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3P1c Quantum Field Theory: Example Sheet 3 Michaelmas 2018

Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred ques-

tions may if you wish be handed in to your supervisor for feedback prior to the class.

1. The chiral representation of the Clifford algebra is

γ0 =

(

0 12
12 0

)

, γi =

(

0 σi

−σi 0

)

.

Show that these indeed satisfy {γµ, γν} = 2ηµν1. Find a unitary matrix U such that
(γ′)µ = UγµU †, where (γ′)µ form the Dirac representation of the Clifford algebra

(γ′)0 =

(

12 0
0 −12

)

, (γ′)i =

(

0 σi

−σi 0

)

.

2. Show that if {γµ, γν} = 2ηµν , then

[γµγν , γργσ] = 2ηνργµγσ − 2ηµργνγσ + 2ηνσγργµ − 2ηµσγργν .

Show further that Sµν ≡ 1
4
[γµ , γν ] = 1

2
(γµγν − ηµν). Use this to confirm that the

matrices Sµν form a representation of the Lie algebra of the Lorentz group.

3. Using just the algebra {γµ, γν} = 2ηµν (that is to say without resorting to any partic-
ular representation of the gamma matrices), and defining γ5 = iγ0γ1γ2γ3, /p = pµγ

µ

and Sµν ≡ 1
4
[γµ, γν ], prove the following results (these are useful when calculating

cross-sections or decay widths involving spinor fields):

(a) Trγµ = 0

(b) Tr(γµγν) = 4ηµν

(c) Tr(γµγνγρ) = 0

(d) (γ5)
2
= 1

(e) Trγ5 = 0

(f) /p �q = 2p · q − �q /p = p · q + 2Sµνpµqν

(g) Tr( /p�q) = 4p · q
(h) Tr( /p1 . . . /pn) = 0 if n is odd

(i) Tr( /p1 /p2 /p3 /p4) = 4 [(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)− (p1 · p3)(p2 · p4)]
(j) Tr(γ5 /p1 /p2) = 0

(k) γµ /p γµ = −2 /p

(l) γa /p1 /p2γ
a = 4p1 · p2

(m) γµ /p1 /p2 /p3γ
µ = −2 /p3 /p2 /p1

(n) Tr(γ5 /p1 /p2 /p3 /p4) = 4i ǫµνρσ p
µ
1 p

ν
2 p

ρ
3 p

σ
4
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4.∗ The plane-wave solutions to the Dirac equation are

us(~p) =

( √
p · σξs√
p · σ̄ξs

)

and vs(~p) =

( √
p · σξs

−√
p · σ̄ξs

)

,

where σµ = (1, ~σ) and σ̄µ = (1,−~σ) and ξs, with s ∈ {1, 2}, is a basis of orthonormal
two-component spinors, satisfying (ξr)† · ξs = δrs. Show that

ur(~p)† · us(~p) = 2p0δ
rs

ūr(~p) · us(~p) = 2mδrs (1)

and similarly,

vr(~p)† · vs(~p) = 2p0δ
rs

v̄r(~p) · vs(~p) = −2mδrs. (2)

Show also that the orthogonality condition between u and v is

ūs(~p) · vr(~p) = 0,

while taking the inner product using † requires an extra minus sign

us(~p)† · vr(−~p) = 0. (3)

5. Using the same notation as Question 4, show that

2
∑

s=1

us(~p)ūs(~p) = /p+m, (4)

2
∑

s=1

vs(~p)v̄s(~p) = /p−m, (5)

where, rather than being contracted, the two spinors on the left-hand side are placed
back to back to form a 4×4 matrix.

6. The Fourier decomposition of the Dirac field operator ψ(x) and the hermitian conju-
gate field ψ†(~x) is given by

ψ(~x) =

∫

d3p

(2π)3
1

√

2Ep

2
∑

s=1

[

bs~pu
s(~p)ei~p·~x + cs~p

†vs(~p)e−i~p·~x
]

,

ψ†(~x) =

∫

d3p

(2π)3
1

√

2Ep

2
∑

s=1

[

bs~p
†us(~p)†e−i~p·~x + cs~pv

s(~p)†ei~p·~x
]

. (6)

The creation and annihilation operators are taken to satisfy

{br~p, bs~q†} = (2π)3δrs δ(3)(~p− ~q),

{cr~p, cs~q†} = (2π)3δrs δ(3)(~p− ~q) ,

with all other anticommutators vanishing. Show that these imply that the field and
its conjugate field satisfy the anti-commutation relations

{ψα(~x), ψβ(~y)} = {ψ†
α(~x), ψ

†
β(~y)} = 0,

{ψα(~x), ψ
†
β(~y)} = δαβδ

(3)(~x− ~y).

Note: the calculation is very similar to that for the bosonic field, but at some point
you will need to make use of the identities Eqs. (4),(5).
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7.∗ Using the results of Question 6, show that the quantum Hamiltonian

H =

∫

d3x ψ̄(−iγi∂i +m)ψ

can be written, after normal ordering, as

H =

∫

d3p

(2π)3
E~p

2
∑

r=1

[

br~p
†br~p + cr~p

†cr~p
]

.

Note: again, the calculation is very similar to that of the bosonic field. This time you
will need to make use of the identities in Eqs. (1), (2) and (3).

8. Standard fermion Yukawa theory has the Lagrangian density

L = ψ̄(i /∂ −m)ψ +
1

2
∂µφ∂µφ− 1

2
µ2φ2 − λψ̄ψφ.

Show that the differential cross-section in the centre of mass frame for nucleon-nucleon
scattering (ψψ → ψψ) including the masses m and µ is

dσ

dt
=

λ4

16πs(s− 4m2)

[

(u− 4m2)2

(u− µ2)2
+

(t− 4m2)2

(t− µ2)2
+

1

2

s2 − (u− 4m2)2 − (t− 4m2)2

(u− µ2)(t− µ2)

]

.

What values of t should this be integrated between to obtain the total cross-section
σ?
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