Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may if you wish be handed in to your supervisor for feedback prior to the class.

1. Consider a real scalar field with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} . \tag{1}
\end{equation*}
$$

Show that, after normal ordering, the conserved four-momentum $P^{\mu}=\int d^{3} x T^{0 \mu}$ takes the operator form

$$
\begin{equation*}
P^{\mu}=\int \frac{d^{3} p}{(2 \pi)^{3}} p^{\mu} a_{\vec{p}}^{\dagger} a_{\vec{p}} \tag{2}
\end{equation*}
$$

where $p^{0}=E_{\vec{p}}$ in this expression. From Eq. (2), verify that if $\phi(x)$ is now in the Heisenberg picture, then

$$
\left[P^{\mu}, \phi(x)\right]=-i \partial^{\mu} \phi(x)
$$

2* Show that in the Heisenberg picture,

$$
\dot{\phi}(x)=i[H, \phi(x)]=\pi(x) \quad \text { and } \quad \dot{\pi}(x)=i[H, \pi(x)]=\nabla^{2} \phi(x)-m^{2} \phi(x) .
$$

Hence show that the operator $\phi(x)$ satisfies the Klein-Gordon equation.
3. Let $\phi(x)$ be a real scalar field in the Heisenberg picture. Show that the relativistically normalised states $|p\rangle=\sqrt{2 E_{\vec{p}}} a_{\vec{p}}^{\dagger}|0\rangle$ satisfy

$$
\langle 0| \phi(x)|p\rangle=e^{-i p \cdot x}
$$

4. In Example Sheet 1, you showed that the classical angular momentum of a field is given by

$$
Q_{i}=\frac{1}{2} \epsilon_{i j k} \int d^{3} x\left(x^{j} T^{0 k}-x^{k} T^{0 j}\right) .
$$

Write down the explicit form of the angular momentum for a free real scalar field with Lagrangian as in Eq.(1). Show that, after normal ordering, the quantum operator Q_{i} can be written as

$$
Q_{i}=-\frac{i}{2} \epsilon_{i j k} \int \frac{d^{3} p}{(2 \pi)^{3}} a_{\vec{p}}^{\dagger}\left(p^{j} \frac{\partial}{\partial p_{k}}-p^{k} \frac{\partial}{\partial p_{j}}\right) a_{\vec{p}} .
$$

Hence confirm that the quanta of the scalar field have spin zero (i.e. a one-particle state $|\vec{p}\rangle$ has zero angular momentum in its rest frame).
5. Show that the time ordered product $T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right)$ and the normal ordered product : $\phi\left(x_{1}\right) \phi\left(x_{2}\right)$: are both symmetric under the interchange of x_{1} and x_{2}. Deduce that the Feynman propagator $\Delta_{F}\left(x_{1}-x_{2}\right)$ has the same symmetry property.
6. Verify Wick's theorem for the case of three scalar fields:

$$
\begin{aligned}
T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right)= & \left.: \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right):+\phi\left(x_{1}\right) \Delta_{F}\left(x_{2}-x_{3}\right) \\
& +\phi\left(x_{2}\right) \Delta_{F}\left(x_{3}-x_{1}\right)+\phi\left(x_{3}\right) \Delta_{F}\left(x_{1}-x_{2}\right) .
\end{aligned}
$$

7. Examine $\langle 0| S|0\rangle$ to order λ^{2} in ϕ^{4} theory. Identify the different contributions arising from an application of Wick's theorem. Confirm that to order λ^{2}, the combinatoric factors work out so that the vacuum to vacuum amplitude is given by the exponential of the sum of distinct vacuum bubble types,

$$
\langle 0| S|0\rangle=\exp (\bigcirc+\wp+\circlearrowleft+\ldots)
$$

8. Consider the Lagrangian density for three scalar fields $\phi_{i}, i=1,2,3$, given by

$$
\mathcal{L}=-\sum_{i=1}^{3} \frac{1}{2}\left(\partial_{\mu} \phi_{i}\right)\left(\partial^{\mu} \phi_{i}\right)-\frac{1}{2} m^{2}\left(\sum_{i=1}^{3} \phi_{i}^{2}\right)-\frac{\lambda}{8}\left(\sum_{i=1}^{3} \phi_{i}^{2}\right)^{2} .
$$

Show that the Feynman propagator for the free field theory (i.e. $\lambda=0$) is of the form

$$
\langle 0| T \phi_{i}(x) \phi_{j}(y)|0\rangle=\delta_{i j} \Delta_{F}(x-y)
$$

where $\Delta_{F}(x-y)$ is the usual scalar propagator. Write down the Feynman rules of the theory. Compute the amplitude for the scattering $\phi_{i} \phi_{j} \rightarrow \phi_{k} \phi_{l}$ to lowest nontrivial order in λ.
9. Consider the theory of a complex scalar ψ and a real scalar ϕ with Lagrangian
$\mathcal{L}=\partial_{\mu} \psi^{*} \partial^{\mu} \psi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \psi^{*} \psi-\frac{1}{2} M^{2} \phi^{2}-g \psi^{*} \psi \phi-h|\psi|^{4}-k \phi^{3}-l \partial_{\mu} \psi \partial^{\mu} \psi^{*} \phi$.
Draw and write down momentum-space Feynman space Feynman rules for the propagators and interactions of this theory. What are the mass dimensions of g, h, k, l ? From these, identify a property of the theory.
10. Consider the scalar Yukawa theory given by the Lagrangian

$$
\mathcal{L}=\partial_{\mu} \psi^{*} \partial^{\mu} \psi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \psi^{*} \psi-\frac{1}{2} M^{2} \phi^{2}-g \psi^{*} \psi \phi
$$

(a) In meson decay $\phi \rightarrow \psi \bar{\psi}$, assuming that $M>2 m$, show that to lowest order in g^{2} that the decay width is

$$
\Gamma=\frac{g^{2}}{16 \pi M} \sqrt{1-4 m^{2} / M^{2}} .
$$

Does this make sense, dimensionally?
(b) Compute the amplitude for nucleon meson scattering $\phi\left(p_{1}\right)+\psi\left(p_{2}\right) \rightarrow \phi\left(p_{1}^{\prime}\right)+\psi\left(p_{2}^{\prime}\right)$ at order g^{2}. Then show that

$$
\frac{d \sigma}{d t}=\frac{g^{4}}{16 \pi\left(s-m^{2}\right)^{2}\left(s^{2}+m^{4}+M^{4}-2 s m^{2}-2 s M^{2}-2 m^{2} M^{2}\right)},
$$

where s and t are the usual Mandelstam variables. Check that this makes sense dimensionally.

