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3P1b Quantum Field Theory: Example Sheet 2 Michaelmas 2018

Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred ques-
tions may if you wish be handed in to your supervisor for feedback prior to the class.

1. Consider a real scalar field with Lagrangian

1 1
L= 58u¢8u¢ — §m2¢2. (1)

Show that, after normal ordering, the conserved four-momentum P* = [d*z T
takes the operator form

d3p 1

where p° = Ej in this expression. From Eq. (2), verify that if ¢(z) is now in the
Heisenberg picture, then

[P", ¢(x)] = —id"o(x).
2% Show that in the Heisenberg picture,
o(z) = i[H, ¢(x)] = n(x) and #(z) = i[H, 7w (x)] = Vo (x) —m°$(x).
Hence show that the operator ¢(z) satisfies the Klein-Gordon equation.

3. Let ¢(x) be a real scalar field in the Heisenberg picture. Show that the relativistically
normalised states |p) = \/ 2Eﬁa;|0) satisfy

(0] o() [p) = ™.
4% In Example Sheet 1, you showed that the classical angular momentum of a field is
given by
1

Qi = i / dPr (27T — 2"TY).

Write down the explicit form of the angular momentum for a free real scalar field with
Lagrangian as in Eq.(1). Show that, after normal ordering, the quantum operator @);
can be written as

Hence confirm that the quanta of the scalar field have spin zero (i.e. a one-particle
state |p) has zero angular momentum in its rest frame).

5. Show that the time ordered product T'(¢(x1)¢(x2)) and the normal ordered product
: ¢(x1)d(x2) @ are both symmetric under the interchange of x; and x5. Deduce that
the Feynman propagator Ap(x; — z3) has the same symmetry property.
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Verify Wick’s theorem for the case of three scalar fields:

T(p(r1)p(2)d(3)) = = d(x1)d(22)P(23)) + +(21)AR(T2 — T3)
+Q§($2)AF($3 — 131> -+ ¢($3)AF($1 — xg).

7. Examine (0| S |0) to order A\? in ¢* theory. Identify the different contributions arising

10.

from an application of Wick’s theorem. Confirm that to order A%, the combinatoric
factors work out so that the vacuum to vacuum amplitude is given by the exponential
of the sum of distinct vacuum bubble types,

<0|S|o>:exp(8 + § + (D + )

Consider the Lagrangian density for three scalar fields ¢;, i« = 1,2, 3, given by

3 3

= =3 S @)@ 00 — 5mA(Y 6 — 2D )

=1 i=1 i=1

[\DI»—t

Show that the Feynman propagator for the free field theory (i.e. A = 0) is of the form
(01T i (%) (y)[0) = 6i;Ap(x — y)

where Ap(x —y) is the usual scalar propagator. Write down the Feynman rules of the
theory. Compute the amplitude for the scattering ¢;¢; — ¢r¢; to lowest nontrivial
order in \.

Consider the theory of a complex scalar ¢ and a real scalar ¢ with Lagrangian

L= 070" + %cb@’“‘cb m*ye — M2¢2 g™ bd — hY|* — k® — 10,10 ¢.

Draw and write down momentum-space Feynman space Feynman rules for the prop-
agators and interactions of this theory. What are the mass dimensions of g, h, k, [?7
From these, identify a property of the theory.

Consider the scalar Yukawa theory given by the Lagrangian
1 1
L=04"0" + 50.00"¢ — m*p*y — §M2¢2 — g"vo.

(a) In meson decay ¢ — 1), assuming that M > 2m, show that to lowest order in g?

that the decay width is
2

_ 9 / 2 /02
= 1—14 M2,
167 M m?/

Does this make sense, dimensionally?
(b) Compute the amplitude for nucleon meson scattering ¢(p; )+ (p2) — o(p})+1(ph)
at order g%>. Then show that

do gt
dt — 167(s — m?2)2(s2 + m* + M4 — 2sm?2 — 2sM?2 — 2m2M?)’

where s and t are the usual Mandelstam variables. Check that this makes sense
dimensionally.
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