
Quantum Field Theory: Example Sheet 2
Michaelmas 2018, Mathematical Tripos Part III, University of Cambridge

Model solutions by L.K. Wong∗. Last updated November 27, 2018.

Question 1

In this example sheet, Questions 1–6 concern the real scalar field φ governed by the Lagrangian

L = 1
2∂µφ∂

µφ− 1
2m

2φ2. (1.1)

Proposition 1.1: The normal-ordered four-momentum operator is

:Pµ: =
∫ d3p

(2π)3 p
µa†pap. (1.2)

Proof.—We know from Noether’s theorem, and the fact that Eq. (1.1) is invariant under spacetime
translations, that we have the conserved charges Pµ =

∫
d3xT 0µ, where Tµν = ∂µφ∂νφ−ηµνL. Noting

that the conjugate momentum field
π(x) = φ̇(x) (1.3)

by definition, we can read off the time and space components

P 0(t) =
∫

d3x

(
1
2π

2 + 1
2(∇φ)2 + 1

2m
2φ2
)
, (1.4)

P i(t) =
∫

d3x π∂iφ. (1.5)

These quantities are still formally functions of time, but since they are conserved Noether charges, they
are the same when evaluated at any given time. Naturally, the most convenient choice is t = 0, so we
define the (classical) Hamiltonian H ≡ P 0(0), and likewise the 3-momentum of the field is P i ≡ P i(0).
We now move to quantize this theory. Our starting point is to use the Schrödinger-picture fields

φ(x) =
∫ d3p

(2π)3
1√
2Ep

(
ape

ip·x + a†pe
−ip·x) , (1.6a)

π(x) = −i
∫ d3p

(2π)3

√
Ep
2
(
ape

ip·x − a†pe−ip·x
)
, (1.6b)

where Ep =
√

p2 +m2. The spatial derivative of φ(x) is

∂iφ(x) = −i
∫ d3p

(2π)3
1√
2Ep

pi
(
ape

ip·x − a†pe−ip·x
)
. (1.7)

Note that there is a small subtlety with minus signs that we have to be careful of because of our
choice of metric signature. The dot product p · x = δijp

ixj is with respect to the Kronecker delta, so
∂i(p · x) = δijp

j . When we lower the index, we write δijpj = −ηijpj = −pi; it is very easy to forget
this minus sign.1

Substitute these into the expression for P i to get

P i =
∫

d3x π(x)∂iφ(x)

∗Please send any comments or corrections to L.K.Wong@damtp.cam.ac.uk
1Things are much more straightforward when we work with 4-vectors; see the discussion around Eq. (4.5).
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= −
∫

d3x
d3p

(2π)3
d3q

(2π)3

√
Ep
2
(
ape

ip·x − a†pe−ip·x
)
× 1√

2Eq
qi
(
aqe

iq·x − a†qe−iq·x
)

= −1
2

∫
d3x

d3p

(2π)3
d3q

(2π)3

√
Ep
Eq

qi
[(
apaq + a†pa

†
q

)
ei(p+q)·x −

(
apa
†
q + a†paq

)
ei(p−q)·x

]
. (1.8)

In obtaining the last line, we use the freedom to relabel the integration variable x → −x in two of
the four terms in square brackets to simplify the expression. Integrating over x now pulls down delta
functions, i.e.,

∫
d3x ei(p±q)·x = (2π)3δ(3)(p± q). Integrate over q to obtain

P i = 1
2

∫ d3p

(2π)3 p
i
(
apa−p + a†pa

†
−p + apa

†
p + a†pap

)
. (1.9)

The first two terms piapa−p and pia†pa
†
−p are odd in p since the operators commute, thus they vanish

when we integrate over all values of the momenta. Only the last two terms remain, which upon normal
ordering yields the desired result,

:P i:=
∫ d3p

(2π)3 p
ia†pap. (1.10)

We repeat similar steps to obtain the Hamiltonian. Substitute Eqs. (1.6) and (1.7) into the expression
for the Hamiltonian to obtain2

H =
∫

d3x

(
1
2π

2(x) + 1
2δ

ij∂iφ(x)∂jφ(x) + 1
2m

2φ2(x)
)

= 1
4

∫ d3p

(2π)3
1
Ep

[
(−E2

p + p2 +m2)(apa−p + a†pa
†
−p) + (E2

p + p2 +m2)(apa†p + a†pap)
]
. (1.11)

The term proportional to (−E2
p + p2 +m2) vanishes because E2

p = p2 +m2, leaving us with only the
other term. After normal ordering, we get

:H:=
∫ d3p

(2π)3 Epa
†
pap. (1.12)

Recalling that H ≡ P 0, Eqs. (1.10) and (1.12) together yield the desired result for :Pµ:. �

Lemma 1.1: The Heisenberg-picture fields φ(x) ≡ φ(t,x) and π(x) = π(t,x) are given by

φ(x) =
∫ d3p

(2π)3
1√
2Ep

(
ape
−ip·x + a†pe

ip·x) , (1.13a)

π(x) = −i
∫ d3p

(2π)3

√
Ep
2
(
ape
−ip·x − a†peip·x

)
. (1.13b)

Proof.—Any (time-independent) Schrödinger-picture operatorOS can be transformed into a Heisenberg-
picture operator via the definition

OH(t) = eiHtOSe−iHt. (1.14)

Differentiate this to get
d
dtOH = e−iHt[iH,OS ]e−iHt = i[H,OH ], (1.15)

having used the fact that OS is time-independent, and ∂t(eiHt) = iHeiHt = eiHtiH, since H necessarily
commutes with itself. For the specific case of constructing Heisenberg-picture fields out of φ(x) or
π(x), what matters are the operators eiHtape−iHt and eiHta†pe−iHt, which we would like to simplify.

2See the discussion around Eq. (2.22) of David Tong’s notes [1] for intermediate steps.
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Using Eq. (1.15) with OS → ap and OH → ap(t) ≡ eiHtape−iHt, we obtain

d
dtap(t) = eiHt[iH, ap]e−iHt. (1.16)

We then use the commutation relations

[ap, a†q] = (2π)3δ(3)(p− q), [ap, aq] = [a†p, a†q] = 0 (1.17)

combined with the definition of H in Eq. (1.12) to learn that

[H, ap] = −Epap, [H, a†p] = Epa
†
p. (1.18)

These imply
d
dtap(t) = eiHt(−iEpap)e−iHt = −iEpap(t), (1.19)

which is a standard differential equation with solution ap(t) = ap(0)e−iEpt. Since ap(0) = ap by
construction, we learn that

eiHtape
−iHt = ape

−iEpt, and likewise eiHta†pe
−iHt = a†pe

iEpt. (1.20)

Finally, noting that Ep = p0 allows us to write the dot product appearing in the exponentials as
−iEpt+ ip · x = −ipµxµ = −ip · x. This completes the proof. �

Proposition 1.2: The Heisenberg-picture field φ(x) satisfies the commutation relation

[Pµ, φ(x)] = −i∂µφ(x). (1.21)

Proof.—Evaluate the lhs to obtain

[Pµ, φ(x)] =
∫ d3p

(2π)3
d3q

(2π)3

[
pµa†pap,

1√
2Eq

(
aqe
−iq·x + a†qe

iq·x)]

=
∫ d3p

(2π)3
d3q

(2π)3
pµ√
2Eq

(
[a†pap, aq]e−iq·x + [a†pap, a†q]eiq·x

)
. (1.22)

Now use the commutation relations in Eq. (1.17) to simplify this to

[Pµ, φ(x)] =
∫ d3p

(2π)3
d3q

(2π)3
pµ√
2Eq

(2π)3δ(3)(p− q)
(
−ape−iq·x + a†pe

iq·x)
= −

∫ d3p

(2π)3
pµ√
2Ep

(
ape
−ip·x − a†peip·x

)
. (1.23)

One can then verify that this last line is indeed equal to the derivative −i∂µφ(x). �

Question 2

Proposition 2.1: The Heisenberg-picture fields satisfy φ̇(x) = i[H,φ(x)] = π(x).

Proof.—Recall that the Hamiltonian for a free scalar field is

H =
∫

d3x

(
1
2π

2(x) + 1
2 [∇φ(x)]2 + 1

2m
2φ2(x)

)
, (2.1)

and that it is a conserved charge so can be evaluated at any time we like. We choose to evaluate it at
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the time t = x0 to make use of the equal-time commutation relations

[φ(t,x), π(t,x′)] = iδ(3)(x− x′), [φ(t,x), φ(t,x′)] = [π(t,x), π(t,x′)] = 0. (2.2)

Since φ commutes with itself, the only contribution comes from

i[H,φ(x)] = i

∫
d3x′

(
1
2
[
π2(t,x′), φ(t,x)

])
= π(x). (2.3)

This completes the proof, since the other relations—namely, φ̇(x) = π(x) and φ̇(x) = i[H,φ(x)]—are
true by definition; cf. Eqs. (1.3) and (1.15), and also Eq. (1.21). �

Proposition 2.2: The fields also satisfy π̇(x) = i[H,π(x)] = (∇2 −m2)φ(x).

Proof.—The first equality π̇(x) = i[H,π(x)] is true by definition, cf. Eq. (1.15). Let us verify the second
equality. We find

i[H,π(x)] = i

2

∫
d3x′

([
(∇φ(t,x′))2, π(t,x)

]
+m2 [φ2(t,x′), π(t,x)

])
. (2.4)

We can simplify the first commutator by noting

1
2
[
(∇φ(t,x′))2, π(t,x)

]
= ∇φ(t,x′) · [∇φ(t,x′), π(t,x)]

= δij
∂φ(t,x′)
∂x′i

∂

∂x′j
[φ(t,x′), π(t,x)]

= iδij
∂φ(t,x′)
∂x′i

∂

∂x′j
δ(3)(x′ − x). (2.5)

Plug this back into Eq. (2.4) and integrate by parts to get

i[H,π(x)] =
∫

d3x′
(
∇2φ(t,x′)δ(3)(x′ − x′) + i

2m
2[φ2(t,x′), π(t,x)]

)
. (2.6)

Simplifying the remaining commutator is straightforward, and yields the desired result. �

Since φ̇ = π and π̇ = (∇2 −m2)φ, it is clear that φ satisfies the Klein–Gordon equation, as it should.

Question 3

Proposition 3.1: The momentum eigenstate |p〉 =
√

2Epa†p |0〉 satisfies 〈0 |φ(x)| p〉 = e−ip·x.

Proof.—It will be instructive to instead prove the complex conjugate statement, 〈p |φ(x)| 0〉 = eip·x.
We start by determining

φ(x) |0〉 =
∫ d3p

(2π)3
1√
2Ep

(
ape
−ip·x + a†pe

ip·x) |0〉
=
∫ d3p

(2π)3
1√
2Ep

a†pe
ip·x |0〉

=
∫ d3p

(2π)32Ep
eip·x |p〉 . (3.1)

In the second line, we have used the fact that the vacuum is defined by the condition ap |0〉 = 0 ∀p.
From the commutation relations in Eq. (1.17), the momentum eigenstates are found to satisfy the
normalization condition

〈p |q 〉 = (2π)32Epδ(3)(p− q), (3.2)
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hence we obtain 〈p |φ(x)| 0〉 = eip·x as desired. �

Aside 3.1: This result looks very similar to one in standard quantum mechanics, 〈p |x 〉 ∝ e−ip·x.
Accordingly, we can interpret φ(x) |0〉 ≡ |x〉 as a state with a single particle localized at the spacetime
point x. As we should be accustomed to by now, the last line of Eq. (3.1) is telling us that a particle
localized at a single point is equivalent to a superposition of momentum eigenstates.

Question 4

Recall from Example Sheet 1 that a Lorentz-invariant theory conserves the classical angular momentum
of the field,

Qi = 1
2εijk

∫
d3x

(
xjT 0k − xkT 0j) . (4.1)

For a free scalar field with energy–momentum tensor Tµν = ∂µφ∂νφ− ηµνL, this has the explicit form

Qi = 1
2εijk

∫
d3x φ̇

(
xj∂kφ− xk∂jφ

)
= εijk

∫
d3x π(x)xj∂kφ(x). (4.2)

Along with the definition φ̇ = π, we use the antisymmetry property of εijk and the freedom to relabel
dummy indices to obtain the last expression.

Proposition 4.1: The normal-ordered quantum operator Qi is3

Qi = i

2εijk
∫ d3p

(2π)3 a
†
p

(
pj

∂

∂pk
− pk ∂

∂pj

)
ap. (4.3)

Proof.—As we saw in an earlier question, we have to worry about minus signs when there are dot
products over three-dimensional objects like p · x. For this reason, we keep Qi as a function of some
arbitrary time t until it stops being convenient. We substitute in the Heisenberg fields of Eqs. (1.13)
to get

εijk

∫
d3x πxj∂kφ = − i2εijk

∫
d3x

d3p

(2π)3
d3q

(2π)3

√
Ep
Eq

(
ape
−ip·x − a†peip·x

)
× xj(−iqk)

(
aqe
−iq·x − a†qeiq·x

)
. (4.4)

We would like to simplify this by integrating over x, but the factor of xj makes this problematic. We
deal with this by realizing that

∂

∂qµ
e−iq·x = −ixµe−iq·x, (4.5)

such that

Qi = − i2εijk
∫

d3x
d3p

(2π)3
d3q

(2π)3

√
Ep
Eq

(
ape
−ip·x − a†peip·x

)
qk
(
aq

∂

∂qj
e−iq·x + a†q

∂

∂qj
eiq·x

)
. (4.6)

Now use the freedom to choose t = 0 (since Qi is a conserved charge) and integrate over x to find

Qi = i

2εijk
∫ d3p d3q

(2π)3

√
Ep
Eq

qk
[
(a†pa†q − apaq)

∂

∂qj
δ(3)(p + q) + (a†paq − apa†q)

∂

∂qj
δ(3)(p− q)

]
. (4.7)

3This differs from the result given in the question sheet by a minus sign. I think I am correct, but if I have committed
a sign error somewhere and you spot it, please let me know.
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The natural thing to do next is to move the differential operator ∂/∂qj off the delta function by
integrating by parts, so that we can integrate over p. Doing it this way turns out to be rather tedious.
Instead, let us define another differential operator

L
(q)
i ≡ iεijkqk

∂

∂qj
, (4.8)

which one should recognize as the angular momentum Li = (x × p)i expressed in momentum space.
The superscript on L(q)

i tells us that this is an operator acting on functions of q. It is easy to convince
ourselves that this operator satisfies the Leibniz rule

L
(q)
i [f(q)g(q)] = [L(q)

i f(q)]g(q) + f(q)[L(q)
i g(q)] (4.9)

for any two functions f, g. This means integration by parts also works for this operator, thus

Qi = 1
2

∫ d3p d3q

(2π)3

√
Ep
Eq

[
(a†pa†q − apaq)L

(q)
i δ(3)(p + q) + (a†paq − apa†q)L

(q)
i δ(3)(p− q)

]
= 1

2

∫ d3p d3q

(2π)3

√
Ep
Eq

[
δ(3)(p + q)L(q)

i (apaq − a†pa†q) + δ(3)(p− q)L(q)
i (apa†q − a†paq)

]
= 1

2

∫ d3q

(2π)3

(
a−qL

(q)
i aq − a†−qL

(q)
i a†q + aqL

(q)
i a†q − a†qL

(q)
i aq

)
, (4.10)

having integrated over p to obtain the last line. Note also that, in obtaining the second line, we have
used the fact that

L
(q)
i f(q2) = 0 (4.11)

for any spherically-symmetric function f(q2).4 In particular, this means L(q)
i Eq = 0. Let’s rename

q→ p and drop the superscripts on Li (since it’s clear it’s acting on p) to get

Qi = 1
2

∫ d3p

(2π)3

(
a−pLiap − a†−pLia†p + apLia

†
p − a†pLiap

)
. (4.12)

It turns out that the first two terms above are zero. To see this, note that Li is unchanged under
the transformation p→ −p, which implies

a−pLiap
1©
−→ −apLia−p

2©
−→ −a−pLiap, (4.13)

having integrated by parts in step 1©, and then using the freedom to transform p → −p under the
integral in step 2©. Since this is odd in p, it vanishes when we integrate over all values of the momenta.
Likewise, the same arguments apply to the a†−pLia†p term. After normal ordering, we are left with

:Qi: = 1
2

∫ d3p

(2π)3

[
(Lia†p)ap − a†pLiap

]
= −

∫ d3p

(2π)3 a
†
pLiap, (4.14)

having integrated by parts to obtain the second expression. This is the desired result. �

Proposition 4.2: For a momentum eigenstate |p〉, its angular momentum is Qi |p〉 = Li |p〉.

Proof.—Let us act on the state |p〉 =
√

2Epa†p |0〉 with the operator Qi. We find

Qi |p〉 = −
∫ d3q

(2π)3 a
†
qL

(q)
i aq

√
2Epa†p |0〉 =

∫ d3q

(2π)3 [L(q)
i

√
2Epa†q]aqa†p |0〉 (4.15)

4One sees this by noting that ∂/∂qjf(q2) produces something proportional to qj . Then L(q)
i f(q2) ∝ εijkq

jqk = 0.
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after integrating by parts. We can replace aqa†p → [aq, a†p] = (2π)3δ(3)(p − q) in the integrand and
integrate over q to find the desired result. �

Proposition 4.2 tells us that the total angular momentum of the state |p〉 is due only to its motion in
spacetime, i.e., there is no contribution from any intrinsic degrees of freedom. If the particle is massive,
then we can boost the result to its rest frame, where we would have Qi |0〉 = 0.

Aside 4.1: One might wonder what it means to take the derivative ∂/∂p of a momentum eigenstate |p〉.
Momentum eigenstates are nice and simple objects to work with, but we can be a bit more rigorous
here by working with a wavepacket

|Φ〉 =
∫ d3p

(2π)3
1√
2Ep

Φ(p) |p〉 , (4.16)

where Φ(p) is some function that might be peaked around a particular momentum value. These are
really what we create and observe in experiments. One can then show that the expectation value of
the angular momentum for this wavepacket is

〈Φ |Qi|Φ〉 = −
∫ d3p

(2π)3 Φ∗(p)LiΦ(p). (4.17)

Notice that the differential operator Li is now just acting on a good ol’ function Φ(p).

Question 5

Proposition 5.1: The normal-ordered product :φ(x1)φ(x2): is symmetric under the interchange x1 ↔ x2.

Proof.—We decompose the scalar field as φ(x) = φ+(x) + φ−(x), where

φ+(x) =
∫ d3p

(2π)3
1√
2Ep

ape
−ip·x, φ−(x) =

∫ d3p

(2π)3
1√
2Ep

a†pe
ip·x. (5.1)

For brevity, let us write φ1 ≡ φ(x1) and φ2 ≡ φ(x2) Then the normal-ordered product is

:φ1φ2: = :(φ+
1 + φ−1 )(φ+

2 + φ−2 ): = φ+
1 φ

+
2 + φ−2 φ

+
1 + φ−1 φ

+
2 + φ−1 φ

−
2 . (5.2)

The commutation relations in Eq. (1.17) tell us that [φ+
1 , φ

+
2 ] = [φ−1 , φ

−
2 ] = 0 (even when their times

are not equal), hence the equation above is manfiestly symmetric under the interchange x1 ↔ x2. �

Proposition 5.2: The time-ordered product T [φ(x1)φ(x2)] is symmetric under the interchange x1 ↔ x2.

Proof.—By definition, the time-ordered product is

T [φ(x1)φ(x2)] = θ(x0
1 − x0

2)φ(x1)φ(x2) + θ(x0
2 − x0

1)φ(x2)φ(x1). (5.3)

This is manifestly symmetric. �

The Feynman propagator ∆F (x1 − x2) is just the linear combination

∆F (x1 − x2) ≡ T [φ(x1)φ(x2)]− :φ(x1)φ(x2):, (5.4)

hence it inherits the same symmetry property of its constituents.
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Question 6

It will be convenient to begin by establishing more compact notation for this question. We write φi ≡
φ(xi) to denote the argument of the scalar field, ∆ij ≡ ∆F (xi − xj) for the Feynman propagator, and
θij = θ(ti− tj) for the Heaviside step function, where t ≡ x0. Furthermore, let us also define θijk = θijθjk.
Note that these indices are never implicitly summed over. We are asked to verify that Wick’s theorem
holds for the 3-point correlation function, which written in this compact notation reads

T [φ1φ2φ3] = :φ1φ2φ3: +φ1∆23 + φ2∆31 + φ3∆12. (6.1)

Lemma 6.1: The time-ordered product can be written as

T [φ1φ2φ3] =
∑
σ∈S3

θσ(1)σ(2)σ(3)φσ(1)φσ(2)φσ(3). (6.2)

Proof.—We expand out the definition of the time-ordered product to obtain

T [φ1φ2φ3] = θ123φ1φ2φ3 + θ213φ2φ1φ3 + (4 other permutations). (6.3)

The group S3 is exactly the set of all permutations of three elements, hence this expansion can be
written succinctly according to Eq. (6.2). �

Lemma 6.2: The normal-ordered product is symmetric under the interchange of any two arguments,

:φ1φ2φ3: = :φ2φ1φ3: = :φ1φ3φ2: = :φ3φ2φ1: . (6.4)

Proof.—We expand out the definition of the normal-ordered product to obtain

:φ1φ2φ3:= φ+
1 φ

+
2 φ

+
3

+ φ−1 φ
+
2 φ

+
3 + φ−2 φ

+
3 φ

+
1 + φ−3 φ

+
1 φ

+
2

+ φ−1 φ
−
2 φ

+
3 + φ−2 φ

−
3 φ

+
1 + φ−3 φ

−
1 φ

+
2

+ φ−1 φ
−
2 φ
−
3 . (6.5)

Since [φ±i , φ
±
j ] = 0, this is manifestly symmetric under the interchange of any two arguments. �

Lemma 6.3: The normal-ordered product can be written as

:φ1φ2φ3: =
∑
σ∈S3

θσ(1)σ(2)σ(3) :φσ(1)φσ(2)φσ(3): . (6.6)

Proof.—As a generalization of the identity θ(x)+θ(−x) = 1, notice that if we “time-order the identity,”
we get

1 = T [1] =
∑
σ∈S3

θσ(1)σ(2)σ(3). (6.7)

We can multiply the normal-ordered product by this identity to get

:φ1φ2φ3: = T [1] :φ1φ2φ3:
=
(
θ123 + θ213 + . . .

)
:φ1φ2φ3:

= θ123 :φ1φ2φ3: +θ213 :φ2φ1φ3: + . . . , (6.8)

having used Lemma 6.2 in the last line. This completes the proof. �
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Theorem 6.1: (Special case of Wick’s theorem) We are now in a position to prove Eq. (6.1).

Proof.—Subtract the time and normal-ordered products while using Lemmas 6.1 and 6.3 to find

T [φ1φ2φ3] − :φ1φ2φ3: =
∑
σ∈S3

θσ(1)σ(2)σ(3)
{
φσ(1)φσ(2)φσ(3)− :φσ(1)φσ(2)φσ(3):

}
. (6.9)

Now expand φi = φ+
i + φ−i within the curly brackets. Note that terms with three factors of φ+ or

three factors of φ− will cancel each other, leaving us with

φσ(1)φσ(2)φσ(3)− :φσ(1)φσ(2)φσ(3): =
[
φ+
σ(1), φ

−
σ(2)

]
φ+
σ(3) +

[
φ+
σ(1)φ

+
σ(2), φ

−
σ(3)

]
+ φ−σ(1)

[
φ+
σ(2), φ

−
σ(3)

]
+
[
φ+
σ(1), φ

−
σ(2)φ

−
σ(3)

]
. (6.10)

We now expand the brackets in the second and fourth terms using [AB,C] = A[B,C] + [A,C]B, and
further use the fact [φ+

i , φ
−
j ] is just a number to find

T [φ1φ2φ3] − :φ1φ2φ3:

=
∑
σ∈S3

θσ(1)σ(2)σ(3)

{
φσ(1)

[
φ+
σ(2), φ

−
σ(3)

]
+ φσ(2)

[
φ+
σ(1), φ

−
σ(3)

]
+ φσ(3)

[
φ+
σ(1), φ

−
σ(2)

]}
=
∑
σ∈S3

(
θσ(1)σ(2)σ(3) + θσ(2)σ(1)σ(3) + θσ(2)σ(3)σ(1)

)
φσ(1)

[
φ+
σ(2), φ

−
σ(3)

]
, (6.11)

having relabelled the dummy indices to arrive at the second line. The last thing we have to do is
simplify the sum of θ’s. To do this, recall that θijk = θijθjk. Suppressing the σ’s for simplicity, we can
write

θ123 + θ213 + θ231 = θ12θ23 + θ21θ13 + θ23θ31

= θ12θ23 + θ21θ13θ23 + θ23θ31. (6.12)

To get the second line, notice that θ21θ13 is nonvanishing only when t2 > t1 > t3. Since this is already
imposing the condition t2 > t3, nothing changes if we multiply this by an extra factor of θ23. This
gives us

θ123 + θ213 + θ231 = θ23(θ12 + θ21θ13 + θ31)
= θ23(θ12 − θ12θ13 + θ13 + θ31)
= θ12θ23 − θ12θ23θ13 + θ23, (6.13)

having used the identity θij + θji = 1 in both the second and third lines. Finally, we repeat the same
argument as before to show that θ12θ23θ13 = θ12θ23, which implies

θ123 + θ213 + θ231 = θ23. (6.14)

Plug this back into Eq. (6.11) to get

T [φ1φ2φ3] − :φ1φ2φ3:=
∑
σ∈S3

φσ(1)

{
θσ(2)σ(3)

[
φ+
σ(2), φ

−
σ(3)

]}
. (6.15)

Let us focus on the terms with σ(1) = 1. The terms in the sum proportional to φ1 are

φ1
∑
σ∈S2

θσ(2)σ(3)

[
φ+
σ(2), φ

−
σ(3)

]
= φ1

∑
σ∈S2

θσ(2)σ(3)
(
φσ(2)φσ(3)− :φσ(2)φσ(3):

)
= φ1 (T [φ2φ3]− :φ2φ3:) . (6.16)
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This follows by essentially running previous parts of our proof in reverse, but applied to the case of
two fields. In the second line, the object in brackets is just the Feynman propagator ∆23 by Wick’s
theorem, so we get φ1∆23. Repeating the same steps for σ(1) = 2 or 3, we get the other two terms,
φ2∆31 and φ3∆12, and hence we recover the desired result in Eq. (6.1). �

Question 7

We wish to study the vacuum-to-vacuum amplitude 〈0 |S| 0〉 for φ4 theory. Expanded as an asymptotic
series in λ,

〈0 |S| 0〉 = 〈0|T exp
(
− iλ4!

∫
d4x φ4(x)

)
|0〉

=
∞∑
n=0

1
n!

(
−iλ
4!

)n ∫
d4x1 · · ·

∫
d4xn 〈0|Tφ4(x1) · · ·φ4(xn) |0〉 . (7.1)

The n = 0 term is trivial, and just returns 〈0 |0 〉 = 1.

O(λ) term—Consider the n = 1 term, which reads

〈0 |S| 0〉 ⊃ −i λ4!

∫
d4x 〈0|Tφφφφ |0〉 = −i λ4! (3)

∫
d4x ∆2

F (0), (7.2)

having used Wick’s theorem in the last step. The combinatorial factor of 3—highlighted in bold—comes
from the total number of possible Wick contractions that lead to the same result,

〈0 |Tφφφφ| 0〉 = φφφφ+ φφφφ+ φφφφ = 3 ∆2
F (0). (7.3)

This can be represented diagrammatically by writing

−i λ4! (3)
∫

d4x ∆2
F (0) = . (7.4)

Notice that we should always include the overall numerical factor in the definition of the Feynman diagram.

O(λ2) terms—We now turn to the n = 2 terms. In practice, we draw all the possible Feynman diagrams
first to enumerate the different possibilities of Wick contractions, and only then do we figure out the
combinatorial factor out front. There are three topologically distinct diagrams at the n = 2 level,

〈0 |S| 0〉 ⊃ + + . (7.5)

• The first of these diagrams yields

= 1
2!

(
−iλ
4!

)2
(24)

∫
d4xd4y ∆4

F (x− y). (7.6)

To count the combinatorial factor of 24, start by choosing one leg on the bottom vertex (it doesn’t
matter which, since they are all the same). There are then four possible ways to connect it to the top
vertex. Now pick the next leg on the bottom vertex; there are three remaining ways to connect it to
the top vertex. Repeating this procedure for the last two legs, we end up with a total of 4! = 24 ways
of connecting the diagram.
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• The second diagram gives

= 1
2!

(
−iλ
4!

)2
(72)

∫
d4x d4y ∆2

F (0)∆2
F (x− y). (7.7)

The combinatorial factor of 72 arises as follows: There are 4C2 = 6 ways of connecting two of the legs on
the bottom vertex together, and there are also 4C2 ways of connecting two of the legs on the top vertex
together. Having done this, the bottom vertex has two remaining legs that need to be connected to the
two remaining legs on the top vertex. There are two ways to do this. Overall, we get 4C2× 4C2×2 = 72.

• The last diagram gives us

= 1
2!

(
−iλ
4!

)2
(9)
∫

d4x d4y ∆4
F (0), (7.8)

where the combinatorial factor of 9 follows from the combinatorial factor of 3 of the n = 1 diagram.
Since there are two copies, we get 3× 3 = 9.

Adding it all up— If we stare at Eqs. (7.4) and (7.8) long enough, we recognize that

1
2!

(
−iλ
4!

)2
(9)
∫

d4x d4y ∆4
F (0) = 1

2

[
−i λ4! (3)

∫
d4x ∆2

F (0)
]2
, (7.9)

or diagrammatically,

= 1
2

( )2

. (7.10)

Thus, the vacuum-to-vacuum amplitude up to O(λ2) is

〈0 |S| 0〉 = 1 + + 1
2

( )2

+ + +O(λ3)

= exp

 + + + . . .

 . (7.11)

Aside 7.1: A good consistency check to do when counting combinatorial factors is to ensure that
their sum adds up to

Pn = (4n)!
4n(2n)! (7.12)

at each level in n, i.e., at each order in λ. The number Pn is the total number of ways of joining 4n
elements (the 4n factors of φ appearing in the correlation function) into distinct pairs. Let’s check
this for our calculations above: For n = 1, we have P1 = 3 as expected. For n = 2, we get P2 = 105,
and we also have 24 + 72 + 9 = 105.

Symmetry factors— If we simplify the numerical factors appearing in front of each diagram above, we
get

3
4! = 1

8 ,
24

2!(4!)2 = 1
48 ,

72
2!(4!)2 = 1

16 ,
9

2!(4!)2 = 1
128 . (7.13)

The numbers 8, 48, 16, and 128 appearing in the denominators are called the symmetry factors of the
diagram. Rather than count combinatorial factors, we can also directly count symmetry factors. At low
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orders in λ, counting either combinatorial or symmetry factors both present about the same level of
difficulty, but at higher orders, it becomes much easier to count symmetry factors.

To see where these numbers come from, consider what happens when we contract the 4n-point correlation
function 〈0|Tφ4(x1) · · ·φ4(xn) |0〉. Nothing changes if we connect something to the first factor of φ(x1)
rather than the second (or third, or fourth) factor of φ(x1), so we would expect that every 4! contractions
give the same result. In fact, this is true also for φ(x2), φ(x3), and so on, so really every (4!)n contractions
give the same result. This cancels the 1/(4!)n normalization coming from the vertex. Additionally, whether
we call one vertex x1 or x2 or xn should not matter, so there are also n! contractions leading to the same
result, cancelling the factor of 1/n! that came from expanding the exponential. It now seems that each
diagram should have an overall numerical factor of 1, but we have overcounted at this point. Specifically,
we have overcounted in five distinct ways, which we now need to correct for:5

(1) When a propagator starts and ends on the same vertex, we have overcounted by a factor of 2.

(2) If a pair of vertices is connected by k identical propagators, we have overcounted by a factor of k!.

(3) If vertices can be permuted without affecting the diagram, we have overcounted by the number of
permutations.

(4) If a diagram contains n identical disconnected pieces, we have overcounted by a factor of n!.

(5) For each figure-8 (n = 1) bubble diagram, we overcount by an additional factor of 2.

The overall number by which we have overcounted is the symmetry factor S of the diagram. We correct
for this overcounting by attaching a factor 1/S to each diagram. Notice that the value of 1/S for each
diagram below is in agreement with the rhs’s of Eq. (7.13).

S = 22 × 2 = 8 Two factors of 2 come from using Rule (1), and the last factor of 2
comes from Rule (5).

S = 4!× 2 = 48 The factor of 4! comes from Rule (2), whereas the factor of 2 comes
from Rule (3).

S = 22 × 2× 2 = 16 Two factors of 2 come from Rule (1), one factor of 2 comes from
Rule (2), and one last factor of 2 comes from Rule (3).

S = 82 × 2 = 128 Each factor of 8 is the symmetry factor for the n = 1 bubble diagram
in isolation, and the factor of 2 comes from Rule (4).

Question 8

We consider an interacting theory involving three scalar fields φi, i ∈ {1, 2, 3}, governed by the Lagrangian

L =
3∑
i=1

[
1
2∂µφi∂

µφi −
1
2m

2φ2
i

]
− λ

8

( 3∑
i=1

φ2
i

)2

. (8.1)

5See Chapter 4.4 of Peskin and Schroeder [2] or a paper by Dong et al. [3] for more words on this issue. For those
with a strong mathematical predisposition, Sec. 2.3.1 of David Skinner’s Advanced Quantum Field Theory lecture
notes [4] provides a discussion on how to formalize these ideas with the concept of group orbits.
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When λ = 0, this is a theory of three identical but independent scalar fields. Each scalar will have its own
Feynman propagator,

〈0 |Tφi(x)φj(x)| 0〉 =
{

∆F (x− y) i = j,

0 i 6= j.
(8.2)

Naturally, this can be written succinctly as

〈0 |Tφi(x)φj(x)| 0〉 = δij∆F (x− y), (8.3)

which gives the momentum-space Feynman rule

= iδij
p2 −m2 . (8.4)

Let us now consider the interaction term. Writing out the sum explicitly gives

−λ8

( 3∑
i=1

φ2
i

)2

= −3λ
4!
(
φ4

1 + φ4
2 + φ4

3
)
− λ

2!2!
(
φ2

1φ
2
2 + φ2

1φ
2
3 + φ2

2φ
2
3
)
, (8.5)

which allows us to read off the Feynman rules for two different types of vertices. The first vertex involves
the interaction between four powers of the same field, while the second vertex involves interactions between
two powers each of two different fields:

= −3iλ, = −iλ (i 6= j). (8.6)

Instead of treating them separately, it is possible to combine both vertices by writing

= −iλ(δijδk` + δikδj` + δi`δjk). (8.7)

This last expression is equal to the amplitude6 iM for φiφj → φkφ` scattering at lowest, nontrivial order
in λ.

Question 9

Consider the theory

L = ∂µψ
∗∂µψ −m2ψ∗ψ + 1

2∂µφ∂
µφ− 1

2M
2φ2 − gψ∗ψφ− h|ψ|4 − kφ3 − `∂µψ∂µψ∗φ. (9.1)

The momentum-space Feynman rules are as follows: The propagators for the complex scalar ψ and the
real scalar φ are, respectively,

= i

p2 −m2 , = i

p2 −M2 .

Notice that the arrow on the propagator for the complex field serves two purposes: it denotes the direction
of momentum flow, and distinguishes between ψ on one end and ψ∗ on the other. The four interaction
vertices give:

6Note some sources write A in place of M.
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= −ig, = −4ih, = −6ik, = −i`(p · p′).

The factor of 4 = 2! 2! in the h vertex comes from the fact that there are 2! ways to contract the factors
of ψ(x) with the rest of the Feynman diagram, and likewise there are also 2! ways to contract the factors
of ψ∗(x). Similarly, the factor of 6 = 3! in the k vertex is due to there being 3! ways to contract φ(x).
Since the Lagrangian must have mass dimension [L] = 4 (in a four-dimensional universe) while [φ] =

[ψ] = [ψ∗] = [∂µ] = +1, it follows that

[g] = [k] = +1, [h] = 0, [`] = −1. (9.2)

The mass dimension of ` tells us that its associated term in the Lagrangian is an irrelevant operator. The
theory is said to be “non-renormalizable.”

Question 10

We consider the same theory as in Question 9, except with h = k = ` = 0. The real scalar field φ will be
referred to as the “meson,” whereas the complex scalar ψ will be called the “nucleon.”

(a) From Eq. (18) of Ben Allanach’s notes [5], the decay of a particle of mass M in its rest frame into n
particles with 4-momenta qi proceeds at a rate

Γ = 1
2M

∫ n∏
i=1

d3qi
(2π)32Eqi

|M|2(2π)4δ(4) (p−
∑n
i=1 qi) . (10.1)

Proposition 10.1: If M > 2m, meson decay φ→ ψψ† at leading order in g proceeds with a decay width

Γ = g2

16πM

√
1−

(
2m
M

)2
. (10.2)

Proof.—The Feynman rules we established in Question 9 tell us that meson decay has a probability
amplitude iM = −ig +O(g2). Plug this into the master formula in Eq. (10.1) with n = 2 to get

Γ = g2

2M

∫ d3q1

(2π)32E1

d3q2

(2π)32E2
(2π)4δ(4)(p− q1 − q2), (10.3)

writing Ei ≡ Eqi for simplicity. In its rest frame, the meson has 4-momentum pµ = (M,0), thus the
delta function factorizes as δ(4)(p− q1 − q2) = δ(E1 + E2 −M)δ(3)(q1 − q2). We integrate over q2 to
get

Γ = g2

2M

∫ d3q1

(2π)34E2
1

(2π)δ(2E1 −M) = g2

2πM

∫ ∞
0

q2dq

(2E)2 δ(2E −M), (10.4)

having moved into spherical coordinates in the last step, while also dropping the subscript “1” that
has become superfluous. Rather than integrate over q ≡ |q|, it is most convenient to change variables
and integrate over x = 2E. The chain rule tells us that E dE = q dq, thus

Γ = g2

2πM

∫ ∞
m

E
√
E2 −m2 dE

(2E)2 δ(2E −M) = g2

2πM

∫ ∞
2m

√
(x/2)2 −m2 dx

4x δ(x−M). (10.5)

Since M > 2m, the integral over x returns a nonzero value which produces the desired result. �
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(b) We now consider nucleon–meson scattering, φψ → φψ, which has an amplitude given at tree level by
the sum of two diagrams,

iM = +

= (−ig)2
[

i

(p1 + p2)2 −m2 + i

(p2 − p′1)2 −m2

]
. (10.6)

Proposition 10.2: The differential scattering cross section for nucleon–meson scattering in the centre-of-
mass frame is

dσ
dt = g4(s+ u− 2m2)2

16π(s−m2)2(u−m2)2(s2 +m4 +M4 − 2sm2 − 2sM2 − 2m2M2) , (10.7)

where s = (p1 + p2)2, t = (p1 − p′1)2, and u = (p2 − p′1)2 are the usual Mandelstam variables.

Proof.—From Eq. (16) of Ben Allanach’s notes [5], any 2 → 2 process has the differential scattering
cross section

dσ
dt = |M|2

16πλ(s,m2
1,m

2
2) (10.8)

in its centre-of-mass frame, with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. Note m1 and m2 are
the masses of the incoming particles. Setting m1 = m, m2 = M , and using the expression forM in
Eq. (10.6), we recover the desired result. �

Of course, the three Mandelstam variables are not all independent, and are related by the identity

s+ t+ u =
∑
i

m2
i = 2(m2 +M2). (10.9)

This equation can be used, for instance, to rewrite dσ/dt as a function of (s, t) rather than (s, u).
It is easy to check that Eq. (10.7) is dimensionally consistent. The scattering cross section has units of

area, thus [σ] = −2, whereas [t] = +2, thus the lhs of Eq. (10.7) has mass dimension −4. The rhs also
has mass dimension −4, since [g] = [m] = [M ] = +1 and [s] = [u] = +2.
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