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Question 1

Proposition 1.1: The Clifford algebra

{γµ, γν} = 2ηµν14, (1.1)

with 1n denoting the n× n identity matrix,1 is satisfied by Dirac matrices in the chiral representation,

γ0 =
(

0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
. (1.2)

Proof.—This follows from direct evaluation, while using the identity

σiσj = δij12 + iεijkσk (1.3)

for the Pauli matrices. Note that the index k is being implicitly summed over. �

Proposition 1.2: Different representations of the Clifford algebra can be obtained through a unitary
transformation γµ → (γ′)µ = UγµU†. The unitary matrix

U = 1√
2

(
12 12

−12 12

)
(1.4)

results in the Dirac representation

(γ′)0 =
(
12 0
0 −12

)
, (γ′)i =

(
0 σi

−σi 0

)
. (1.5)

Proof.—Given the representations in Eqs. (1.2) and (1.5), we wish to determine the corresponding
unitary transformation U . As both γµ and (γ′)µ can be written as blocks of 2×2 matrices, it is natural
to expect that the same is true for U , namely let

U =
(
A B

C D

)
. (1.6)

Unitarity (U†U = 14) enforces three independent constraint equations on these 2×2 complex matrices,

A†A+ C†C = 12, A†B + C†D = 0, B†B +D†D = 12. (1.7)

We then use the equation (γ′)0U = Uγ0 to learn that A = B and C = −D. Plugging these back into
the equations above, we get

A†A+D†D = 12, A†A = D†D; (1.8)

telling us that A/
√

2 and D/
√

2 are themselves unitary matrices. Finally, we use (γ′)iU = Uγi to find

σiA = Dσi, σiD = Aσi. (1.9)

∗Please send any comments or corrections to L.K.Wong@damtp.cam.ac.uk
1When the context is clear, we will often omit writing 1n explicitly.

– 1 –

mailto:L.K.Wong@damtp.cam.ac.uk


It is easy to correctly guess thatA = D = z12 is a solution, where z ∈ C is an appropriate normalization
factor. Substitute this back into Eq. (1.8) to learn that 2|z|2 = 1, thus a valid choice is z = 1/

√
2.

Putting everything together, we get A = B = D = 12/
√

2, and C = −D = −12/
√

2. This returns the
desired result. �

Question 2

To improve readability, in Questions 2 and 3 we label spacetime indices using the Roman alphabet—
a, b, . . . ∈ {0, 1, 2, 3}—rather than the Greek.

Lemma 2.1: The commutator of two Dirac matrices satisfies [γa, γb] = 2(γaγb − ηab).

Proof.—By definition, we have that

γaγb = 1
2[γa, γb] + 1

2{γ
a, γb}. (2.1)

Rearranging this equation while using Eq. (1.1) returns the desired result. �

Proposition 2.1: The Dirac matrices satisfy

[γaγb, γcγd] = 2ηbcγaγd − 2ηacγbγd + 2ηbdγcγa − 2ηadγcγb. (2.2)

Proof.—Expand out the commutator to find

[γaγb, γcγd] = [γaγb, γc]γd + γc[γaγb, γd]
= γa[γb, γc]γd + [γa, γc]γbγd + γcγa[γb, γd] + γc[γa, γd]γb. (2.3)

The next step is to use Lemma 2.1. Schematically, each term will yield γ[γ, γ]γ ∼ 2(γγγγ − ηγγ). We
want to engineer it in such a way that all terms with four factors of γ cancel each other. We achieve
this by exploiting the antisymmetry [A,B] = −[B,A] of the commutator to write

[γaγb, γcγd] = −γa[γc, γb]γd + [γa, γc]γbγd − γcγa[γd, γb] + γc[γa, γd]γb. (2.4)

Using Lemma 2.1 now neatly recovers the desired result. �

We define the matrices Sab = 1
4 [γa, γb]. Using Lemma 2.1, it is easy to see that Sab = 1

2 (γaγb − ηab).

Lemma 2.2: The matrices Sab satisfy [Sab, γc] = γaηbc − γbηac.

Proof.—Expand the lhs to find

[Sab, γc] = 1
2 [γaγb, γc] = 1

2
(
γa[γb, γc] + [γa, γc]γb

)
= 1

2
(
−γa[γc, γb] + [γa, γc]γb

)
. (2.5)

In the last step, we make use of the antisymmetry of the commutator such that, when we use Lemma 2.1,
the terms with three factors of γ cancel each other and leave us with the desired result. �

Proposition 2.2: The six matrices Sab form a representation of the Lie algebra of the Lorentz group,

[Sab, Scd] = Sadηbc − Sbdηac + Scaηbd − Scbηad. (2.6)
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Proof.—Use the definition of Scd on the lhs to find

[Sab, Scd] = 1
2 [Sab, γcγd] = 1

2 [Sab, γc]γd + 1
2γ

c[Sab, γd]. (2.7)

Using Lemma 2.2, this further simplifies to

[Sab, Scd] = 1
2
(
γaηbc − γbηac

)
γd + 1

2γ
c
(
γaηbd − γbηad

)
= 1

2γ
aγdηbc − 1

2γ
bγdηac + 1

2γ
cγaηbd − 1

2γ
cγbηad. (2.8)

Finally, use the definition of Sab to write 1
2γ

aγd = Sad + 1
2η
ad. All terms with two factors of η cancel

each other, leaving us with the desired result. �

Question 3

In the interest of efficiency, it will be convenient to prove the desired identities slightly out of order.

Proposition (d): The Dirac matrix γ5 = iγ0γ1γ2γ3 satisfies (γ5)2 = 1.

Proof.—The Clifford algebra in Eq. (1.1) tells us that γµ and γν anticommute with each other when
µ 6= ν. This fact can be exploited to show that

(γ5)2 = −γ0γ1γ2γ3γ0γ1γ2γ3 = −(−1)3+2+1(γ0)2(γ1)2(γ2)2(γ3)2. (3.1)

We pick up three factors of −1 when we anticommute the second γ0 further to the right until it
meets the first γ0, another two factors of −1 to anticommute γ1, and one additional factor of −1 to
anticommute γ2. The Clifford algebra also tells us that (γ0)2 = 1 and (γi)2 = −1. These can be used
to deduce the desired result. �

Lemma 3.1: The Dirac matrix γ5 anticommutes with all the other Dirac matrices, {γµ, γ5} = 0.

Proof.—Consider the quantity γ5γa. Since γa will anticommute with three of the four Dirac matrices
contained within γ5, and will of course commute with itself, it follows that

γ5γa = (−1)3iγaγ0γ1γ2γ3 = −γaγ5, (3.2)

where each factor of −1 comes from each anticommutation. �

Proposition (a): tr γa = 0

Proof.—We insert the identity 1 = (γ5)2 into the trace and use its cyclicity property to write

tr γa = tr(γ5γ5γa) = tr(γ5γaγ5). (3.3)

We now use the fact that γ5 anticommutes with γa to find tr(γ5γaγ5) = − tr(γ5γ5γa) = − tr γa,
which implies that tr γa = 0. In fact, it was not necessary to use γ5 to prove this; any matrix M that
anticommutes with γa and satisfies M2 = 1 will do the job. For instance, one could have used M = γ0

to prove that tr γi = 0, and then used a different choice M = iγi to prove that tr γ0 = 0. �

Proposition (c): tr(γaγbγc) = 0 and, more generally, tr(γa1 · · · γan) = 0 for all odd integers n.

Proof.—The proof proceeds identically as for Proposition (a). Suppose there exists a matrix M that
anticommutes with γa for all a ∈ {0, 1, 2, 3} and that satisfiesM2 = 1. Clearly, a valid choice isM = γ5.
Insert the identity 1 = M2, use the cyclicity of the trace, and anticommute M with all the other Dirac
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matrices to find tr(γa1 · · · γan) = (−1)n tr(γa1 · · · γan), from which one deduces the desired result. �

Proposition (e): tr γ5 = 0

Proof.—The proof is again identical, except we use 1 = (γ0)2, or 1 = −(γi)2, for the identity. �

Proposition (b): tr(γaγb) = 4ηab

Proof.—Using the Clifford algebra, we write tr(γaγb) = tr(2ηab14)− tr(γbγa). The second term on the
rhs is equal to tr(γaγb) due to the cyclicity of the trace, hence tr(γaγb) = tr(ηab14). Then using the
fact that tr(14) = 4 yields the desired result. �

Proposition (f): /p/q = 2p · q − /q/p = p · q + 2Sabpaqb

Proof.—The first equality follows from using the Clifford algebra, γaγb = 2ηab − γbγa. Contract this
with paqb to get /p/q = 2p ·q−/q/p. The second equality comes from using the identity Sab = 1

2 (γaγb−ηab)
established in Question 2. Contract it with paqb and rearrange to get /p/q = p · q + 2Sabpaqb. �

Proposition (g): tr(/p/q) = 4p · q

Proof.—Contract the result of Proposition (b) with paqb to obtain the desired result. Alternatively, one
can also take the trace of Proposition (f) while using the fact that tr([γa, γb]) = 0 due to the cyclicity
of the trace. �

Proposition (h): tr(/p1 · · · /pn) = 0 for all odd integers n

Proof.—Contract the result of Proposition (c) with (p1)a1 · · · (pn)an to get the desired result. �

Proposition (i): tr(/p1/p2/p3/p4) = 4 [(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)− (p1 · p3)(p2 · p4)]

Proof.—We begin by considering the object

tr(γaγbγcγd) = 2ηab tr(γcγd)− tr(γbγaγcγd)
= 2ηab tr(γcγd)− 2ηac tr(γbγd) + tr(γbγcγaγd)
= 2ηab tr(γcγd)− 2ηac tr(γbγd) + 2ηad tr(γbγc)− tr(γbγcγdγa), (3.4)

having made judicious application of the Clifford algebra three times. The final term on the last line
is equal to tr(γaγbγcγd) due to cyclicity of the trace, thus

tr(γaγbγcγd) = ηab tr(γcγd)− ηac tr(γbγd) + ηad tr(γbγc)
= 4(ηabηcd − ηacηbd + ηadηbc), (3.5)

having used Proposition (b) to obtain the second line. Contracting this with (p1)a(p2)b(p3)c(p4)d yields
the desired result. �

Proposition (j): tr(γ5/p1/p2) = 0

Proof.—We start by considering the object tr(γ5γaγb). Since there are only three Dirac matrices within
the trace, we can always find a matrix M that anticommutes with all three matrices {γ5, γa, γb} and
satisfies M2 = 1. Specifically, we can choose M = √ηccγc for any c 6∈ {a, b, 5}. Then using the same
arguments as in the proof of Proposition (c), we learn that tr(γ5γaγb) = 0. Contracting this with
(p1)a(p2)b yields the desired result. �
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Proposition (k): γa/pγa = −2/p

Proof.—Using the Clifford algebra, we can write γaγbγc = −γaγcγb + γa2ηbc. Contract this with ηacpb
to find γa/pγa = −(γaγcηac)/p+ 2/p = −2/p, having used the identity γaγcηac = 1

2{γ
a, γc}ηac = 4 in the

last step. �

Proposition (l): γa/p1/p2γ
a = 4p1 · p2

Proof.—In a similar vein to Proposition (k), what we would like to do is take the γa matrix on the
right and push it through until it meets γa on the left. We find

γa/p1/p2γ
a = γa/p1 (−γaγb + 2ηab)︸ ︷︷ ︸

γbγa

(p2)b = γa/p1(−γa/p2 + 2pa2) = −γa/p1γ
a
/p2 + 2/p2/p1. (3.6)

Now use Proposition (k) to simplify the last expression, such that

γa/p1/p2γ
a = 2/p1/p2 + 2/p2/p1 = 2{/p1, /p2} = 2{γa, γb}(p1)a(p2)b = 4p1 · p2, (3.7)

as desired. �

Proposition (m): γa/p1/p2/p3γ
a = −2/p3/p2/p1

Proof.—The proof proceeds in a similar fashion as for Proposition (l). We use the Clifford algebra to
write

γa/p1/p2/p3γ
a = γa/p1/p2(−γa/p3 + 2pa3) = −γa/p1/p2γ

a
/p3 + 2/p3/p1/p2. (3.8)

Now use Proposition (l) to simplify this, yielding

γa/p1/p2/p3γ
a = −(4p1 · p2)/p3 + 2/p3/p1/p2 = −2/p3 (2ηab − γaγb)︸ ︷︷ ︸

γbγa

(p1)a(p2)b = −2/p3/p2/p1, (3.9)

as desired. �

Proposition (n): tr(γ5/p1/p2/p3/p4) = 4iεabcdpa1pb2pc3pd4
Proof.—First consider the properties of the object Sabcd = tr(γ5γaγbγcγd). Using the Clifford algebra
on γaγb, we learn that

tr(γ5γaγbγcγd) = − tr(γ5γbγaγcγd) + 2ηab tr(γ5γcγd). (3.10)

The second term on the rhs vanishes according to Proposition (j), thus we learn that Sabcd is anti-
symmetric in its first two indices. We can repeat the same procedure for any adjacent pair of Dirac
matrices. This is sufficient to deduce that Sabcd is totally antisymmetric, so must be proportional
to the Levi–Civita symbol,2 Sabcd ∝ εabcd. Regardless of our metric signature convention, a four-
dimensional spacetime is taken to have ε0123 = +1. Raising indices with the Minkowski metric tells us
that ε0123 = −1, hence

Sabcd = −εabcd tr(γ5γ0γ1γ2γ3) = iεabcd tr((γ5)2) = 4iεabcd, (3.11)

having used Proposition (d) in the last step. Contracting this with (p1)a(p2)b(p3)c(p4)d yields the
desired result. �

2Also often called the totally antisymmetric tensor or the alternating symbol.
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Question 4

The Dirac equation (i/∂ −m)ψ = 0 admits plane-wave solutions ψ = u(p)e−ip·x and ψ = v(p)eip·x, with

us(p) =
(√

p · σξs
√
p · σ̄ξs

)
, vs(p) =

( √
p · σξs

−
√
p · σ̄ξs

)
; (4.1)

where σµ = (1,σ), σ̄µ = (1,−σ), and ξs forms an orthonormal basis for 2-spinors satisfying

(ξr)† · ξs = δrs. (4.2)

Before we begin proving the desired identities, it is worthwhile thinking about what it really means to
take the root √p · σ. Since the 2×2 matrices σµ are hermitian, it follows that p ·σ is hermitian. It is a fact
that any hermitian matrix H is diagonalizable, meaning there exists a matrix U such that H = UDU−1

and D is a diagonal matrix. It is easy to see that the columns of U are the eigenvectors of H, while the
diagonal elements of D are its eigenvalues.

If D = diag(d1, . . . , dn) is an n× n diagonal matrix, its root is
√
D = diag(

√
d1, . . . ,

√
dn). Now notice

that
(U
√
DU−1)2 = U

√
DU−1U

√
DU−1 = U

√
D
√
DU−1 = UDU−1 = H.

Hence, we learn that the root of a diagonalizable matrix H is
√
H = U

√
DU−1. The takeaway message

here is that since p · σ is hermitian and therefore diagonalizable, we always know how to determine its
root √p · σ. In other words, it is a well-defined quantity.

Lemma 4.1: (p · σ)(p · σ̄) = m2

Proof.—We prove this by direct evaluation. Starting with the lhs, we find

(p · σ)(p · σ̄) = pµpνσ
µσ̄ν = (p0)2 + p0pi (σ̄i + σi)︸ ︷︷ ︸

0

+pipj σiσ̄j︸︷︷︸
−σiσj

= m2, (4.3)

where the last step follows from using Eq. (1.3) and the fact that p2 = m2. �

Lemma 4.2: [(p · σ), (p · σ̄)] = 0

Proof.—Again, we can prove this by direct evaluation. One finds

[(p · σ), (p · σ̄)] = pµpν [σµ, σ̄ν ] = −pipj [σi, σj ]. (4.4)

The last step follows since σ0 = σ̄0 = 12 commutes with everything. Using Eq. (1.3), we see that
[σi, σj ] ∝ εijkσk. Since this is being contracted with the symmetric object pipj in the equation above,
we deduce that the commutator must vanish. �

One more fact is needed about the matrices p · σ and p · σ̄ before we can satisfactorily prove the desired
identities. We first need a theorem from undergraduate mathematics, which we will state without proof.

Theorem 4.1: Two matrices A and B are simultaneously diagonalizable if and only if they commute.

Lemma 4.3: √p · σ
√
p · σ̄ =

√
(p · σ)(p · σ̄)

Proof.—Consider two matrices H1 and H2. In general,
√
H1
√
H2 6=

√
H1H2. To see this, take the

square of the lhs to find (
√
H1
√
H2)2 =

√
H1
√
H2
√
H1
√
H2. This is equal to (

√
H1H2)2 = H1H2

only if
[√
H1,
√
H2
]

= 0. Let us now consider the specific case H1 = p · σ and H2 = p · σ̄. From
Lemma 4.2, we know that [H1, H2] = 0. Combined with Theorem 4.1, this implies that H1 and H2 are
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simultaneously diagonalizable, meaning we can write

Hi = UDiU
−1,

√
Hi = U

√
DiU

−1 (4.5)

for i ∈ {1, 2}. This immediately tells us that

[
√
H1,

√
H2] = [U

√
D1U

−1, U
√
D2U

−1] = U [
√
D1,

√
D2]U−1 = 0, (4.6)

since diagonal matrices commute. This completes the proof. �

These three lemmas tell us that the intuition we have for how square roots behave for real numbers will
also work for the matrices p · σ and p · σ̄ because they are hermitian and commute with each other. We
can now turn to addressing the question proper.

Proposition 4.1: The inner products between the plane-wave solutions and their hermitian conjugates
are

ur(p)† · us(p) = 2p0δrs, (4.7a)
vr(p)† · vs(p) = 2p0δrs, (4.7b)
ur(p)† · vs(−p) = 0. (4.7c)

Proof.—Using its definition in Eq. (4.1), we find

ur(p)† · us(p) =
(
ξr†
√
p · σ, ξr†

√
p · σ̄

)(√p · σξs
√
p · σ̄ξs

)
= ξr† [p · σ + p · σ̄] ξs = 2p0 ξ

r† · ξs. (4.8)

Note that (√p · σ)† = √p · σ since σµ are hermitian. Making use of Eq. (4.2) and noting that p0 ≡ p0

in our conventions, we get the desired result in Eq. (4.7a). Exactly the same procedure can be used
to prove Eq. (4.7b). To prove the last identity, let us define p̄µ = (p0,−p) for a given 4-momentum
pµ = (p0,p). Then

ur(p)† · vs(−p) =
(
ξr†
√
p · σ, ξr†

√
p · σ̄

)( √p̄ · σξs
−
√
p̄ · σ̄ξs

)
= ξr†

[√
p · σ

√
p̄ · σ −

√
p · σ̄

√
p̄ · σ̄

]
ξs

= ξr†
[√

p · σ
√
p · σ̄ −

√
p · σ̄√p · σ

]
ξs. (4.9)

The third line follows since p · σ̄ = p̄ · σ and p̄ · σ̄ = p · σ. Lemmas 4.2 and 4.3 can now be used to show
that this vanishes. �

Definition—The Dirac adjoint ψ̄ is defined as ψ̄ = ψ†γ0.

Proposition 4.2: The inner products between these plane-wave solutions and their Dirac adjoints are

ūr(p) · us(p) = 2mδrs, (4.10a)
v̄r(p) · vs(p) = −2mδrs, (4.10b)
ūr(p) · vs(p) = 0. (4.10c)

Proof.—It is instructive to prove this in two ways. One option is to proceed just like we did for
Proposition 4.1. The only difference is that there is an extra γ0 matrix in between the two Dirac
spinors. The solutions in Eq. (4.1) are written in the chiral representation, so γ0 is given by Eq. (1.2).
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One therefore finds

ūr(p) · us(p) = ξr†
[√

p · σ
√
p · σ̄ +

√
p · σ̄√p · σ

]
ξs = ξr†

[
2
√

(p · σ)(p · σ̄)
]
ξs, (4.11)

having used Lemmas 4.2 and 4.3 in the last step. Lemma 4.1 and Eq. (4.2) can then be used to show
that this is equal to 2mδrs. Similar steps can be used to prove the other identities.

While this is all fine, there is actually a much simpler way. Since ψ̄ψ is a Lorentz scalar for any Dirac
spinor ψ,3 we can evaluate the inner product in any frame. In the particle’s rest frame, p ·σ = p · σ̄ = m,
hence

us(0) =
√
m

(
ξs

ξs

)
, vs(0) =

√
m

(
ξs

−ξs

)
. (4.12)

It follows that

v̄r(0) · vs(0) = m
(
−ξr†, ξr†

)( ξs

−ξs

)
= −2m(ξr)† · ξs = −2mδrs. (4.13)

As this is true in all frames, we get Eq. (4.10b) as desired. Similar steps can be used to prove the other
identities. �

Question 5

Proposition 5.1: The plane-wave solutions to the Dirac equation satisfy the “spin sum relations”∑
s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m. (5.1)

Proof.—Using the definitions in Eq. (4.1), we get

∑
s

us(p)ūs(p) =
∑
s

(√
p · σξs
√
p · σ̄ξs

)(√
p · σξs†,

√
p · σ̄ξs†

)(0 1
1 0

)

=
(

p · σ
√

(p · σ)(p · σ̄)√
(p · σ̄)(p · σ) p · σ̄

)(
0 1
1 0

)

=
(
m p · σ
p · σ̄ m

)
, (5.2)

where judicious use has been made of Lemmas 4.1–4.3. In obtaining the second line, we have also used
the identity

∑
s ξ

s(ξs)† = 12. This is obviously true if we choose the basis ξ1 = (1, 0) and ξ2 = (0, 1).
A new basis that remains orthonormal can then be constructed via a unitary transformation ξs → Uξs.
One can then show that

∑
s ξ

s(ξs)† = 12 is true in any basis. The last line of Eq. (5.2) is indeed equal
to /p+m, hence we obtain the desired result. The same can be done to prove the identity for v. �

Question 6

The Dirac field and its hermitian conjugate admit the Fourier decomposition

ψ(x) =
∑
s

∫ d3p

(2π)3
1√
2Ep

[
bspu

s(p)eip·x + cs†p v
s(p)e−ip·x

]
, (6.1a)

ψ†(x) =
∑
s

∫ d3p

(2π)3
1√
2Ep

[
bs†p u

s(p)†e−ip·x + cspv
s(p)†eip·x

]
(6.1b)

3See, e.g., Claim 4.3 of David Tong’s notes [1] for a proof.
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in terms of the creation and annihilation operators (b, c), which satisfy

{brp, bs†q } = (2π)3δrsδ(3)(p− q), {crp, cs†q } = (2π)3δrsδ(3)(p− q), (6.2)

with all other anticommutations vanishing.

Proposition 6.1: The anticommutation relations in Eq. (6.2) imply that

{ψα(x), ψβ(y)} = {ψ†α(x), ψ†β(y)} = 0, (6.3a)

{ψα(x), ψ†β(y)} = δαβδ
(3)(x− y). (6.3b)

Proof.—This just follows by direct evaluation. Proving Eq. (6.3a) is trivial, since schematically we have
{ψ,ψ} ∼ {b+ c†, b+ c†} = 0, using Eq. (6.2) in the last step. The same is true for {ψ†, ψ†} = 0. Thus,
all we have to do is prove Eq. (6.3b). The lhs evaluates to

{ψα(x), ψ†β(y)} =
∑
r,s

∫ d3p

(2π)3
1√
2Ep

∫ d3q

(2π)3
1√
2Eq

×
{
brpu

r
α(p)eip·x + cr†p v

r
α(p)e−ip·x, bs†q usβ(q)†e−iq·y + csqv

s
β(q)†eiq·y

}
=
∑
r,s

∫ d3p

(2π)3
1√
2Ep

∫ d3q

(2π)3
1√
2Eq

×
[
{brp, bs†q }urα(p)usβ(q)† ei(p·x−q·y) + {cr†p , csq} vrα(p)vsβ(q)† e−i(p·x−q·y)

]
. (6.4)

Now use the anticommutation relations in Eq. (6.2) and integrate over q to get

{ψα(x), ψ†β(y)} =
∑
s

∫ d3p

(2π)3
1

2Ep

[
usα(p)ūs

β̇
(p)eip·(x−y) + vsα(p)v̄s

β̇
(p)e−ip·(x−y)

]
(γ0)β̇β

=
∫ d3p

(2π)3
1

2Ep

[
(/p+m)αβ̇ e

ip·(x−y) + (/p−m)αβ̇ e
−ip·(x−y)

]
(γ0)β̇β , (6.5)

having written u† = ūγ0, and likewise for v, in the first line. This facilitates use of Proposition 5.1
to obtain the second line. Note that β̇ is just another index in addition to α and β. We now expand
/p = γ0p0 + γipi and relabel p→ −p in the second term to get

{ψα(x), ψ†β(y)} =
∫ d3p

(2π)3
1

2Ep
[
(γ0p0 + γipi +m) + (γ0p0 − γipi −m)

]
αβ̇

(γ0)β̇βeip·(x−y)

= δαβδ
(3)(x− y). (6.6)

To obtain the last line, we have integrated over p and used the fact that (γ0)2 = 14. �

Question 7

Proposition 7.1: After normal ordering, the Hamiltonian for the free Dirac field is

:H: =
∫

d3x :ψ̄(−iγi∂i +m)ψ: =
∑
s

∫ d3p

(2π)3Ep
(
bs†p b

s
p + cs†p c

s
p

)
. (7.1)

Proof.—Let us begin by considering the object

(−iγi∂i +m)ψ = (−iγi∂i +m)
∑
s

∫ d3p

(2π)3
1√
2Ep

[
bspu

s(p)eip·x + cs†p v
s(p)e−ip·x

]
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=
∑
s

∫ d3p

(2π)3
1√
2Ep

[
bsp(−γipi +m)us(p)eip·x + cs†p (γipi +m)vs(p)e−ip·x

]
=
∑
s

∫ d3p

(2π)3
1√
2Ep

γ0p0
[
bspu

s(p)eip·x − cs†p vs(p)e−ip·x
]
. (7.2)

In obtaining the second line, there is a subtle minus sign associated with the dot product p · x =
δijp

ixi = −ηijpixj = −pixi, which we pick up when differentiating the exponential.4 In the third line,
we have used the fact that u and v are plane-wave solutions to the Dirac equation, satisfying

(/p−m)u = 0 ⇒ (−γipi +m)u = γ0p0u,

(/p+m)v = 0 ⇒ (γipi +m)v = −γ0p0v. (7.3)

Multiply this on the left with ψ̄(x) and integrate over x to obtain the Hamiltonian,

H =
∫

d3x ψ̄(−iγipi +m)ψ

=
∑
r,s

∫ d3q

(2π)3
1√
2Eq

∫ d3p

(2π)3

√
Ep
2

∫
d3x

×
[
br†q ū

r(q)e−iq·x + crq v̄
r(q)eiq·x

]
γ0 [bspus(p)eip·x − cs†p vs(p)e−ip·x

]
=
∑
r,s

∫ d3q

(2π)3
1√
2Eq

∫ d3p

(2π)3

√
Ep
2

∫
d3x

×
{[
br†q b

s
p u

r(q)†us(p)− crqcs†p vr(q)†vs(p)
]
ei(p−q)·x

+
[
crqb

s
p v

r(q)†us(p)− br†q cs†p ur(q)†vs(p)
]
ei(p+q)·x

}
. (7.4)

To obtain the last line, we have used the freedom to relabel x→ −x in half of the terms. Performing
the integral over x will now generate delta functions that impose the conditions q = p or q = −p.
Integrating over q then yields

H = 1
2
∑
r,s

∫ d3p

(2π)3

[
br†p b

s
p u

r(p)†us(p)− crpcs†p vr(p)†vs(p)

+ cr−pb
s
p v

r(−p)†us(p)− br†−pcs†p ur(−p)†vs(p)
]
. (7.5)

The results of Proposition 4.1 enable us to simplify the terms in square brackets. In particular, Eq. (4.7c)
and its hermitian conjugate tells us that the last two terms vanish. Also using Eqs. (4.7a) and (4.7b),
we get

H =
∑
s

∫ d3p

(2π)3Ep
(
bs†p b

s
p − cspcs†p

)
. (7.6)

This returns the desired result after normal ordering. Note that fermionic operators pick up a minus
sign when normal ordered (i.e., :cc†: = −c†c) due to the anticommutation relations in Eq. (6.2). �

4We have met this minus sign before in Question 1 of Sheet 2.
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Question 8

Consider nucleon-nucleon scattering, ψψ → ψψ, in Yukawa theory with Lagrangian

L = ψ̄(i/∂ −m)ψ + 1
2(∂φ)2 − 1

2µ
2φ2 − λψ̄ψφ. (8.1)

The Feynman rules relevant for this process are as follows:

• Each ingoing fermion gets a factor of us(p), and each outgoing fermion gets a factor of ūs(p):

= us(p), = ūs(p).

• Each internal scalar, denoted by a dotted line, gets a relevant factor of its propagator:

= i

p2 − µ2 .

• Each interaction vertex picks up a factor of −iλ:

= −iλ.

• Add an extra minus sign for Fermi-Dirac statistics.

These rules tell us that nucleon-nucleon scattering has the tree-level amplitude

iM = +

= i(−iλ)2

(
[ūs′

1(p′1) · us1(p1)][ūs′
2(p′2) · us2(p2)]

(p1 − p′1)2 − µ2 − [ūs′
1(p′1) · us2(p2)][ūs′

2(p′2) · us1(p1)]
(p1 − p′2)2 − µ2

)
. (8.2)

To contract the 4-component spinors in the right way, we start from the head (the direction in which the
arrow is pointing) of each solid line and work our way backwards to the tail. For instance, in the t-channel
diagram on the left, the head of the top solid line gives us a factor of ūs′

1(p′1). We contract this with the
tail of this line, which gives a factor of us1(p1). Similarly, the bottom line gives ūs′

2(p′2) · us2(p2). Note
that the u-channel diagram has an overall minus sign relative to the t-channel diagram, which comes from
Fermi-Dirac statistics associated with swapping the labels (p′1, s′1)↔ (p′2, s′2) on the outgoing particles.

Lemma 8.1: If all four external particles have the same mass m, the inner products between the external
momenta satisfy the relations

p1 · p2 = p′1 · p′2 = 1
2(s− 2m2), (8.3a)

p1 · p′1 = p2 · p′2 = −1
2(t− 2m2), (8.3b)

p1 · p′2 = p′1 · p2 = −1
2(u− 2m2). (8.3c)
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Proof.—By definition, the Mandelstam variable s = (p1 + p2)2. Expanding the dot product and using
the fact that (p1)2 = (p2)2 = m2, we get s = 2m2 +2p1 ·p2. By momentum conservation, s = (p′1 +p′2)2

also, which implies s = 2m2 +2p′1 ·p′2. These can be rearranged to yield Eq. (8.3a). The same procedure
can be followed to obtain the other results. �

Proposition 8.1: The spin-averaged probability for nucleon-nucleon scattering is proportional to

〈
|M|2

〉
= λ4

(
(u− 4m2)2

(u− µ2)2 + (t− 4m2)2

(t− µ2)2 + (s− 4m2)2 − (u− 4m2)2 − (t− 4m2)2

2(u− µ2)(t− µ2)

)
. (8.4)

Proof.—Let us write ui ≡ usi(pi) and ūi ≡ ūsi(pi) for i ∈ {1, 2}. These enable us to write the matrix
element in Eq. (8.2) more compactly as

M = (−iλ)2
(

(ū′1u1)(ū′2u2)
t− µ2 − (ū′1u2)(ū′2u1)

u− µ2

)
. (8.5)

In general, the inner products ū′iuj are complex numbers, so we cannot just take the square of this
object like we would for scattering processes involving only scalar fields. Instead, we first compute the
conjugate

M∗ = (−iλ)2
(

(ū1u
′
1)(ū2u

′
2)

t− µ2 − (ū2u
′
1)(ū1u

′
2)

u− µ2

)
, (8.6)

which we then multiply byM to get

|M|2 = λ4
(

(ū′1u2)(ū′2u1)(ū2u
′
1)(ū1u

′
2)

(u− µ2)2 + (ū′1u1)(ū′2u2)(ū1u
′
1)(ū2u

′
2)

(t− µ2)2

− (ū′1u1)(ū′2u2)(ū2u
′
1)(ū1u

′
2) + (ū′1u2)(ū′2u1)(ū1u

′
1)(ū2u

′
2)

(u− µ2)(t− µ2)

)
, (8.7)

where t = (p1 − p′1)2 and u = (p1 − p′2)2 are the usual Mandelstam variables. For reasons that will
become clear later, let us write this as

|M|2 = λ4
(

Φuu
(u− µ2)2 + Φtt

(t− µ2)2 −
Φtu + Φut

(u− µ2)(t− µ2)

)
. (8.8)

In an experiment, we usually cannot control whether an ingoing fermion is produced with spin up or
spin down. Both options are generally produced with equal probability. When we monitor the outgoing
particles, we may similarly lack the ability to measure their spins, or we may wish to be agnostic
and only ask questions that are blind to the spins of the final state. In such cases, we consider the
spin-averaged quantity

〈
|M|2

〉
=
(

1
2
∑
s1

)(
1
2
∑
s2

)∑
s′

1

∑
s′

2

|M|2 = 1
4
∑
spins
|M|2. (8.9)

While we use the conventional term “spin average,” what we really mean is that we average over the
ingoing spins and sum over all possible outgoing spins.
We can now get a simplified expression for

〈
|M|2

〉
by exploiting the identities in Proposition 5.1.

To see how this goes, first consider one of the strings of inner products that reads∑
Φuu =

∑
(ū′1u2)(ū′2u1)(ū2u

′
1)(ū1u

′
2) =

∑
(ū′1u2)(ū2u

′
1)(ū′2u1)(ū1u

′
2)

=
∑[

ū′1(/p2 +m)u′1
] [
ū′2(/p1 +m)u′2

]
. (8.10)

The first line follows since each inner product (ū · u) is just a complex number that commutes with all
other complex numbers. We have chosen an especially convenient arrangement such that ū appears
directly to the right of u. This facilitates the use of Proposition 5.1, which gives us the second line
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after summing over s1 and s2. We can simplify this further by noting that for any inner product ψ̄Aψ,
where A is some 4× 4 matrix,

ψ̄Aψ = ψ̄αA
α
βψ

β = ψβψ̄αA
α
β = tr(ψψ̄A). (8.11)

This identity can be used to show that∑[
ū′1(/p2 +m)u′1

]
=
∑

tr[u′1ū′1(/p2 +m)] = tr[(/p′1 +m)(/p2 +m)]. (8.12)

Now we use the results from Question 3 to simplify things even further. We know that the trace over
an odd number of Dirac matrices vanishes, hence

tr[(/p′1 +m)(/p2 +m)] = tr(/p′1/p2) + tr(m2) = 4p′1 · p2 + 4m2 = −2(u− 4m2), (8.13)

where the last steps follow from using Proposition (g) and Lemma 8.1. Doing the same for [ū′2(/p1+m)u′2],
we end up with

〈Φuu〉 = 1
4
∑

Φuu = (u− 4m2)2. (8.14)

Exactly the same steps tell us that
〈Φtt〉 = (t− 4m2)2. (8.15)

Finally, we are left with the task of simplifying

Φtu = (ū′1u1)(ū1u
′
2)(ū′2u2)(ū2u

′
1), Φut = (ū′1u2)(ū2u

′
2)(ū′2u1)(ū1u

′
1). (8.16)

The two are related by the interchange (p1, s1)↔ (p2, s2), hence it suffices to evaluate the spin average
of only one of them. We find

〈Φtu〉 = 1
4
∑

ū1(/p1 +m)(/p′2 +m)(/p2 +m)u′1

= 1
4 tr

[
(/p′1 +m)(/p1 +m)(/p′2 +m)(/p2 +m)

]
= 1

4

{
tr(/p′1/p1/p

′
2/p2) +m2

[
tr(/p′1/p1) + tr(/p′1/p

′
2) + tr(/p′1/p2)

+ tr(/p1/p
′
2) + tr(/p1/p2) + tr(/p′2/p2)

]
+ 4m4

}
. (8.17)

As before, any term that traces over an odd number of Dirac matrices vanishes. Propositions (g) and
(i) can now be used to simplify this further, yielding

〈Φtu〉 = (p′1 · p1)(p′2 · p2) + (p′1 · p2)(p1 · p′2)− (p′1 · p′2)(p1 · p2)
+m2 (p′1 · p1 + p′1 · p′2 + p′1 · p2 + p1 · p′2 + p1 · p2 + p′2 · p2) +m4

= 1
4(t− 2m2)2 + 1

4(u− 2m2)2 − 1
4(s− 2m2)2 +m2(s− t− u+ 2m2) +m4

= 1
4
[
t2 + u2 − s2 + 8m2(s− t− u) + 16m4]

= 1
4
[
(t− 4m2)2 + (u− 4m2)2 − (s− 4m2)2] , (8.18)

where the second line follows from using Lemma 8.1, and the fourth from using s+ t+ u = 4m2. The
interchange p1 ↔ p2 is equivalent to interchanging t↔ u, hence it follows that 〈Φut〉 = 〈Φtu〉. Putting
everything together, the spin-averaged probability for nucleon-nucleon scattering is proportional to

〈
|M|2

〉
= λ4

(
〈Φuu〉

(u− µ2)2 + 〈Φtt〉
(t− µ2)2 −

2 〈Φtu〉
(u− µ2)(t− µ2)

)
, (8.19)
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which yields the desired result upon substitution of Eqs. (8.14), (8.15), and (8.18).5 �

Corollary: In the centre-of-mass frame, nucleon-nucleon scattering has the spin-averaged differential cross
section〈

dσ
dt

〉
= λ4

16πs(s− 4m2)

(
(u− 4m2)2

(u− µ2)2 + (t− 4m2)2

(t− µ2)2 + (s− 4m2)2 − (u− 4m2)2 − (t− 4m2)2

2(u− µ2)(t− µ2)

)
.

(8.21)

Proof.—From Eq. (16) of Ben Allanach’s notes [2], any 2→ 2 process has the differential cross section

dσ
dt = |M|2

16πλ(s,m2
1,m

2
2) (8.22)

in its centre-of-mass frame, with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.6 Setting the masses of
the ingoing particles to m1 = m2 = m, we get

dσ
dt = |M|2

16πs(s− 4m2) . (8.23)

The denominator is spin-independent, hence taking the spin average of this quantity is equivalent to
replacing |M|2 with

〈
|M|2

〉
in the numerator. Substituting in the result from Proposition 8.1 then

returns Eq. (8.21). �

The total spin-averaged cross section 〈σ〉 can then be obtained by integrating over t and dividing by a
symmetry factor of 2! (because the two outgoing particles are indistinguishable),7

〈σ〉 = 1
2

∫ tmax

tmin

dt
〈
dσ
dt

〉
. (8.24)

Since all external particles are identical, the ingoing and outgoing momenta for the first nucleon can be
written as pµ1 = (E,p) and p′1µ = (E,p′) in the centre-of-mass frame, where |p| = |p′|. The Mandelstam
variable

t = (p1 − p′1)2 = −|p− p′|2 = −2|p|2(1− cos θ), (8.25)

where θ ∈ [0, π] is the angle between p and p′. It follows that we should integrate over the range t ∈
[−4|p|2, 0]. Since s = (2E)2 = 4|p|2 +4m2, the integration range can also be written as t ∈ [−(s−4m2), 0].
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