I J}^{-1} Y_{K L}^{-1}-2 Y_{I L}^{-1} Y_{J K}^{-1}\right) \int_{\Sigma^{2}} G(x, y) \omega_{I}(x) \overline{\omega_{J}(x)} \omega_{K}(y) \overline{\omega_{L}(y)}
$$

- equivalent to definition via Arakelov geometry [Zhang 2007, Kawazumi 2008]
- related to the genus-two Faltings invariant [De Jong 2010]
- invariant under the modular group $S p(4, \mathbb{Z})$
- Direct evaluation of $\int_{\mathcal{M}_{2}} d \mu_{2} \varphi(\Omega)$ appeared out of reach ... until ...

ZK satisfies a Laplace eigenvalue equation

- Theorem : genus-two ZK invariant satisfies remarkably simple equation,

$$
(\Delta-5) \varphi=-2 \pi \delta_{S N}
$$

- Δ is the Laplace-Beltrami operator on \mathcal{M}_{2} with Siegel metric;
- $\delta_{S N}$ has support on separating node (into two genus-one surfaces)
[ED, Green, Pioline, R. Russo 2014]
- Using Theorem, the integral over \mathcal{M}_{2} reduces to an integral over $\partial \mathcal{M}_{2}$,

$$
\int_{\mathcal{M}_{2}} d \mu_{2} \varphi=\frac{1}{5} \int_{\mathcal{M}_{2}} d \mu_{2}\left(\Delta \varphi+2 \pi \delta_{S N}\right)=\frac{2 \pi^{3}}{45}
$$

- agrees with prediction from Supersymmetry, S-duality, M-theory on \mathbb{T}^{2}

Evidence and Proof

- Initial indications from $D^{6} \mathcal{R}^{4}$ interaction for compactification on \mathbb{T}^{d},

$$
\mathcal{E}_{D^{6} \mathcal{R}^{4}}^{(2)}=\int_{\mathcal{M}_{2}} d \mu_{2} \varphi(\Omega) \Gamma_{d}\left(T_{d} \mid \Omega\right)
$$

- Γ_{d} is the torus partition function dependent on scalar vevs T_{d};

$$
T_{0} \in S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{R}) / S O(2), \cdots, T_{7} \in E_{8(8)}(\mathbb{Z}) \backslash E_{8(8)}(\mathbb{R}) / S U(8)
$$

$-\Gamma_{d}$ satisfies $\left(2 \Delta-\Delta_{T_{d}}+d(3-d)\right) \Gamma_{d}=0 ;$

- Supersymmetry \& duality conjectured relation with genus-one $\mathcal{E}_{\mathcal{R}^{4}}^{(1)}$

$$
\left(\Delta_{T_{d}}-\frac{6(4-d)(d+4)}{8-d}\right) \mathcal{E}_{D^{6} \mathcal{R}^{4}}^{(2)}=-\left(\mathcal{E}_{\mathcal{R}^{4}}^{(1)}\right)^{2}+40 \zeta(3) \delta_{d, 4}
$$

- Further supported by asymptotic behavior of φ [De Jong 2012, Wentworth 1991]
- Direct proof using deformations of complex structures on Riemann surfaces
- Δ on \mathcal{M}_{2} obtained from insertions of 2 stress tensors, $T_{z z}$ and $T_{\bar{z} \bar{z}}$
[ED, Green, Pioline, R. Russo 2014]

Generalizations of KZ-invariant

- The KZ-invariant exists for all genera $h \geq 2$ [Zhang 2007, Kawazumi 2008]
- but does not satisfy a simple Laplace-eigenvalue eq for $h \geq 3$;
- likely is not the correct object for string theory at $h \geq 3$.
- But the integrands on \mathcal{M}_{2} for the coefficients of $D^{8} \mathcal{R}^{4}, D^{10} \mathcal{R}^{4}, \cdots$
- do naturally emerge from string theory;
- are modular invariants which generalize ZK;
- satisfy more complicated Laplace-type equations [ED, Green, Vanhove] ... in progress ...
- Actually, even the corresponding genus-one problem remains to be explored...

Genus-one effective interactions

- The genus-one four-graviton amplitude is an integral over moduli space \mathcal{M}_{1},

$$
\mathcal{A}_{1}^{(4)}=2 \pi \kappa^{2} \mathcal{R}^{4} \int_{\mathcal{M}_{1}} d \mu_{1} \mathcal{B}_{1}(s, t, u \mid \tau)
$$

- The partial amplitude \mathcal{B}_{1} reduces to an integral over four copies of the torus Σ,

$$
\mathcal{B}_{1}(s, t, u \mid \tau)=\left(\prod_{i=1}^{4} \int_{\Sigma} \frac{d^{2} z_{i}}{\tau_{2}}\right) \exp \left\{\sum_{1 \leq i<j \leq 4} s_{i j} G\left(z_{i}-z_{j} \mid \tau\right)\right\}
$$

- The scalar Green function on Σ is a Fourier sum of torus momenta $(m, n) \in \mathbb{Z}^{2}$, where $z=\alpha+\beta \tau$ with $\alpha, \beta \in \mathbb{R} / \mathbb{Z}$,

$$
G(z \mid \tau)=\sum_{(m, n) \neq(0,0)} \frac{\tau_{2}}{\pi|m \tau+n|^{2}} e^{2 \pi i(m \alpha-n \beta)}
$$

Worldsheet Feynman diagrams

- The expansion in powers of $s_{i j}$ may be organized in Feynman diagrams;
- Each integration point z_{i} on Σ is represented by a vertex;
- Each Green function $G\left(z_{i}-z_{j} \mid \tau\right)$ by a line - between z_{i} and z_{j};
- diagrams with a single G ending in a point vanish by $\int_{\Sigma} d^{2} z G(z \mid \tau)=0$
- a diagram with w lines of G,
* has weight w;
\star contributes to $D^{2 w} \mathcal{R}^{4}$.

Worldsheet Feynman diagrams (connected)

Worldsheet Feynman diagrams (connected)

$D^{4} \mathcal{R}^{4}$
$D^{6} \mathcal{R}^{4}$
$D^{8} \mathcal{R}^{4}$

$D^{10} \mathcal{R}^{4}$

Kronecker-Eisenstein series

- One-loop worldsheet Feynman diagrams generate Eisenstein series.
- for example to order $s^{2}+t^{2}+u^{2}$

$$
\int_{\Sigma} \frac{d^{2} z}{\tau_{2}} G(z \mid \tau)^{2}=\sum_{(m, n) \neq(0,0)} \frac{\tau_{2}^{2}}{\pi^{2}|m \tau+n|^{4}}=E_{2}(\tau)
$$

- Two-loop worldsheet Feynman diagrams generate "Kronecker-Eisenstein series".

$$
C_{a_{1}, a_{2}, a_{3}}(\tau)=\sum_{\left(m_{r}, n_{r}\right) \neq(0,0)} \delta_{m, 0} \delta_{n, 0} \prod_{r=1}^{3}\left(\frac{\tau_{2}}{\pi\left|m_{r} \tau+n_{r}\right|^{2}}\right)^{a_{r}}
$$

- The total worldsheet momenta $m=m_{1}+m_{2}+m_{3}, n=n_{1}+n_{2}+n_{3}$ vanish;
- the weight is $w=a_{1}+a_{2}+a_{3}$;
- For our diagrams we have $a_{r} \geq 1$ and the sums converge;
- $C_{a_{1}, a_{2}, a_{3}}(\tau)$ is a modular function under $S L(2, \mathbb{Z})$.

Laplacian on moduli space

- What is the structure of the space of Kronecker-Eisenstein series $C_{a, b, c}(\tau)$?
- Tools : The Laplacian $\Delta=4 \tau_{2}^{2} \partial_{\tau} \partial_{\bar{\tau}}$ acts algebraically on the space of $C_{a, b, c}$.

$$
\begin{aligned}
\Delta C_{a, b, c}= & a b C_{a+1, b-1, c}+\frac{1}{2} a b C_{a+1, b+1, c-2}-2 a b C_{a+1, b, c-1} \\
& +\frac{1}{2} a(a-1) C_{a, b, c}+5 \text { permutations of }(a, b, c)
\end{aligned}
$$

- Δ preserves the "weight" $w=a+b+c$;
- proven by differentiating term by term and using algebraic rearrangements;
- One of the subscript indices on the right side may equal 0 or -1 ,

$$
\begin{array}{rlrl}
C_{a, b, 0} & =E_{a} E_{b}-E_{a+b} & a+b \geq 3 \\
C_{a, b,-1} & =E_{a-1} E_{b}+E_{a} E_{b-1} & a, b \geq 2
\end{array}
$$

- all logarithmic divergences of the form E_{1} cancel out.

Examples at low weight w

- We find inhomogeneous Laplace-eigenvalue equations,

$$
\begin{aligned}
& w=3 \\
& C_{1,1,1}=\bullet \bullet \\
& \Delta C_{1,1,1}=6 E_{3} \\
& \text { - Use } \Delta E_{3}=6 E_{3} \text { to get } \Delta\left(C_{1,1,1}-E_{3}\right)=0 \text {; } \\
& \text { - constant determined from asymptotics } C_{1,1,1}=E_{3}+\zeta(3) \\
& \text { (obtained earlier by Zagier using direct calculation of sums) } \\
& w=4 \\
& (\Delta-2) C_{2,1,1}=9 E_{4}-E_{2}^{2} \\
& w=5 \\
& C_{3,1,1}=\text { ! } \\
& (\Delta-6) C_{3,1,1}=3 C_{2,2,1}+16 E_{5}-4 E_{2} E_{3} \\
& w=5 \\
& C_{2,2,1}=. \\
& \Delta C_{2,2,1}=8 E_{5}
\end{aligned}
$$

- Note eigenvalues of the form $s(s-1)$ for $s=1,2,3$;

Structure Theorem for $C_{a, b, c}$ modular functions

- $C_{a, b, c}(\tau)$ are linear combinations of modular functions $\mathfrak{C}_{w ; s ; p}(\tau)$ which satisfy

$$
(\Delta-s(s-1)) \mathfrak{C}_{w ; s ; \mathfrak{p}}=\mathfrak{F}_{w ; s ; \mathfrak{p}}\left(E_{s^{\prime}}, \zeta\left(s^{\prime \prime}\right)\right)
$$

- an inhomogeneous eigenvalue equation of weight $w=a+b+c$;
$-\mathfrak{F}$ is a polynomial of degree 2 in $E_{s^{\prime}}$ with $2 \leq s^{\prime} \leq w$;
- depends on $\zeta\left(s^{\prime \prime}\right)$ for $s^{\prime \prime}$ an odd integer $3 \leq s^{\prime \prime} \leq w$;

$$
s=w-2 \mathfrak{m} \quad \mathfrak{m}=1, \cdots,\left[\frac{w-1}{2}\right] \quad \mathfrak{p}=0, \cdots,\left[\frac{s-1}{3}\right]
$$

- Examples at low weight

$$
\begin{array}{lll}
w=3 & s=1 & 0^{(1)} \\
w=4 & s=2 & 2^{(1)} \\
w=5 & s=1,3 & 0^{(1)} \oplus 6^{(1)} \\
w=6 & s=2,4 & 2^{(1)} \oplus 12^{(2)} \\
w=7 & s=1,3,5 & 0^{(1)} \oplus 6^{(1)} \oplus 20^{(2)} \\
w=8 & s=2,4,6 & 2^{(1)} \oplus 12^{(2)} \oplus 30^{(2)}
\end{array}
$$

The generating function

- There is a natural generating function,

$$
\mathcal{W}\left(t_{1}, t_{2}, t_{2} \mid \tau\right)=\sum_{a, b, c=1}^{\infty} t_{1}^{a-1} t_{2}^{b-1} t_{3}^{c-1} C_{a, b, c}(\tau)
$$

Summing gives the sunset diagram for three scalars with masses $M_{r}^{2}=-t_{r} \tau_{2}$,

$$
\mathcal{W}\left(t_{1}, t_{2}, t_{2} \mid \tau\right)=\sum_{\left(m_{r}, n_{r}\right) \neq(0,0)} \delta_{m, 0} \delta_{n, 0} \prod_{r=1}^{3}\left(\frac{\tau_{2}}{\pi\left|m_{r} \tau+n_{r}\right|^{2}-t_{r} \tau_{2}}\right)
$$

- The algebraic representation of the Laplacian induces a differential action on \mathcal{W},

$$
\Delta \mathcal{W}-\mathfrak{L}^{2} \mathcal{W}=\mathfrak{R}
$$

$\mathfrak{D}=t_{1} \partial_{1}+t_{2} \partial_{2}+t_{3} \partial_{3}$
$\mathfrak{L}^{2}=\mathfrak{D}^{2}+\mathfrak{D}+\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}-2 t_{1} t_{2}-2 t_{2} t_{3}-2 t_{3} t_{1}\right)\left(\partial_{1} \partial_{2}+\partial_{2} \partial_{3}+\partial_{3} \partial_{1}\right)$
$\mathfrak{R}=$ quadratic polynomial in the Eisenstein series E_{s}

Proof via generating function

- Permutation symmetry in (a, b, c) induces permutation symmetry in $\left(t_{1}, t_{2}, t_{3}\right)$.
$-\mathfrak{S}_{3}$ adapted coordinates,

$$
\begin{aligned}
u & =t_{1}+t_{2}+t_{3} & \varepsilon & =e^{2 \pi i / 3} \\
v / \sqrt{2} & =t_{1}+\varepsilon t_{2}+\varepsilon^{2} t_{3} & \left(t_{1}, t_{3}, t_{2}\right)(u, v, \bar{v}) & =(u, \bar{v}, v) \\
\bar{v} / \sqrt{2} & =t_{1}+\varepsilon^{2} t_{2}+\varepsilon t_{3} & \left(t_{2}, t_{3}, t_{1}\right)(u, v, \bar{v}) & =\left(u, \varepsilon^{2} v, \varepsilon \bar{v}\right)
\end{aligned}
$$

$-\mathfrak{L}^{2}=\mathfrak{L}_{0}^{2}-\mathfrak{L}_{1}^{2}-\mathfrak{L}_{2}^{2}$ Casimir of $S O(1,2)$ generated by $\mathfrak{L}_{0}, \mathfrak{L}_{1}, \mathfrak{L}_{2}$;

- Simultaneously diagonalize the \mathfrak{S}_{3}-invariant operators $\mathfrak{D}, \mathfrak{L}_{0}^{2}$, and \mathfrak{L}^{2}

$$
\begin{array}{ll}
\mathfrak{D} \mathcal{W}_{w ; s ; \mathfrak{p}}=w \mathcal{W}_{w ; s ; \mathfrak{p}} & \mathfrak{D}=t_{1} \partial_{1}+t_{2} \partial_{2}+t_{3} \partial_{3} \\
\mathfrak{L}^{2} \mathcal{W}_{w ; s ; \mathfrak{p}}=s(s-1) \mathcal{W}_{w ; s ; \mathfrak{p}} & \mathfrak{L}^{2}=-\left(u^{2}-2 v \bar{v}\right)\left(\partial_{u}^{2}-2 \partial_{v} \partial_{\bar{v}}\right) \\
\mathfrak{L}_{0}^{2} \mathcal{W}_{w ; s ; \mathfrak{p}}=-9 \mathfrak{p}^{2} \mathcal{W}_{w ; s ; \mathfrak{p}} & \mathfrak{L}_{0}=i v \partial_{v}-i \bar{v} \partial_{\bar{v}}
\end{array}
$$

$-\mathfrak{S}_{3}$-invariance of eigenfunctions requires \mathfrak{p} to be integer;

- which explains multiplicities $[(s-1) / 3]$.
\Longrightarrow constructive proof of Structure Theorem.

Recall

Conjectured relation for modular functions in $D^{8} \mathcal{R}^{4}$

- $D^{8} \mathcal{R}^{4}$ requires

- The modular function D_{4} is not of the form $C_{a, b, c}$
- no useful algebraic representation of the Laplacian is available (yet ?)
- Tools: take an educated guess + check asymptotic behavior near cusp.
- Relations for $C_{a, b, c}$ involved linear combinations for given weight;
- Consider combinations of $D_{4}, C_{2,1,1}, E_{4}$, and E_{2}^{2}

$$
(\Delta-2)\left(D_{4}+\alpha C_{2,1,1}+\beta E_{2}^{2}+\gamma E_{4}\right)
$$

- Inspection of asymptotics near the cusp $\tau_{2} \rightarrow \infty$, leads us to conjecture,

$$
D_{4}=24 C_{2,1,1}+3 E_{2}^{2}-18 E_{4}
$$

- as an exact relation between modular functions and Feynman diagrams
- Additional support from direct numerical evaluation of the multiple sums.

Structure of the asymptotics near the cusp

- The expansion near the cusp $\tau_{2} \rightarrow \infty$ takes the following form,

$$
D_{4}(\tau)=\sum_{k, \bar{k}=0}^{\infty} \mathcal{D}_{4}^{(k, \bar{k})}\left(\pi \tau_{2}\right) q^{k} \bar{q}^{\bar{k}} \quad q=e^{2 \pi i \tau}
$$

- We have checked the following asymptotics (similar asymptotics for $C_{2,1,1}, E_{4}, E_{2}^{2}$)

$$
\begin{aligned}
& \mathcal{D}_{4}^{(0,0)}(y)=\frac{y^{4}}{945}+\frac{2 \zeta(3) y}{3}+\frac{10 \zeta(5)}{y}-\frac{3 \zeta(3)^{2}}{y^{2}}+\frac{9 \zeta(7)}{4 y^{3}} \\
& \mathcal{D}_{4}^{(0,1)}(y)=\frac{4 y^{2}}{15}+\frac{2 y}{3}+2+\frac{4}{y}+\frac{12 \zeta(3)}{y}-\frac{6 \zeta(3)}{y^{2}}+\frac{9}{2 y^{2}}+\frac{9}{4 y^{3}} \\
& \mathcal{D}_{4}^{(1,0)}(y)=\mathcal{D}_{4}^{(0,1)}(y)
\end{aligned}
$$

How could the conjecture fail ?

- Consider the difference $F=D_{4}-24 C_{2,1,1}-3 E_{2}^{2}+18 E_{4}$
- the conjecture states $F=0$
- If the conjecture were to fail, then $F \neq 0$ and its properties are,
- modular function under $S L(2, \mathbb{Z})$;
- its pure power part in the expansion near the cusp vanishes;
$\Longrightarrow F$ is a cusp form
- Vanishing of leading exponential restricts it further.
- Cusp forms are rather rare objects.
- For example, Maass forms are cusp forms that satisfy $\Delta f_{s}=s(s-1) f_{s}$;
- require $s=\frac{1}{2}+i \sigma$ with $\sigma>13.8$ [communication from Stephen Miller]
- If conjecture fails, then we have an interesting new construction of cusp forms.

Conjectured relation for modular functions in $D^{10} \mathcal{R}^{4}$

$D^{10} \mathcal{R}^{4}$ requires

in addition to $E_{5}, C_{3,1,1}, E_{2} E_{3}$, and $E_{2} C_{1,1,1}$ functions of weight 5 .

- Educated guesses and inspection of asymptotics near the cusp lead us to conjecture,

$$
\begin{aligned}
D_{5} & =60 C_{3,1,1}+10 E_{2} C_{1,1,1}-48 E_{5}+16 \zeta(5) \\
40 D_{3,1,1} & =300 C_{3,1,1}+120 E_{2} E_{3}-276 E_{5}+7 \zeta(5) \\
10 D_{2,2,1} & =20 C_{3,1,1}-4 E_{5}+3 \zeta(5)
\end{aligned}
$$

- We expect this pattern will continue for higher $D^{2 w} \mathcal{R}^{4}$ interactions with $w>5$.

Genus-one coefficients of $D^{8} \mathcal{R}^{4}$ and $D^{10} \mathcal{R}^{4}$

- Integration over moduli space \mathcal{M}_{1} produces behavior that is non-analytic in s, t, u;
- branch cuts due to loops with massless strings for $s, t, u, \ll 1$;
- non-analytic part may be isolated systematically,
[ED, Phong 1993; Green, Russo, Vanhove 2008]
- Analytic part is unique only after non-analytic part has been specified.
- Partition fundamental domain \mathcal{M}_{1} at fixed large $L \gg 1$
$-\tau_{2}>L$ gives non-analytic contributions in s, t, u;
$-\tau_{2}<L$ gives analytic contributions in s, t, u;
- For compactifications on \mathbb{T}^{d}, for example,

$$
\mathcal{E}_{D^{8} \mathcal{R}^{4}}\left(T_{d}, L\right)=\frac{1}{2} \int_{\mathcal{M}_{1}\left(\tau_{2}<L\right)} d \mu_{1}\left(\Delta C_{2,1,1}-5 E_{4}+E_{2}^{2}\right) \Gamma_{d}\left(T_{d} \mid \tau\right)
$$

- non-analytic parts cancel when comparing different moduli T_{d} and T_{d}^{\prime};
- "Differences" produce well-defined and unique analytic parts as $L \rightarrow \infty$.

Summary and outlook

- Low energy expansion of string theory has revealed a rich structure of
- non-holomorphic Kronecker-Eisenstein series on genus-one Riemann surfaces;
- Zhang-Kawazumi modular invariant on genus-two Riemann surfaces;
- differential and algebraic interrelations;
- concrete analytic evaluation of local effective interactions beyond BPS.
- Extensions at genus-one
- Understand general interrelations of Kronecker-Eisenstein series beyond $C_{a, b, c}$;
- Identify structure of the ring of all such non-holomorphic modular forms.
- Extensions at genus-two
- Lifts to toroidal compactifications [Pioline 2015]
- Differential relations obeyed by higher order generalizations of Zhang-Kawazumi invariants [ED, Green, Vanhove] ... in progress ..

