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Question 1

Suppose that φ(x) is a solution to the Klein–Gordon equation,[
ηµν

∂

∂xµ
∂

∂xν
+m2

]
φ(x) = 0. (1.1)

Consider an active transformation that boosts the field according to the Lorentz transformation Λ,1

φ(x) Λ−→ φ′(x) = φ(Λ−1x) ≡ φ(y), (1.2)

where in the last equality, we write yµ = (Λ−1)µνxν . To prove that φ(y) ≡ φ(Λ−1x) is also a solution to
the Klein–Gordon equation, we can act on it with the same operator in square brackets. The chain rule
tells us that

∂

∂xν
= ∂yµ

∂xν
∂

∂yµ
= (Λ−1)µν

∂

∂yµ
, (1.3)

thus [
ηµν

∂

∂xµ
∂

∂xν
+m2

]
φ(y) =

[
ηµν(Λ−1)αµ(Λ−1)βν

∂

∂yα
∂

∂yβ
+m2

]
φ(y)

=
[
ηαβ

∂

∂yα
∂

∂yβ
+m2

]
φ(y). (1.4)

We arrive at the second line after using the fact that any Lorentz transformation Λ (and its inverse) must
satisfy the condition

ηµν(Λ−1)αµ(Λ−1)βν = ηαβ . (1.5)

The second line in Eq. (1.4) is exactly the lhs of Eq. (1.1) up to renaming x→ y, thus φ(y) ≡ φ(Λ−1x)
is indeed a solution to the Klein–Gordon equation.

Question 2

Consider the complex field ψ(x) governed by the Lagrangian (density)

L = ∂µψ
∗∂µψ −m2ψ∗ψ − λ

2 (ψ∗ψ)2. (2.1)

We determine its equations of motion by evaluating the Euler–Lagrange equation

∂µ

(
∂L

∂(∂µψ∗)

)
= ∂L
∂ψ∗

, (2.2)

which yields
∂µ∂

µψ +m2ψ + λ(ψ∗ψ)ψ = 0. (2.3)

We also obtain a similar equation for ψ∗ after interchanging ψ ↔ ψ∗ in the above two steps.

∗Please send any comments or corrections to L.K.Wong@damtp.cam.ac.uk
1See Sec. 1.2 of David Tong’s lecture notes [1] if you’re unsure about why the inverse transformation Λ−1 appears
in the argument of the field.
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Proposition 2.1: The Lagrangian is invariant under the infinitesimal transformation

δψ = iαψ, δψ∗ = −iαψ∗. (2.4)

Proof.—Replacing ψ → ψ+ δψ and ψ∗ → ψ∗+ δψ∗ in the Lagrangian, the terms linear in the constant
α are

δL = ∂µδψ
∗∂µψ + ∂µψ

∗∂µδψ −m2(δψ∗ψ + ψ∗δψ)− λ(ψ∗ψ)(δψ∗ψ + ψ∗δψ). (2.5)

Using the explicit expressions for δψ and δψ∗ given in Eq. (2.4), we find that the first two terms in δL
cancel each other, the next two terms proportional to m2 cancel each other, and the last two terms
proportional to λ also cancel each other. Since δL = 0, this transformation leaves the Lagrangian
invariant.

Note that the same conclusion can be obtained by instead considering the global U(1) transformation
ψ → eiαψ and ψ∗ → e−iαψ∗, which would recover Eq. (2.4) in the infinitesimal limit α� 1. It is easy
to see that the product ψ∗ψ is unchanged under this transformation, and since α is a constant, the
same is true of the derivative terms ∂µψ∗∂µψ. �

Proposition 2.2: The Noether current associated with this symmetry (2.4) is

jµ = i (ψ∂µψ∗ − ψ∗∂µψ) . (2.6)

Proof.—A continuous transformation is a symmetry of the theory if it leaves the Lagrangian invariant
up to a total derivative term, δL = ∂µF

µ. Noether’s theorem2 states that any such symmetry has an
associated conserved current

jµ = ∂L
∂(∂µΨ) · δΨ− F

µ, (2.7)

where Ψ is a placeholder for all the fields in the theory. In our case, Ψ = (ψ,ψ∗).
The symmetry in Eq. (2.4) is an example of an internal symmetry, which is a transformation of

the form Ψ→ GΨ, where G is a group element. Internal symmetries always yield Fµ = 0 (as we saw
explicitly when proving Proposition 2.1).3 Thus, the Noether current is

jµ = ∂L
∂(∂µψ)δψ + ∂L

∂(∂µψ∗)
δψ∗ = iα(ψ∂µψ∗ − ψ∗∂µψ). (2.8)

Since this current is conserved regardless of the value of the constant α, we can discard it to recover
the desired result. �

We can verify explicitly that this current is conserved by evaluating ∂µjµ and showing that it vanishes.
Specifically,

−i∂µjµ = ∂µ(ψ∂µψ∗ − ψ∗∂µψ)
= ψ(∂µ∂µψ∗)− ψ∗(∂µ∂µψ)
= ψ

[
−m2ψ∗ − λ(ψ∗ψ)ψ∗

]
− ψ∗

[
−m2ψ − λ(ψ∗ψ)ψ

]
= 0. (2.9)

The last line follows from using the equation of motion (2.3) and an identical one with ψ ↔ ψ∗.

2See, e.g., Sec. 1.3.1 of David Tong’s lecture notes [1], or p. 17–18 of Peskin and Schroeder [2].
3External symmetries involving transformations on the underlying spacetime (e.g., Lorentz transformations x→ Λx)
will generically give a nonzero Fµ.
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Question 3

Consider a triplet of real fields φa, with a ∈ {1, 2, 3}, governed by the Lagrangian

L = 1
2∂µφa∂

µφa −
1
2m

2φaφa. (3.1)

Proposition 3.1: The Noether currents associated with the SO(3) symmetry φa → φa + θεabcηbφc, where
ηa is an arbitrary constant unit vector, are

(ja)µ = εabcφb∂
µφc. (3.2)

Proof.—This transformation is an internal symmetry of the theory, so we have Fµ = 0 just like in
Question 2.4 Accordingly, the Noether current is

jµ = ∂L
∂(∂µφa)δφa = (∂µφa)θεabcηbφc = θεabcηaφb∂

µφc, (3.3)

having used the antisymmetry of εabc and the freedom to relabel indices to obtain the final expression.
This is conserved regardless of the value of the constant θ, so we can discard it in our definition of the
current jµ. Additionally, this current is also conserved for any choice of unit vector ηa, so we should
“strip it out” to obtain three independently conserved currents—one for each independent direction in
the field space R3.

The systematic way to do this is to decompose ηa = Nb(eb)a, where Nb are just numbers, and (eb)a
forms a basis that spans R3. Note that the inner index b inside the brackets is labelling the different
basis vectors, while the outer index a is the vector index. This allows us to decompose the current as
jµ = Na(ja)µ, where

(ja)µ = (ea)dεdbcφb∂µφc. (3.4)

We recover the desired result by choosing the basis vectors to be

(e1)d = (1, 0, 0), (e2)d = (0, 1, 0), (e3)d = (0, 0, 1); (3.5)

which can be written succintly as (ea)d = δad . Note that the indices a, b can be summed over regardless
of whether they are raised or lowered since the metric on R3 is just diag(1, 1, 1). �

By definition, each conserved current has an associated charge

Qa =
∫

d3x (ja)0 =
∫

d3x εabcφbφ̇c. (3.6)

Note that this result differs by a minus sign from the expected answer given in the question. This is not
a problem, since we are always free to define currents and their associated charges up to a constant.

Proposition 3.2: The charges Qa are conserved.

Proof.—We can verify this explicitly by evaluating its derivative,

dQa
dt =

∫
d3x

d
dt (εabcφbφ̇c) =

∫
d3x εabcφbφ̈c. (3.7)

When using the product rule to obtain the last equality, note that we also get a term εabcφ̇bφ̇c, but
this vanishes from the antisymmetry of εabc. We then proceed by using the fact that each component

4If we were to do this explicitly, we would find that terms in δL are either proportional to εabcφbφc or εabc∂µφb∂µφc,
which vanish due to the antisymmetry of εabc.
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φa(x) is a solution to Klein–Gordon equation,

(∂µ∂µ +m2)φa = φ̈a −∇2φa +m2φa = 0. (3.8)

This allows us to write

dQa
dt =

∫
d3x εabcφb(∇2φc −m2φc) = −

∫
d3x εabc∇φb · ∇φc. (3.9)

In obtaining the last equality, we again use the antisymmetry of εabc to deduce that m2εabcφbφc = 0,
and we integrate by parts to replace φb∇2φc → −∇φb ·∇φc. In this step, we are making the reasonable
assumption that the fields decay sufficiently fast at large distances such that the boundary term at
spatial infinity can be neglected. Finally, the antisymmetry of εabc is used once more to conclude that
dQa/dt = 0, as expected. �

Question 4

Proposition 4.1: A Lorentz transformation xµ → x′µ = Λµνxν is a transformation that preserves the
invariant interval ηµνxµxν = ηµνx

′µx′ν . This can be used to deduce that

ηµν = ηαβΛαµΛβν . (4.1)

Proof.—By writing x′α = Λαµxµ, we have that

ηαβx
′αx′β = ηαβ(Λαµxµ)(Λβνxν) = (ηαβΛαµΛβν)xµxν . (4.2)

As we require this to be equivalent to ηµνxµxν for arbitrary xµ, it must be that Eq. (4.1) is true.5 �

Proposition 4.2: If Λµν = δµν +αωµν is an infinitesimal Lorentz transformation6 with α� 1, then ωµν is
antisymmetric.

Proof.—When expanded to linear order in α, we have that

ηαβΛαµΛβν ' ηαβ
(
δαµδ

β
ν + αωαµδ

β
ν + αδαµω

β
ν

)
= ηµν + α(ωνµ − ωµν). (4.3)

This is equal to ηµν only if ωµν = −ωνµ. �

Let us consider examples of the matrix ωµν . A rotation through an angle θ about the x3-axis corresponds
to the Lorentz transformation

Λµν =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 ' δµν + θ


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 . (4.4)

The latter expression holds for small angles θ � 1, which is serving as the small parameter α used earlier.

5More precisely, only the symmetric part of Eq. (4.1) is true. But, by construction, the Minkowski metric and the
product ηαβΛαµΛβν are manifestly symmetric under the interchange µ↔ ν, so the proof is complete.

6A good way to think about this is to consider a one-parameter family of transformations defined by the differentiable
map Λ : I → SO(3, 1)+, where the interval I ⊂ R is parametrized by α, and SO(3, 1)+ is the part of the
Lorentz group smoothly connected to the identity. Without loss of generality, our map can be defined such that
Λµν(0) = δµν . Then, an infinitesimal Lorentz transformation is obtained by Taylor expanding about the origin to
get Λµν(α) = Λµν(0) + αΛ̇µν(0) +O(α2). The first derivative Λ̇µν(0) is what we call ωµν .
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For a Lorentz boost along the x1-axis, we instead have

Λµν =


γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1

 ' δµν + v


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , (4.5)

where γ = 1/
√

1− v2, and the latter expression is valid for small velocities v � 1. Notice that ωµν need
not be antisymmetric; only ωµν or ωµν should be antisymmetric.

Question 5

Consider the infinitesimal Lorentz transformation xµ → Λ(α)µνxν with Λ(α)µν = δµν +αωµν , under which
a scalar field φ(x) transforms according to Eq. (1.2). To get an expression for the inverse Λ−1(α), notice
that applying the transformation Λ(−α) ◦ Λ(α) is the same as not performing a transformation at all, so
it must be that Λ(−α) ≡ Λ−1(α).7 Hence,

φ(x) Λ(α)−→ φ(Λ(−α)x) = φ(x)− αωµνxν∂µφ(x). (5.1)

Proposition 5.1: Under the infinitesimal Lorentz transformation Λ(α), the Lagrangian L ≡ L(φ, ∂φ) is
unchanged up to the total derivative

δL = −α∂µ(ωµνxνL). (5.2)

Proof.—The Lagrangian L is a function of φ(x) and its derivative ∂µφ(x), but these objects are
themselves functions of x, so we can also think of L as just being a function of x. This is a scalar
quantity, so—analogous to Eq. (5.1)—must transform as

L(x) Λ(α)−→ L(Λ(−α)x) = L(x)− αωµνxν∂µL(x). (5.3)

We read off δL from the second term, but this is not yet in the desired form. We proceed by using the
product rule to write

δL = −αωµνxν∂µL = −α∂µ(ωµνxνL) + αL∂µ(ωµνxν). (5.4)

The last term is proportional to ∂µ(ωµνxν) = ωµνδ
ν
µ = ωµµ, which vanishes since the constant tensor

ωµν is antisymmetric. This yields the desired result. �

Proposition 5.2: A Lorentz-invariant theory admits the conserved current

jµ = −ωρν(Tµρxν). (5.5)

Proof.—Since Λµν(α) is a symmetry of the theory, we use Noether’s theorem to deduce that the current

jµ = ∂L
∂(∂µφ)δφ− F

µ = −αωρνxν
[

∂L
∂(∂µφ)∂ρφ− δ

µ
ρL
]

(5.6)

is conserved, having read off δφ = −αωρνxν∂ρφ and Fµ = −αωµνxνL from Eqs. (5.1) and (5.2),
respectively. As always, the constant α can be discarded, and we note that the object in square
brackets is exactly the energy–momentum tensor Tµρ by definition. �

7Alternatively, we can also arrive at this conclusion by multiplying Eq. (4.1) by (Λ−1)νσ, using the identity
Λβν(Λ−1)νσ = δβσ , and then judiciously manipulating indices.
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Proposition 5.3: The current in Eq. (5.5) leads to six independently conserved charges,

Qαβ =
∫

d3x
(
xαT 0β − xβT 0α) , (5.7)

where Qαβ = −Qβα is an antisymmetric tensor.

Proof.—The current in Eq. (5.5) is conserved for any constant antisymmetric tensor ωµν , hence we
should strip it out to obtain six independently conserved currents. In analogy with Question 3, we
might think to do this by decomposing ωµν = ΩA(MA)µν , where ΩA is just a set of numbers, and
(MA)µν forms a basis for the set of 4×4 antisymmetric matrices, labelled by the index A ∈ {1, 2, . . . , 6}.
However, it turns out to be difficult to work with the index A. Instead, it is more convenient to label
the six different basis elements by an antisymmetric pair of indices α, β ∈ {0, 1, 2, 3}, such that

ωµν = 1
2Ωαβ(Mαβ)µν . (5.8)

Substituting this decomposition into Eq. (5.5) allows us to write jµ = 1
2Ωαβ(jαβ)µ, from which we

can read off
(jαβ)µ = −(Mαβ)ρνTµρxν . (5.9)

The most natural choice for the basis elements (Mαβ)ρν is

(M01)µν =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , (M02)µν =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , (M03)µν =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 ,

(M12)µν =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , (M13)µν =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , (M23)µν =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ;

(5.10)

which can be written succinctly in index notation as (Mαβ)ρν = δαρ δ
β
ν − δαν δβρ . Substituting this back

into Eq. (5.9) yields
(jαβ)µ = xαTµβ − xβTµα. (5.11)

We use this to obtain the six independent charges

Qαβ =
∫

d3x (jαβ)0, (5.12)

which yield the desired result. �

Proposition 5.4: Rotational invariance leads to three conserved charges

Qi = 1
2εijk

∫
d3x

(
xjT 0k − xkT 0j) , (5.13)

which are interpreted as measuring the total angular momentum of the field about the xi-axes.

Proof.—The generators of spatial rotations correspond to the elements in the second row of Eq. (5.10),
which can be selected by focussing on the spatial indices (α, β) → (i, j) in Eq. (5.7). This gives us
three charges

Qij =
∫

d3x
(
xiT 0j − xjT 0i) . (5.14)
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Rather than count with the antisymmetric pair of indices (i, j), we can label these charges by the
single index i ∈ {1, 2, 3} by defining

Qi = 1
2εijkQ

jk. (5.15)

Substituting Eq. (5.14) into this definition returns the desired result. �

The remaining three charges associated with Lorentz boosts are

Q0i =
∫

d3x
(
x0T 0i − xiT 00) . (5.16)

Their physical significance can be made more transparent by taking their time derivative. Since they must
be conserved, it follows that

0 = dQ0i

dt = d
dt

(∫
d3x x0T 0i

)
− d

dt

(∫
d3x xiT 00

)
, (5.17)

which can be rewritten as
dXi

dt = P i + t
dP i

dt . (5.18)

The rhs is expressed in terms of the total linear momentum of the field (T 0i is the momentum density),

P i =
∫

d3x T 0i, (5.19)

which is conserved since the theory is also invariant under spacetime translations. Consequently, the rhs
of Eq. (5.18) is a constant. Since

Xi =
∫

d3x xiT 00 (5.20)

is the centre of energy of the field (T 00 is the energy density), we learn that symmetry under Lorentz
boosts guarantees that the centre of energy of the field travels with constant velocity.

Question 6

In pure vacuum, electromagnetic fields are governed by the Lagrangian

L = −1
4FµνF

µν , (6.1)

where the field strength tensor Fµν = ∂µAν − ∂νAµ is defined in terms of the gauge field Aµ.

Proposition 6.1: The Lagrangian is invariant under the gauge transformation

Aµ → Aµ + ∂µξ. (6.2)

Proof.—The field strength tensor transforms as

Fµν → F ′µν = ∂µ(Aν + ∂νξ)− ∂ν(Aµ + ∂µξ)
= (∂µAν − ∂νAµ) + (∂µ∂ν − ∂ν∂µ)ξ. (6.3)

In the second line, the first term is just the original field strength tensor Fµν , and the second term
vanishes since partial derivatives commute. Thus, Fµν is invariant under a gauge transformation, and
since L is built up only from contractions of Fµν , it follows that L is also gauge invariant. �

Proposition 6.2: Translational invariance xµ → xµ − εaµ leads to the conserved “canonical” energy–
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momentum tensor
Tµν = F ρµ∂νAρ + 1

4η
µνFρσF

ρσ. (6.4)

Proof.—Under a translation, the gauge field transforms as

Aµ(x)→ Aµ(x+ εa) = Aµ(x) + εaν∂νAµ(x) +O(ε2), (6.5)

and similarly the Lagrangian picks up the total derivative

L(x)→ L(x+ εa) = L(x) + εaν∂νL(x) +O(ε)2. (6.6)

From these two equations, we can read off the infinitesimal changes δAµ = aν∂νAµ and Fµ = aµL,
having already dropped the overall factor of ε that is not needed. Noether’s theorem gives us the
conserved current

jµ = ∂L
∂(∂µAν)δAν − F

µ = −Fµν(aρ∂ρAν)− aµ
(
−1

4FρσF
ρσ

)
. (6.7)

In obtaining the first term, the partial derivative can be evaluated by using the fact that

∂Fρσ
∂(∂µAν) = ∂

∂(∂µAν) (∂ρAσ − ∂σAρ) = δµρ δ
ν
σ − δµσδνρ . (6.8)

We simplify Eq. (6.7) to obtain

jµ = aν

(
F ρµ∂νAρ + 1

4η
µνFρσF

ρσ

)
, (6.9)

where the antisymmetry of the field strength tensor Fµν = −F νµ has been used to get rid of the
minus sign in the first term. As always, there are actually four conserved currents here, since there are
four independent ways of choosing the vector aµ. Stripping it out leads to the desired result for the
energy–momentum tensor Tµν .8 �

Proposition 6.3: Tµν is neither symmetric nor gauge invariant.

Proof.—To show that it is not symmetric, simply consider the quantity

Tµν − T νµ = F ρµ∂νAρ − F ρν∂µAρ, (6.10)

and notice that it does not vanish. The tensor Tµν is also manifestly not gauge invariant, since it
depends explicitly on the gauge field Aµ. Under the transformation in Eq. (6.2), we obtain

Tµν → Tµν + F ρµ∂ν∂ρξ, (6.11)

where the second term is nonvanishing. �

We overcome these problematic issues with Tµν by defining the “physical” energy–momentum tensor9

Θµν = Tµν − F ρµ∂ρAν . (6.12)

Proposition 6.4: Θµν is symmetric, gauge invariant, and traceless.

8We could have done this meticulously, as we did in Questions 3 and 5, by decomposing aµ = αν(eν)µ, where αν
are just numbers and (eν)µ form a basis for Minkowski space. Then the current can be written as jµ = αν(jν)µ.
Choosing the basis (eν)µ = δνµ returns the desired result, Tµν = (jν)µ. Once you get the hang of it, however,
stripping out constant vectors or tensors from the Noether current becomes an automatic process.

9Also known as the improved energy–momentum tensor or the Belinfante–Rosenfeld energy–momentum tensor.
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Proof.—It is straightforward to show that Eq. (6.12) can be simplified to read

Θµν = F ρµF νρ + 1
4η

µνFρσF
ρσ. (6.13)

This is manifestly gauge invariant since it is constructed only out of the field strength tensor. The first
term can be rewritten as

F ρµF νρ = −ηρσF ρµFσν , (6.14)

and the second term is proportional to ηµν , thus Θµν is also manifestly symmetric. Finally, we evaluate
its trace to find

Θµ
µ = F ρµFµρ + 1

4(ηµνηµν)FρσF ρσ = 0, (6.15)

having used ηµνηµν = δµµ = 4 for a four-dimensional spacetime and the antisymmetry Fµρ = −Fρµ in
the last step. �

Proposition 6.5: Θµν defines four conserved currents.

Proof.—We prove this by evaluating ∂µΘµν and showing that it vanishes. By construction, ∂µTµν = 0,
thus

∂µΘµν = ∂µT
µν + ∂µ(F ρµ∂ρAν) = F ρµ∂µ∂ρA

ν . (6.16)

In the last step, we used the fact that the fields satisfy the equations of motion, ∂µF ρµ = ∂µF
µρ = 0.

Since F ρµ is antisymmetric while ∂µ∂ρ is symmetric, it follows that ∂µΘµν = 0. Note that, due to its
symmetry, this automatically implies that we also have ∂νΘµν = 0. �

Aside 6.1: Let us say a few more words about the different energy–momentum tensors we encountered
in this question. We’ll frame this discussion by first computing the conserved currents imposed by
Lorentz invariance. For the infinitesimal transformation Λµν(α) = δµν + αωµν , it can be shown that
the six conserved currents are

(jαβ)µ = xαTµβ − xβTµα + (sαβ)µ, (6.17)

where (sαβ)µ = FαµAβ − F βµAα. Deriving this is a worthwhile exercise left to the reader.
Comparing this with the expression for (jαβ)µ for a scalar field given in Eq. (5.11), we notice that

there is this extra bit (sαβ)µ which arises because the gauge field Aµ transforms as a Lorentz covector.
Accordingly, we should interpret (sαβ)µ as representing the contribution to this current from the
intrinsic spin of the photon.

By construction, the current in Eq. (6.17) is conserved, and recall we also have ∂µTµν = 0. These
imply that

∂µ(jαβ)µ = Tαβ − T βα + ∂µ(sαβ)µ = 0. (6.18)

Because it is not symmetric, the quantity Tαβ−T βα does not vanish on its own. It is only the sum of
the energy–momentum density contained in Tαβ and in the “spin gradients” ∂µ(sαβ)µ that together
ensure that the Lorentz currents (jαβ)µ are conserved. This motivates the definition of the physical
energy–momentum tensor Θµν which should satisfy

∂µ(jαβ)µ = Θαβ −Θβα = 0 (6.19)

to preserve Lorentz invariance. It follows that Θµν should be constructed from a linear combination
of Tµν and gradients of (sµν)α in a way that ensures Θµν is symmetric and conserved. Belinfante
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and Rosenfeld showed that a valid choice is [3]

Θµν = Tµν + 1
2∂ρ [(sµν)ρ + (sνρ)µ + (sµρ)ν ] . (6.20)

Substituting the definition of (sµν)ρ into this expression returns Eq. (6.12), after using the equations
of motion, ∂µFµν = 0.
It is worth stressing that nothing went wrong with Noether’s theorem when deriving Tµν , which

are still valid conserved currents arising from translational invariance. We only run into problems if
we try to interpret Tµν as measuring the energy–momentum density of the field. When we do this, we
are missing out a key part due to the intrinsic spin of the photon. The physical energy–momentum
tensor Θµν is what we measure in experiments.

One might still find the construction of Θµν a bit ad hoc. How can we be certain that this really is
the physical energy–momentum tensor of the field? For this, we turn to Einstein. General relativity
tells us that all forms of energy must gravitate and curve spacetime, so the physical energy–momentum
tensor of a given field is whatever appears on the rhs of the Einstein field equations,

Rµν −
1
2Rgµν = 8πG

c4
Θµν . (6.21)

Given a Lagrangian L for the matter content, we derive†

Θµν = − 2√
−g

∂(
√
−gL)

∂gµν
= −2 ∂L

∂gµν
+ gµνL. (6.22)

See the Part III General Relativity course for more details.
†Note that these last two equations are written in terms of a metric with signature (−,+,+,+), which is more
popular in the general relativity literature.

Question 7

Consider a massive vector field10 Cµ governed by the action

L = −1
4FµνF

µν + 1
2m

2CµC
µ, (7.1)

where the field strength tensor Fµν = ∂µCν − ∂νCµ. It is straightforward to show by using the Euler–
Lagrange equations that this field satisfies the equation of motion

∂µF
µν +m2Cν = 0. (7.2)

Proposition 7.1: When m 6= 0, the field satisfies the constraint ∂µCµ = 0.

Proof.—Take the derivative ∂ν of Eq. (7.2) to obtain ∂µ∂νFµν +m2∂νC
ν = 0. The first term on the

lhs vanishes due to the antisymmetry of Fµν , and the second term gives us the desired result. �

Proposition 7.2: C0 is a nondynamical field, which can be eliminated completely in terms of the remaining
degrees of freedom Ci.

Proof.—The constraint ∂µCµ = 0 implies that Ċ0 = −∂iCi. We substitute this back into the ν = 0
component of Eq. (7.2) to obtain

∂µF
µ0 +m2C0 = 0. (7.3)

10In the literature, this is also often called a Proca field.
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Since F 00 = 0, we expand ∂µFµ0 = ∂iF
i0 = ∂i(∂iC0 − ∂0Ci) to obtain

∂i∂
iC0 +m2C0 = ∂iĊ

i, (7.4)

or equivalently,
(∇2 −m2)C0 = −∂iĊi, (7.5)

where the 0 index can be lowered with the Minkowski metric, C0 ≡ C0. This is the inhomogeneous
modified Helmholtz equation.11 Its solution can be determined uniquely by the method of Green’s
functions,

C0(t,x) =
∫

d3x′
∂iĊ

i(t,x′)
4π|x− x′| e

−m|x−x′|, (7.6)

provided we choose boundary conditions that forbid any homogeneous solutions and that require the
field to decay sufficiently fast at large distances. �

We construct the canonical momenta Πµ conjugate to Cµ from the definition

Πµ = ∂L
∂(∂0Cµ) = Fµ0, (7.7)

which indeed vanishes when µ = 0.

Proposition 7.3: The Hamiltonian density for this theory is

H = −1
2ΠiΠi + 1

2(∂iCj∂iCj − ∂iCj∂jCi)−
1
2m

2CiC
i − 1

2m
2(C0)2 − C0∂iΠi. (7.8)

Proof.—The Hamiltonian density is obtained from the Legendre transform H = ΠµĊµ − L, which
yields

H = ΠiĊi + 1
4FµνF

µν − 1
2m

2CµC
µ. (7.9)

This is still expressed in terms of time derivatives of the fields Ċµ, which we need to eliminate in favour
of the conjugate momenta. First note that Πi = F i0 = ∂iC0 − ∂0Ci, which can be rearranged to read

Ċi = ∂iC0 −Πi. (7.10)

Next, we expand

FµνF
µν = 2F0iF

0i + FijF
ij

= 2ΠiΠi + 2(∂iCj∂iCj − ∂iCj∂jCi). (7.11)

Putting everything together, we get

H = −1
2ΠiΠi + 1

2(∂iCj∂iCj − ∂iCj∂jCi)−
1
2m

2CiC
i − 1

2m
2(C0)2 + Πi∂iC0. (7.12)

The momentum term looks a little funny with the minus sign sitting in front of it, but this just has to
do with our signature convention (+,−,−,−) for the Minkowski metric. As a final step, we use the
product rule to write the last term as Πi∂iC0 = ∂i(ΠiC0) − C0∂iΠi. Under reasonable assumptions,
the boundary term ∂i(ΠiC0) vanishes when we integrate over all space to form the Hamiltonian
H =

∫
d3x H, so can be discarded since it does not contribute to the equations of motion. Doing so

gives us the desired result. �

11Also sometimes called the inhomogeneous screened Poisson equation.

– 11 –



As a sanity check, observe that C0 appears with no conjugate momentum in Eq. (7.8), thus it is
serving as a Lagrange multiplier. It enforces the condition C0 = −(∂iΠi)/m2. Plugging the definition
Πi = F i0 = ∂iC0 − Ċi into this condition returns Eq. (7.4).

Question 8

Consider a scalar field theory in d = n+ 1 dimensions with action

S =
∫

ddx
(

1
2∂µφ∂

µφ− 1
2m

2φ2 − gφp
)
, (8.1)

where m, g and p are constants. We are interested in determining the constraints on these constants that
permit the theory to be scale invariant. If we take the viewpoint of an active transformation, this involves
scaling

φ(x)→ φ′(x) = λ−Dφ(λ−1x), (8.2)

where D is called the (classical) scaling dimension of the field.

Proposition 8.1: The derivative terms are scale invariant only if

D = d− 2
2 = n− 1

2 . (8.3)

Proof.—Under this scaling transformation, we have that

∂φ(x)
∂xµ

→ ∂φ′(x)
∂xµ

= λ−D
∂φ(λ−1x)
∂xµ

= λ−D−1 ∂φ(y)
∂yµ

. (8.4)

In the last step, we used the chain rule and defined yµ = λ−1xµ. This tells us that ∂µφ(x) →
λ−D−1∂µφ(y), hence the derivative terms in the action transform as

1
2

∫
ddx ∂µφ(x)∂µφ(x)→ λ−2(D+1) 1

2

∫
ddx ∂µφ(y)∂µφ(y)

= λd−2(D+1) 1
2

∫
ddy ∂µφ(y)∂µφ(y). (8.5)

We arrive at the second line by transforming the measure into the new coordinates, ddx = λd ddy.
Whether we call the coordinates x or y ultimately doesn’t matter if they are being integrated over,
hence the action is invariant under this rescaling provided

d− 2(D + 1) = 0. (8.6)

This can be solved for D to return the desired result. �

Proposition 8.2: Scale invariance requires the scalar to be massless (m = 0). If g 6= 0, it also requires

p = 2d
d− 2 = 2n+ 2

n− 1 . (8.7)

Proof.—All we have to do is repeat the same steps earlier. For the mass term, we find∫
ddx m2φ2(x)→ λ−2D

∫
ddx m2φ2(y) = λd−2D

∫
ddy m2φ2(y). (8.8)

This is scale invariant if d = 2D, but we already fixed D = (d− 2)/2, hence scale invariance requires
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m = 0. For the remaining power-law term,∫
ddx gφp(x)→ λd−Dp

∫
ddy gφp(y), (8.9)

hence the theory is scale invariant if d−Dp = 0, which can be solved to give the desired result. �

Proposition 8.3: Scale invariance leads to the corresponding Noether current

Dµ =
(
d− 2

2

)
φ∂µφ+

(
xν∂µφ− 1

2x
µ∂νφ

)
∂νφ+ xµgφ2d/(d−2). (8.10)

Proof.—We write λ ' 1− ε such that an infinitesimal scaling transformation yields

φ(x)→ λ−Dφ(λ−1x) = φ(x) + ε [Dφ(x) + xµ∂µφ(x)] , (8.11)

from which we read off the infinitesimal change δφ = (D + xµ∂µ)φ, having dropped the factor of ε as
usual. The Lagrangian must similarly transform as

L(x)→ λ−`L(λ−1x) = L(x) + ε(`+ xµ∂µ)L(x), (8.12)

where ` is the scaling dimension of the Lagrangian. We determine the value of ` by noting that∫
ddx L(x)→ λd−`

∫
ddy L(y) (8.13)

is scale invariant only if ` = d. Thus, dropping the overall factor of ε,

δL = (d+ xµ∂µ)L = ∂µ(xµL), (8.14)

since ∂µxµ = δµµ = d. We read off Fµ = xµL. These tell us that the Noether current is

Dµ = ∂L
∂(∂µφ)δφ− F

µ

= ∂µφ (Dφ+ xν∂νφ)− xµ
(

1
2∂νφ∂

νφ− gφp
)
, (8.15)

which yields the desired result upon further simplification. �
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