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... Modular Structure ...
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Expansions of Type IIB Superstring Theory

gs

energy

tree-level
one-loop
two-loop

R
R4

D4R4
D6R4

conjectured via S-duality,
supersymmetry and M-theory

• Superstring Perturbation Theory in powers of gs
– holds for all energies
– but for weak coupling gs only

• Classical supergravity (R)
– leading low energy expansion of string theory
– holds for all couplings gs

• String induced effective interactions R4, D4R4, D6R4

– Evaluated in perturbation theory for gs ≪ 1
– Conjectured for all couplings via S-duality, supersmmetry and M-theory
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Effective Interactions

Exchange of massive string states produces local effective interactions.

•

• Four-graviton amplitude in Type II at tree-level,

A0 = κ2R4 1

stu

Γ(1− s) Γ(1− t) Γ(1− u)

Γ(1 + s) Γ(1 + t) Γ(1 + u)

– κ2 = Newton’s constant in 10 dimensions;
– R4 = unique maximally supersymmetric contraction of 4 Weyl tensors
– sij = −α′ki · kj/2, s = s12, t = s13, u = s14 with s+ t+ u = 0

• Low energy expansion corresponds to |s|, |t|, |u| ≪ 1

1

stu
+ 2ζ(3) + ζ(5)(s2 + t2 + u2) + 2ζ(3)2stu+ · · ·

massless R4 D4R4 D6R4
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D-instantons and Eisenstein series

Cambridge 1997 · · · [Green Gutperle]

• Conjectured full R4 effective interaction from D-instanton calculation,

(T2)
1
2 E3

2
(T )R4 T = T1 + iT2, T2 =

1

gs

• The (non-holomorphic) Eisenstein series,

Es(T ) =
∑

(m,n) 6=(0,0)

(T2)
s

πs|mT + n|2s

– Modular invariant under S-duality group SL(2,Z) of Type IIB;
– satisfies a Laplace-eigenvalue equation,

∆Es = s(s − 1)Es ∆ = 4T
2
2 ∂T∂T̄

– and admits the following asymptotics near the cusp T2 → ∞,

Es(T, T̄ ) =
2ζ(2s)

πs
T

s
2 +

2Γ(s − 1
2)ζ(2s − 1)

Γ(s)πs−1
2

T
1−s
2 + O(e

−2πT2)

– Perturbative contributions only from genus 0 and 1.
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Supersymmetry and S-duality

• Laplace-eigenvalue eq results from space-time supersymmetry [Green, Sethi, 1998]

– Eisenstein series = unique modular solution with polynomial growth at cusp

• Predicts vanishing contributions for high enough loop order,

R4
1/2 BPS h ≥ 2 E3

2

D
4R4

1/4 BPS h ≥ 3 E5
2

D
6R4

1/8 BPS h ≥ 4 (∆ − 12)ED6R4 = (E3
2
)
2

[Green, Gutperle, Vanhove 1997; Green, Vanhove 2005]

• Predicts relations between non-vanishing contributions (such as with tree-level),

R4 h = 1 [Green, Gutperle 1997]

D
4R4

h = 2 [ED, Gutperle, Phong 2005]

D
6R4

h = 2 [ED, Green, Pioline, Russo 2014]

h = 3 [Gomez, Mafra 2013]
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Focus of this talk

• D6R4 at two-loops.

– involves a new modular object, the “Zhang-Kawazumi-invariant”.

• Structure of D2wR4 effective interactions for w ≥ 4.

– no longer governed by BPS;
– at one loop produces rich structure of non-holomorphic modular forms.
– natural generalization to two-loops (beyond the scope of this talk)

• In both cases, we will find that the integrands on moduli space
⋆ of compact Riemann surfaces (without punctures),
⋆ having integrated over all vertex operator positions,

– obey families of interesting differential and algebraic equations;
– specify D2wR4 for un-compactified or compactified space-times.
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D6R4 at genus-two

• Start with Type II four-graviton amplitude at genus 2, [ED, Phong 2005]

A2 =
π

64
κ2R4

∫

M2

dµ2B2(s, t, u|Ω)

B2 =

∫

Σ4
Y ∧ Ȳ exp

∑

i<j

sijG(i, j)

– M2 is the moduli space with Siegel volume form dµ2;
– G(i, j) is the scalar Green function;
– Y = (s− t)∆(1, 3) ∧∆(4, 2) + 2 permutations;
– ∆(i, j) is a holomorphic (1, 0)i ⊗ (1, 0)j form independent of s, t, u.

• Contributions produced to local effective interactions
– R4 : zero, since Y vanishes for s = t = u = 0;
– D4R4 : non-zero, B2 constant on M2;
– D6R4 : non-zero, one power of G brought down in integral over Σ4;

B2 = 32(s2 + t2 + u2) + 192 stuϕ(Ω) +O(s4, · · · , u4)

– ϕ(Ω) coincides with the Zhang Kawazumi invariant [ED, Green 2013].
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The Zhang-Kawazumi invariant for genus-two

• Definition of the ZK-invariant

– Let AI, BI be canonical homology basis
– ωI holó (1,0) forms with

∮

AI
ωJ = δIJ and

∮

BI
ωJ = ΩIJ = XIJ + iYIJ ;

8ϕ(Ω) =
∑

I,J,K,L

(

Y −1
IJ Y −1

KL − 2Y −1
IL Y −1

JK

)

∫

Σ2
G(x, y)ωI(x)ωJ(x)ωK(y)ωL(y)

– equivalent to definition via Arakelov geometry [Zhang 2007, Kawazumi 2008]

– related to the genus-two Faltings invariant [De Jong 2010]

– invariant under the modular group Sp(4,Z)

• Direct evaluation of
∫

M2
dµ2ϕ(Ω) appeared out of reach ... until ...
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ZK satisfies a Laplace eigenvalue equation

• Theorem : genus-two ZK invariant satisfies remarkably simple equation,

(∆− 5)ϕ = −2πδSN

– ∆ is the Laplace-Beltrami operator on M2 with Siegel metric;
– δSN has support on separating node (into two genus-one surfaces)

[ED, Green, Pioline, R. Russo 2014]

• Using Theorem, the integral over M2 reduces to an integral over ∂M2,
∫

M2

dµ2ϕ =
1

5

∫

M2

dµ2

(

∆ϕ+ 2πδSN

)

=
2π3

45

– agrees with prediction from Supersymmetry, S-duality, M-theory on T
2
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Evidence and Proof

• Initial indications from D6R4 interaction for compactification on T
d,

E
(2)

D6R4 =

∫

M2

dµ2ϕ(Ω) Γd(Td|Ω)

– Γd is the torus partition function dependent on scalar vevs Td;
T0 ∈ SL(2,Z)\SL(2,R)/SO(2), · · · , T7 ∈ E8(8)(Z)\E8(8)(R)/SU(8)

– Γd satisfies (2∆−∆Td
+ d(3− d))Γd = 0;

– Supersymmetry & duality conjectured relation with genus-one E
(1)

R4

(

∆Td
−

6(4− d)(d+ 4)

8− d

)

E
(2)

D6R4 = −
(

E
(1)

R4

)2
+ 40ζ(3)δd,4

• Further supported by asymptotic behavior of ϕ [De Jong 2012, Wentworth 1991]

• Direct proof using deformations of complex structures on Riemann surfaces
– ∆ on M2 obtained from insertions of 2 stress tensors, Tzz and Tz̄z̄

[ED, Green, Pioline, R. Russo 2014]
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Generalizations of KZ-invariant

• The KZ-invariant exists for all genera h ≥ 2 [Zhang 2007, Kawazumi 2008]

– but does not satisfy a simple Laplace-eigenvalue eq for h ≥ 3;
– likely is not the correct object for string theory at h ≥ 3.

• But the integrands on M2 for the coefficients of D8R4, D10R4, · · ·

– do naturally emerge from string theory;
– are modular invariants which generalize ZK;
– satisfy more complicated Laplace-type equations

[ED, Green, Vanhove] ... in progress ...

• Actually, even the corresponding genus-one problem remains to be explored · · ·
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Genus-one effective interactions

• The genus-one four-graviton amplitude is an integral over moduli space M1,

A
(4)
1 = 2πκ2R4

∫

M1

dµ1B1(s, t, u|τ)

• The partial amplitude B1 reduces to an integral over four copies of the torus Σ,

B1(s, t, u|τ) =

(

4
∏

i=1

∫

Σ

d2zi
τ2

)

exp
{

∑

1≤i<j≤4

sij G(zi − zj|τ)
}

– The scalar Green function on Σ is a Fourier sum of torus momenta (m,n) ∈ Z
2,

where z = α+ βτ with α, β ∈ R/Z,

G(z|τ) =
∑

(m,n) 6=(0,0)

τ2
π|mτ + n|2

e2πi(mα−nβ)
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Worldsheet Feynman diagrams

• The expansion in powers of sij may be organized in Feynman diagrams;

– Each integration point zi on Σ is represented by a vertex;
– Each Green function G(zi − zj|τ) by a line —— between zi and zj;

– diagrams with a single G ending in a point vanish by
∫

Σ
d2zG(z|τ) = 0

– a diagram with w lines of G,
⋆ has weight w;
⋆ contributes to D2wR4.
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Worldsheet Feynman diagrams (connected)

D4R4 • •

D6R4

•

•

•
• •

D8R4

•

•

•

•

•

•

• • •

D10R4

•

•

•

•

•

•

• • •

•

•

•

•

•

•

•



Eric D’Hoker Modular structure of the Type IIB superstring in the low energy expansion

Worldsheet Feynman diagrams (connected)

D4R4 • •

D6R4

•

•

•
• •

D8R4

•

•

•

•

•

•

• • •

D10R4

•

•

•

•

•

•

• • •

•

•

•

•

•

•

•

Eisenstein Ca,b,c
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Kronecker-Eisenstein series

• One-loop worldsheet Feynman diagrams generate Eisenstein series.
– for example to order s2 + t2 + u2

∫

Σ

d2z

τ2
G(z|τ)2 =

∑

(m,n) 6=(0,0)

τ22
π2|mτ + n|4

= E2(τ)

• Two-loop worldsheet Feynman diagrams generate “Kronecker-Eisenstein series”.

Ca1,a2,a3(τ) =
∑

(mr,nr) 6=(0,0)

δm,0 δn,0

3
∏

r=1

(

τ2
π|mrτ + nr|2

)ar

– The total worldsheet momenta m = m1 +m2 +m3, n = n1 + n2 + n3 vanish;
– the weight is w = a1 + a2 + a3;

– For our diagrams we have ar ≥ 1 and the sums converge;
– Ca1,a2,a3(τ) is a modular function under SL(2,Z).
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Laplacian on moduli space

• What is the structure of the space of Kronecker-Eisenstein series Ca,b,c(τ) ?

• Tools : The Laplacian ∆ = 4τ22∂τ∂τ̄ acts algebraically on the space of Ca,b,c.

∆Ca,b,c = abCa+1,b−1,c +
1

2
abCa+1,b+1,c−2 − 2abCa+1,b,c−1

+
1

2
a(a− 1)Ca,b,c + 5 permutations of (a, b, c)

– ∆ preserves the “weight” w = a+ b+ c;
– proven by differentiating term by term and using algebraic rearrangements;

• One of the subscript indices on the right side may equal 0 or −1,

Ca,b,0 = EaEb − Ea+b a + b ≥ 3

Ca,b,−1 = Ea−1Eb + EaEb−1 a, b ≥ 2

– all logarithmic divergences of the form E1 cancel out.
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Examples at low weight w

• We find inhomogeneous Laplace-eigenvalue equations,

w = 3 C1,1,1 = • • ∆C1,1,1 = 6E3

– Use ∆E3 = 6E3 to get ∆(C1,1,1 − E3) = 0;
– constant determined from asymptotics C1,1,1 = E3 + ζ(3)

(obtained earlier by Zagier using direct calculation of sums)

w = 4 C2,1,1 = • •
•

(∆− 2)C2,1,1 = 9E4 − E2
2

w = 5 C3,1,1 = • •
• •

(∆− 6)C3,1,1 = 3C2,2,1 + 16E5 − 4E2E3

w = 5 C2,2,1 = • ••
•

∆C2,2,1 = 8E5

– Note eigenvalues of the form s(s− 1) for s = 1, 2, 3;
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Structure Theorem for Ca,b,c modular functions

• Ca,b,c(τ) are linear combinations of modular functions Cw;s;p(τ) which satisfy
(

∆− s(s− 1)
)

Cw;s;p = Fw;s;p

(

Es′, ζ(s
′′)
)

– an inhomogeneous eigenvalue equation of weight w = a+ b+ c;
– F is a polynomial of degree 2 in Es′ with 2 ≤ s′ ≤ w;
– depends on ζ(s′′) for s′′ an odd integer 3 ≤ s′′ ≤ w;

s = w − 2m m = 1, · · · ,
[

w − 1

2

]

p = 0, · · · ,
[

s − 1

3

]

• Examples at low weight

w = 3 s = 1 0
(1)

w = 4 s = 2 2(1)

w = 5 s = 1, 3 0
(1) ⊕ 6

(1)

w = 6 s = 2, 4 2
(1) ⊕ 12

(2)

w = 7 s = 1, 3, 5 0(1) ⊕ 6(1) ⊕ 20(2)

w = 8 s = 2, 4, 6 2
(1) ⊕ 12

(2) ⊕ 30
(2)
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The generating function

• There is a natural generating function,

W(t1, t2, t2|τ) =
∞
∑

a,b,c=1

ta−1
1 tb−1

2 tc−1
3 Ca,b,c(τ)

Summing gives the sunset diagram for three scalars with masses M2
r = −trτ2,

W(t1, t2, t2|τ) =
∑

(mr,nr) 6=(0,0)

δm,0 δn,0

3
∏

r=1

(

τ2

π|mrτ + nr|2 − trτ2

)

• The algebraic representation of the Laplacian induces a differential action on W,

∆W − L2W = R

D = t1∂1 + t2∂2 + t3∂3

L
2

= D
2
+ D + (t

2
1 + t

2
2 + t

2
3 − 2t1t2 − 2t2t3 − 2t3t1)(∂1∂2 + ∂2∂3 + ∂3∂1)

R = quadratic polynomial in the Eisenstein series Es
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Proof via generating function

• Permutation symmetry in (a, b, c) induces permutation symmetry in (t1, t2, t3).
– S3 adapted coordinates,

u = t1 + t2 + t3 ε = e
2πi/3

v/
√
2 = t1 + εt2 + ε2t3 (t1, t3, t2)(u, v, v̄) = (u, v̄, v)

v̄/
√
2 = t1 + ε

2
t2 + εt3 (t2, t3, t1)(u, v, v̄) = (u, ε

2
v, εv̄)

– L2 = L2
0 − L2

1 − L2
2 Casimir of SO(1, 2) generated by L0,L1,L2;

– Simultaneously diagonalize the S3-invariant operators D, L2
0, and L2

DWw;s;p = wWw;s;p D = t1∂1 + t2∂2 + t3∂3

L2Ww;s;p = s(s− 1)Ww;s;p L2 = −(u2 − 2vv̄)(∂2
u − 2∂v∂v̄)

L2
0Ww;s;p = −9p2Ww;s;p L0 = iv∂v − iv̄∂v̄

– S3-invariance of eigenfunctions requires p to be integer;
– which explains multiplicities [(s− 1)/3].

=⇒ constructive proof of Structure Theorem.
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Recall ....

D4R4 • •

D6R4

•

•

•
• •

D8R4

•

•

•

•

•

•

• • •

D10R4

•

•

•

•

•

•

• • •

•

•

•

•

•

•

•

Eisenstein Ca,b,c
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Conjectured relation for modular functions in D8R4

• D8R4 requires
•

•

•

•

•

•

• • • = D4

– The modular function D4 is not of the form Ca,b,c

– no useful algebraic representation of the Laplacian is available (yet ?)

• Tools: take an educated guess + check asymptotic behavior near cusp.
– Relations for Ca,b,c involved linear combinations for given weight;
– Consider combinations of D4, C2,1,1, E4, and E2

2

(∆− 2)
(

D4 + αC2,1,1 + βE2
2 + γE4

)

• Inspection of asymptotics near the cusp τ2 → ∞, leads us to conjecture,

D4 = 24C2,1,1 + 3E2
2 − 18E4

– as an exact relation between modular functions and Feynman diagrams

• Additional support from direct numerical evaluation of the multiple sums.
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Structure of the asymptotics near the cusp

• The expansion near the cusp τ2 → ∞ takes the following form,

D4(τ) =
∞
∑

k,k̄=0

D
(k,k̄)
4 (πτ2) q

kq̄k̄ q = e2πiτ

• We have checked the following asymptotics (similar asymptotics for C2,1,1, E4, E
2
2)

D(0,0)
4 (y) =

y4

945
+

2ζ(3)y

3
+

10ζ(5)

y
− 3ζ(3)2

y2
+

9ζ(7)

4y3

D(0,1)
4 (y) =

4y2

15
+

2y

3
+ 2 +

4

y
+

12ζ(3)

y
− 6ζ(3)

y2
+

9

2y2
+

9

4y3

D(1,0)
4 (y) = D(0,1)

4 (y)
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How could the conjecture fail ?

• Consider the difference F = D4 − 24C2,1,1 − 3E2
2 + 18E4

– the conjecture states F = 0

• If the conjecture were to fail, then F 6= 0 and its properties are,
– modular function under SL(2,Z);
– its pure power part in the expansion near the cusp vanishes;

=⇒ F is a cusp form

– Vanishing of leading exponential restricts it further.

• Cusp forms are rather rare objects.

• For example, Maass forms are cusp forms that satisfy ∆fs = s(s− 1)fs;
– require s = 1

2 + iσ with σ > 13.8 [communication from Stephen Miller]

• If conjecture fails, then we have an interesting new construction of cusp forms.
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Conjectured relation for modular functions in D10R4

D10R4 requires D5 = • • D3,1,1 = •

•

• D2,2,1 = •

•

•

in addition to E5, C3,1,1, E2E3, and E2C1,1,1 functions of weight 5.

• Educated guesses and inspection of asymptotics near the cusp lead us to conjecture,

D5 = 60C3,1,1 + 10E2C1,1,1 − 48E5 + 16ζ(5)

40D3,1,1 = 300C3,1,1 + 120E2E3 − 276E5 + 7ζ(5)

10D2,2,1 = 20C3,1,1 − 4E5 + 3ζ(5)

• We expect this pattern will continue for higher D2wR4 interactions with w > 5.
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Genus-one coefficients of D8R4 and D10R4

• Integration over moduli space M1 produces behavior that is non-analytic in s, t, u;
– branch cuts due to loops with massless strings for s, t, u,≪ 1;
– non-analytic part may be isolated systematically,

[ED, Phong 1993; Green, Russo, Vanhove 2008]

– Analytic part is unique only after non-analytic part has been specified.

• Partition fundamental domain M1 at fixed large L ≫ 1
– τ2 > L gives non-analytic contributions in s, t, u;
– τ2 < L gives analytic contributions in s, t, u;

• For compactifications on T
d, for example,

ED8R4(Td, L) =
1

2

∫

M1(τ2<L)

dµ1

(

∆C2,1,1 − 5E4 + E2
2

)

Γd(Td|τ)

– non-analytic parts cancel when comparing different moduli Td and T ′
d;

– “Differences” produce well-defined and unique analytic parts as L → ∞.
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Summary and outlook

• Low energy expansion of string theory has revealed a rich structure of

– non-holomorphic Kronecker-Eisenstein series on genus-one Riemann surfaces;
– Zhang-Kawazumi modular invariant on genus-two Riemann surfaces;
– differential and algebraic interrelations;
– concrete analytic evaluation of local effective interactions beyond BPS.

• Extensions at genus-one

– Understand general interrelations of Kronecker-Eisenstein series beyond Ca,b,c;
– Identify structure of the ring of all such non-holomorphic modular forms.

• Extensions at genus-two

– Lifts to toroidal compactifications [Pioline 2015]

– Differential relations obeyed by higher order generalizations
of Zhang-Kawazumi invariants [ED, Green, Vanhove] ... in progress ...


