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Question 1

We consider Yukawa theory with the Lagrangian

L = 1
2(∂φ)2 − 1

2µ
2φ2 + ψ̄(i/∂ −m)ψ − λφψ̄ψ. (1.1)

Let s = (p+ q)2, t = (p− p′)2, and u = (p− q′)2 be the usual Mandelstam variables.

Proposition 1.1: Nucleon–antinucleon scattering, ψψ̄ → ψψ̄, has the tree-level amplitude

A = (−iλ)2

(
[v̄r(q) · us(p)][ūs′(p′) · vr′(q′)]

s− µ2 − [ūs′(p′) · us(p)][v̄r(q) · vr′(q′)]
t− µ2

)
. (1.2)

Proof.—Obtaining this result using Feynman rules is straightforward; here, we will take the long and
hard route to see how it emerges from Dyson’s formula and the canonical formalism. We want to
compute the S-matrix element

〈f |S |i〉 = 〈f |T exp
(
−iλ

∫
d4x φψ̄ψ

)
|i〉

= 〈f |i 〉+ (−iλ)
∫

d4x 〈f |T [φψ̄ψ] |i〉+O(λ2) (1.3)

for initial and final states given by

|i〉 =
√

4EpEqbs†p cr†q |0〉 , |f〉 =
√

4EpEqbs
′†
p′ c

r′†
q′ |0〉 . (1.4)

We are never interested in the noninteracting O(λ0) part of the S matrix, while the first-order term
vanishes since the single factor of φ(x) will annihilate both |i〉 and 〈f |. Thus, the leading nontrivial
part of this S-matrix element is quadratic in λ:

〈f |S |i〉 ⊃ 1
2(−iλ)2

∫
d4xd4y 〈f |T [φ(x)ψ̄(x)ψ(x)φ(y)ψ̄(y)ψ(y)] |i〉 . (1.5)

At this stage, we use Wick’s theorem to rewrite the time-ordered product in terms of Wick contractions
and normal-ordered products. In doing so, we obtain several types of terms that are irrelevant:

• Terms in which φ(x) is not Wick contracted with φ(y) will annihilate |i〉, thus will not contribute.

• Terms in which any of the spinors are Wick contracted with one another lead to disconnected
diagrams, which should be neglected.1

It follows that the only physical contribution comes from Wick contracting φ(x) with φ(y),

T [φ(x)ψ̄(x)ψ(x)φ(y)ψ̄(y)ψ(y)] ⊃ φ(x)φ(y)︸ ︷︷ ︸
∆F (x− y)

:[ψ̄(x)ψ(x)][ψ̄(y)ψ(y)]: . (1.6)

∗Please send any comments or corrections to L.K.Wong@damtp.cam.ac.uk
1It will not be clear from our approach why disconnected diagrams ought to be neglected. The interested reader
should consult classic texts on the LSZ reduction formula, such as Chapter 7.2 of Peskin and Schroeder [1].
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Recall ∆F is the Feynman propagator for the scalar field. Note also that the spinor index on ψ̄(x) is
always contracted with ψ(x), and likewise for ψ̄(y) and ψ(y); this fact is often emphasized by placing
square brackets around each spinor product. Now use its Fourier decomposition to write

ψ(x) =
∑
s

∫ d3p

(2π)3
1√
2Ep

(
bspu

s(p)e−ip·x + cs†p v
s(p)eip·x

)
. (1.7)

Schematically, this is ψ ∼ b + c†. Using this expansion, only terms of the form :ψ̄ψψ̄ψ:∼ b†c†cb will
contribute, since the initial and final states are |i〉 ∼ b†c† |0〉 and 〈f | ∼ 〈0| c b; all others will annihilate
the vacuum. There are four terms of this form:

:[ψ̄(x)ψ(x)][ψ̄(y)ψ(y)]: ⊃
∑
spins

∫ d3p1

(2π)3 . . .
d3p4

(2π)3
1√

16E1E2E3E4

×
{

:b†1c
†
2c3b4: [ū1 · v2][v̄3 · u4]ei(+p1·x+p2·x−p3·y−p4·y)

+ :c1b2b
†
3c
†
4: [v̄1 · u2][ū3 · v4]ei(−p1·x−p2·x+p3·y+p4·y)

+ :b†1b2c3c
†
4: [ū1 · u2][v̄3 · v4]ei(+p1·x−p2·x+p3·y−p4·y)

+ :c1c
†
2b
†
3b4: [v̄1 · v2][ū3 · u4]ei(−p1·x+p2·x+p3·y−p4·y)

}
. (1.8)

Above, I have written ui ≡ usi(pi) and Ei ≡ Epi
as shorthand. Through judicious relabeling of the

dummy indices and integration variables, one can check that the first and second lines in curly brackets
are identical, and similarly the third and fourth lines are identical. Hence, the above equation simplifies
to yield

2
∑
spins

∫ d3p1

(2π)3 . . .
d3p4

(2π)3
1√

16E1E2E3E4

{
b†1c
†
2c3b4[ū1 · v2][v̄3 · u4]ei(+p1·x+p2·x−p3·y−p4·y)

− b†1c
†
4c3b2[ū1 · u2][v̄3 · v4]ei(+p1·x−p2·x+p3·y−p4·y)

}
. (1.9)

The minus sign in front of the second term arises because all fermionic operators anticommute with
one another under normal ordering. The overall factor of 2 will cancel the factor of 1/2 in Eq. (1.5)
that came from expanding the exponential to second order.
Putting everything together, we get

〈f |S |i〉 ⊃ 1
2(−iλ)2

∫
d4x d4y ∆F (x− y) 〈f | :[ψ̄(x)ψ(x)][ψ̄(y)ψ(y)]: |i〉

= (−iλ)2
∫

d4x d4y

∫ d4k

(2π)4
ie−ik·(x−y)

k2 − µ2

∑
spins

∫ d3p1

(2π)3 . . .
d3p4

(2π)3 〈0| c
r′

q′bs
′

p′ { · · · } bs†p cr†q |0〉 .

(1.10)

In obtaining the second line, we neglected to write down factors of
√
E since they will eventually cancel

each other out, and we write { · · · } to mean everything in the curly brackets of Eq. (1.9). Standard
anticommutation relations can be used to show that the first term in { · · · } is proportional to

〈0| cr
′

q′bs
′

p′b
†
1c
†
2c3b4b

s†
p c

r†
q |0〉 = (2π)12δs1,s

′
δs2,r

′
δs3,rδs4,s

× δ(3)(p1 − p′)δ(3)(p2 − q′)δ(3)(p3 − q)δ(3)(p4 − p). (1.11)

The second term is proportional to a similar product of delta functions up to the interchange 2↔ 4.
Evaluating all the integrals, we find that the S-matrix element takes the form iA (2π)4δ(4)(p′+q′−p−q),
where A is the desired amplitude. �
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This amplitude corresponds to the following two Feynman diagrams:

Using the Feynman rules in the Appendix for the propagators and external legs, and multiplying by a
factor of −iλ for each interaction vertex, one easily recovers the result in Eq. (1.2). The one subtlety is
getting the relative minus sign correct. We understand from having done the calculation explicitly above
that it comes from anticommuting the creation and annihilation operators past one another, but how
can we tell that there should be a minus sign when just looking at the diagrams? The general rule is as
follows:

(1) Draw each diagram such that all fermion lines are horizontal, with their arrows all pointing from left
to right,2 as shown below:

(2) Label each left external fermion leg in the same fixed order (from top to bottom). In this example,
the momentum p is always on top, while the momentum −q′ is always at the bottom.

(3) Pick any arbitrary Feynman diagram as a point of reference.3

(4) For the remaining diagrams, observe the ordering (from top to bottom) of the momenta on the right
external fermion legs. If this ordering is obtained through an even (odd) permutation of the momenta
in the reference diagram, then we pick up a plus (minus) sign.4

Proposition 1.2: Nucleon–meson scattering, ψφ→ ψφ, has the tree-level amplitude

A = (−iλ)2

(
[ūs′(p′)(/p+ /q +m)us(p)]

s−m2 +
[ūs′(p′)(/p− /q′ +m)us(p)]

u−m2

)
. (1.12)

Proof.—It will be instructive to also derive this result the long and hard way. Our initial and final
states are5

|i〉 =
√

4EpEqa†qbs†p |0〉 , |f〉 =
√

4Ep′Eq′a†q′b
s′†
p′ |0〉 , (1.13)

and the relevant S-matrix element is

〈f |S |i〉 ⊃ 1
2(−iλ)2

∫
d4xd4y 〈f |T [φ(x)ψ̄(x)ψ(x)φ(y)ψ̄(y)ψ(y)] |i〉 (1.14)

at leading order. As before, we ignore the noninteracting part of the S matrix at O(λ0), and note that
the O(λ) term evaluates to zero. Using Wick’s theorem and discarding all disconnected diagrams, the

2This sometimes means that we have both initial and final-state particles on either side of the diagram. This isn’t
a problem; we’re drawing diagrams in this way only to figure out their relative signs.

3Depending on which diagram you pick, the total amplitude A may be off by an overall minus sign. This isn’t a
problem, since physical observables only depend on |A|2.

4See, e.g., Chapter 45 of Srednicki [2] for more details.
5One understands from context which mass, m or µ, to put inside the definition of Ep.
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only contribution comes from Wick contracting one of the spinors at x with one of the spinors at y.

Since ψψ = 0 and ψ̄ψ̄ = 0, there are two terms that contribute:

T [φ(x)ψ̄α(x)ψα(x)φ(y)ψ̄β(y)ψβ(y)] ⊃ ψα(x)ψ̄β(y) :φ(x)ψ̄α(x)φ(y)ψβ(y):

+ ψβ(y)ψ̄α(x) :φ(x)ψ̄β(y)φ(y)ψα(x): . (1.15)

Keep in mind that fermionic operators anticommute past each other inside the time and normal-ordered
products. The spinor indices α, β are being summed over, and the position variables x, y are being
integrated over, so they can be judiciously renamed. Noting that φ freely commutes with the fermion,
it follows that both terms yield identical contributions, hence the rhs of Eq. (1.15) can be replaced by

2(SF )αβ(x− y) :φ(x)ψ̄α(x)φ(y)ψβ(y):, (1.16)

where SF = ψψ̄ is the Feynman propagator for the fermion. The overall factor of 2 here will eventually
cancel the factor of 1/2 in Eq. (1.14) that came from expanding the exponential to second order.

Let us now turn to the remaining normal-ordered product. Schematically, the initial and final states
are |i〉 ∼ a†b† |0〉 and 〈f | ∼ 〈0| ba, so only terms of the form :φψ̄φψ:∼ a†b†ab will contribute. There
are two such terms:

:φ(x)ψ̄α(x)φ(y)ψβ(y): ⊃
∑
spins

∫ d3p1

(2π)3 . . .
d3p4

(2π)3
1√

16E1E2E3E4
(ū2)α(u4)β

×
{

:a†1b
†
2a3b4: ei(+p1·x+p2·x−p3·y−p4·y)

+ :a1b
†
2a
†
3b4: ei(−p1·x+p2·x+p3·y−p4·y)

}
, (1.17)

using the shorthand notation introduced earlier. Putting everything together and paying close attention
to how the spinor indices are being contracted, we find

〈f |S |i〉 ⊃ (−iλ)2
∫

d4x d4y

∫ d4k

(2π)4
i[ū2(/k +m)u4]

k2 −m2 e−ik·(x−y)

×
∑
spins

∫ d3p1

(2π)3 · · ·
∫ d3p4

(2π)3 〈0| b
s′

p′aq′ { · · · } a†qbs†p |0〉 . (1.18)

As we did earlier, factors of
√
E have been ignored since they will eventually cancel each other out.

Standard (anti)commutation rules can be used to show that

〈0| bs
′

p′aq′a†1b
†
2a3b4a

†
qb
s†
p |0〉 = (2π)12δs2,s

′
δs4,sδ(3)(p1 − q′)δ(3)(p2 − p′)δ(3)(p3 − q)δ(3)(p4 − p).

(1.19)

A similar product of delta functions is obtained for the second term in { · · · }. Finally, evaluating all
the integrals allows us to read off the desired result. �

The Feynman diagrams for this process are:
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Question 2

Consider pseudoscalar Yukawa theory with the Lagrangian

L = 1
2(∂φ)2 − 1

2µ
2φ2 + ψ̄(i/∂ −m)ψ − λφψ̄γ5ψ. (2.1)

The Feynman rules for the propagators and external legs are always the same, and are collated in the
Appendix at the end. For this theory, each interaction vertex gives a factor −iλγ5. These rules can be
used to show that ψψ → ψψ scattering has the tree-level amplitude

A(ψψ → ψψ) = (−iλ)2

(
[ūs′(p′)γ5us(p)][ūr′(q′)γ5ur(q)]

t− µ2 − [ūs′(p′)γ5ur(q)][ūr′(q′)γ5us(p)]
u− µ2

)
, (2.2)

corresponding to the following two diagrams:

Similarly, ψψ̄ → ψψ̄ scattering has the amplitude

A(ψψ̄ → ψψ̄) = (−iλ)2

(
[v̄r(q)γ5us(p)][ūs′(p′)γ5vr

′(q′)]
s− µ2 − [ūs′(p′)γ5us(p)][v̄r(q)γ5vr

′(q′)]
t− µ2

)
. (2.3)

The corresponding diagrams are equivalent to those presented in Question 1.

Question 3

Scalar QED has the Lagrangian

L = −1
4FµνF

µν + (Dµφ)†(Dµφ)− µ2φ†φ, (3.1)

where φ is a complex scalar and Dµ = ∂µ + ieAµ is the gauge-covariant derivative. We can rewrite this
Lagrangian as L = L0 + Lint, where terms for the free Maxwell field and the free scalar are encapsulated
in L0, while interactions between the two are given by

Lint = −ieAµ(φ†∂µφ− φ∂µφ†) + e2AµA
µφ†φ. (3.2)

The two terms linear in Aµ will be treated as one interaction vertex, and the remaining term quadratic
in Aµ should be treated as a separate vertex. The Feynman rule for the latter is easy to read off;

= 2ie2ηµν . (3.3)

Note the factor of 2, which arises because there are two indistinguishable copies of Aµ in the vertex.
Because of the derivative, it is not as easy to read off the Feynman rule for the three-point vertex;

especially if we want to get minus signs and factors of i right. Let’s see how to derive it systematically.
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Proposition 3.1: The Feynman rule for the three-point vertex in scalar QED is

= −ie(p+ p′)µ. (3.4)

Proof.—We will prove this by considering a suitable process and computing its amplitude using Dyson’s
formula. Suppose an ingoing scalar with momentum p spontaneously absorbs a photon of momentum
q, resulting in an outgoing scalar with momentum p′. The initial and final states are

|i〉 =
√

4EpEqb†paλ†q |0〉 , |f〉 =
√

2Ep′b†p′ |0〉 . (3.5)

Note that (b, c) are the annihilation operators for the scalar and its antiparticle, while the operator a
is associated with the photon. The photon’s polarization states are labeled by the index λ.

The relevant S-matrix element is

〈f |S |i〉 = i(−ie)
∫

d4x 〈f |T [Aµφ†∂µφ−Aµφ∂µφ†] |i〉+O(e2). (3.6)

Unlike in Question 1, there is no zeroth-order term since the initial and final states don’t overlap. We
proceed by using Wick’s theorem to expand the time-ordered product. The only term that contributes
is the one in which there are no Wick contractions; the rest correspond to unphysical, disconnected
diagrams. Thus

〈f |S |i〉 = e

∫
d4x 〈f | :Aµφ†∂µφ−Aµφ∂µφ†: |i〉 . (3.7)

As |i〉 ∼ b†a† |0〉 while 〈f | ∼ 〈0| b, the only terms that contribute in the normal-ordered product are
those of the form ∼ b†b a. Substituting in their Fourier decompositions,

φ(x) =
∫ d3p

(2π)3
1√
2Ep

(
bpe
−ip·x + c†pe

ip·x) , (3.8)

Aµ(x) =
∑
λ

∫ d3p

(2π)3
1√
2Ep

(
Eλ∗µ (p) aλpe−ip·x + Eλµ (p) aλ†p eip·x

)
, (3.9)

the part that contributes is

:Aµφ†∂µφ−Aµφ∂µφ†: ⊃
∑
λ′

∫ d3p1

(2π)3 . . .
d3p3

(2π)3
1√

8E1E2E3
Eλ

′∗
µ (p1)

×
{

:aλ
′

1 b
†
2b3: (−ipµ3 )ei(−p1+p2−p3)·x− :aλ

′

1 b2b
†
3: (+ipµ3 )ei(−p1−p2+p3)·x

}
.

(3.10)

Putting everything together, we find

〈f |S |i〉 = e

∫
d4x

∑
λ′

∫ d3p1

(2π)3 . . .
d3p3

(2π)3 E
λ′∗
µ (p1) 〈0| bp′ { · · · } b†paλ†q |0〉 , (3.11)

having as usual omitted any factors of
√
E since they will eventually cancel out. The first term in

{ · · · } is proportional to

〈0| bp′b†2b3a
λ′

1 b
†
pa
λ†
q |0〉 = (2π)9δλλ

′
δ(3)(p1 − q)δ(3)(p2 − p′)δ(3)(p3 − p). (3.12)

The second term is proportional to a similar product of delta functions up to the interchange 2↔ 3.
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Evaluating all the integrals, one finds

〈f |S |i〉 = −ie(p+ p′)µ Eλ∗µ (q) (2π)4δ(4)(p+ q − p′). (3.13)

The factor of Eλ∗µ is related to the external photon leg, while the delta function at the end enforces
overall momentum conservation. What remains is the contribution of the interaction vertex, so we
deduce that the Feynman rule is, indeed, −ie(p+ p′)µ. �

One might be slightly skeptical of this result, since the process we have considered is kinematically
forbidden—it is impossible for a charged particle to spontaneously absorb a photon, as the process will
not conserve both energy and 3-momentum simultaneously. Mathematically, this is captured by the delta
function in Eq. (3.13), which will always evaluate to zero for all on-shell values of the external momenta.
This isn’t a problem. Whether a process is kinematically allowed or forbidden by momentum conservation
has no bearing on the dynamical content of the theory—the interaction vertex will behave all the same,
so it is indeed valid to use this process to derive the Feynman rules.

Aside 3.1: The first-principled approach above is a sure-fire way to correctly derive Feynman rules,
but it is clearly not the most efficient. Having understood how to do things “properly,” let us discuss a
neat trick that gives us the same result. Just by inspection, we know that the three-point vertex must
yield something like −ie(p+ p′)µ; each factor of the momentum coming from Fourier transforming
the derivatives ∂µ in the Lagrangian. All we really have to figure out is the overall numerical factor
out front (including any factors of i), and the relative sign between p and p′.
To do this, let us focus on the part of the action that reads

S ⊃ −ie
∫

d4x Aµ(φ†∂µφ− φ∂µφ†). (3.14)

We can move into momentum space already at this stage. Use the Fourier transform to write

Aµ(x) =
∫ d4q

(2π)4 e
−iq·xÃµ(q), φ(x) =

∫ d4p

(2π)4 e
−ip·xφ̃(p), φ†(x) =

∫ d4p′

(2π)4 e
−ip′·xφ̃†(p′).

(3.15)

Notice that we are treating φ and φ† independently, which is why we choose to write e−ip′·x rather
than e+ip′·x in the Fourier transform of φ†. This choice will lead to additional insight later. Substitute
these expressions back into the action to get

S ⊃ −ie
∫

d4x

∫ d4p

(2π)4
d4p′

(2π)4
d4q

(2π)4 (−i)(p− p′)µÃµ(q)φ̃(p)φ̃†(p′)e−i(p+p′+q)·x

= −e
∫ d4p

(2π)4
d4p′

(2π)4
d4q

(2π)4 (p− p′)µÃµ(q)φ̃(p)φ̃†(p′) (2π)4δ(4)(p+ p′ + q). (3.16)

Now we can read off the Feynman rule with the same ease as with non-derivative interaction terms.
We ignore the integrals over the momenta and also ignore the fields. In addition, we also ignore the
delta function and its accompanying factor of (2π)4, which is enforcing momentum conservation at
this vertex. What remains is −ie(p− p′)µ; where the extra factor of i comes from the factor of i in
Dyson’s formula, as usual.
This is almost the right result, but the sign in front of p′ is wrong. Why? This goes back to

Eq. (3.15), and our choice to consistently put a minus sign inside the exponent for all three Fourier
transforms. Physically, this corresponds to defining the vertex such that all three momenta (p, p′, q)
are flowing into the vertex. However, our convention is that p′ is flowing out, and so all we have to
do is flip the sign of p′ to get the right result.
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Question 4

Both the electron and muon are spin-half fermions with charge −e that couple to the photon via the
interaction vertex

= −ieγµ. (4.1)

Together with the Feynman rules for propagators and external legs given in the Appendix, one can show
that the process e+e− → µ+µ− has amplitude A given by

= −(−ie)2 [v̄2γ
µu1][Ū ′1γµV ′2 ]

s
(4.2)

at tree level, where s = (p1 + p2)2 is the usual Mandelstam variable. Shorthand notation ui ≡ usi(pi) is
being used. The spinors u, v are taken to correspond to the electron, while U, V are associated with the
muon.

Question 5

Proposition 5.1: In the limit of massless fermions, the spin-averaged squared amplitude for the process
e+e− → µ+µ− is 〈

|A|2
〉

= 32π2α2

s2 (s2 + 2st+ 2t2). (5.1)

Proof.—We square the amplitude written down in Question 4 to obtain

|A|2 = e4

s2 [v̄2γ
µu1][ū1γ

νv2][Ū ′1γµV ′2 ][V̄ ′2γνU ′1]. (5.2)

Upon taking the spin average, we can immediately exploit the spin-sum relations to write
∑
u1ū1 =

/p1 +me and
∑
V ′2 V̄

′
2 = /p

′
2−mµ. Keeping in mind that our ultimate goal is to compute a scattering cross

section to be compared with experiment, let us neglect the masses of the fermions in what follows. This
simplification is justified since the experiment, PETRA,6 collides electrons and positrons with centre-
of-mass energy on the order of tens of GeV’s; much greater than me = 511 keV and mµ = 106MeV.
Hence,

〈
|A|2

〉
= e4

4s2

∑
spins

[v̄2γ
µ
/p1γ

νv2][Ū ′1γµ/p′2γνU
′
1]

= e4

4s2 tr(/p2γ
µ
/p1γ

ν) tr(/p′1γ
µ
/p
′
2γ
ν). (5.3)

The second line follows from using the identity ψ̄Aψ = tr(ψψ̄A), valid for any spinor ψ and 4 × 4
matrix A, and then using the spin-sum relations again.

To proceed any further requires knowing some traces of Dirac matrices. We dust off our work from
Sheet 3 to recall that

tr(γαγµγβγν) = 4(ηαµηβν + ηανηµβ − ηαβηµν). (5.4)

6The Positron-Electron Tandem Ring Accelerator at DESY in Hamburg, Germany.
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Contracting this with (p2)α and (p1)β yields

tr(/p2γ
µ
/p1γ

ν) = 4[pµ2pν1 + pν2p
µ
1 − (p1 · p2)ηµν ] = 4[2p(µ

1 p
ν)
2 − (p1 · p2)ηµν ]. (5.5)

Doing the same for the other trace, one finds

〈
|A|2

〉
= 16e4

s2 p
(µ
1 p

ν)
2 p
′
1,µp

′
2,ν = 8e4

s2 [(p1 · p′1)(p2 · p′2) + (p1 · p′2)(p2 · p′1)]. (5.6)

Our next step is to use the identities

s = 2p1 · p2, t = −2p1 · p′1, u = −2p1 · p′2; (5.7)

which all hold only in the massless limit. These imply that

〈
|A|2

〉
= 2e4

s2 (t2 + u2) = 2e4

s2 (s2 + 2st+ 2t2). (5.8)

The second expression follows from using the identity s + t + u = 0 to eliminate u. Rewriting e in
terms of the fine-structure constant α = e2/(4π) yields the desired result. �

Proposition 5.2: The spin-averaged cross section for this process is

σ = 4πα2

3s . (5.9)

Proof.—As always, our starting point is the master formula for the differential scattering cross section [3],

dσ
dt = |A|2

16πλ(s,m2
1,m

2
2) , (5.10)

where m1,2 are the masses of the initial particles, and λ(s,m2
1,m

2
2) = [s− (m1 +m2)2][s− (m1−m2)2].

Setting m1 = m2 = 0 and using the result of Proposition 5.1, we obtain

σ =
∫

dt 2πα2

s4 (s2 + 2st+ 2t2). (5.11)

In Question 8 of Sheet 3, we previously established that the Mandelstam variable t ∈ [−(s− 4m2), 0]
if all four external particles have the same mass m. Setting m = 0 and performing the integral over t
yields the desired result. �

It is natural to wonder if this tree-level calculation suffices for comparison with data. In other words,
what is the theoretical uncertainty that we accrue by neglecting higher-order (loop) corrections? Several
examples of one-loop diagrams are shown below:

Just by counting the number of vertices present, we see that the one-loop diagrams contribute terms
proportional to e4 ∝ α2 to the amplitude. Thus, one-loop corrections to σ are proportional to α4, meaning
they are smaller than the tree-level terms by about α2 ∼ 10−4. This is well below the threshold of
PETRA’s experimental uncertainty, so can be neglected.
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Appendix: Common Feynman rules

In this course, we encountered three different types of quantum fields: spin-zero scalars, spin-half spinor
fields (fermions), and the spin-one Maxwell field (photon). Feynman rules for their propagators and
external legs are always the same, so let us collect them here for convenience.

Propagators—A scalar of mass µ is denoted by a dashed line, and each internal propagator comes with
a factor

= i

p2 − µ2 + iε
.

The arrow denotes the direction of flow of momentum, and also serves to distinguish particle from
antiparticle if the scalar is complex.
A fermion of mass m is denoted by a solid line, and each internal propagator yields

=
i(/p+m)

p2 − µ2 + iε
.

Finally, a wavy line represents a photon, whose propagator is

= −iη
µν

p2 + iε

when written in Feynman (Lorenz) gauge. This gauge choice is invariably the simplest for calculations.

External legs—For each ingoing or outgoing fermion, we attach the following spinors:

= us(p), = ūs(p).

Similarly, for each ingoing our outgoing antifermion, we write

= v̄s(p), = v̄s(p).

Note that, by convention, we use the arrows on the solid line to distinguish between particle and antiparticle,
and also to represent the direction of momentum flow. In all cases above, momentum p is flowing from
left to right, hence momentum −p is flowing in the direction of the arrows of the antifermions.
Analogously, each ingoing or outgoing photon is multiplied by a polarization vector,

= Eλ∗µ (p), = Eλµ (p).

Scalars, either real or complex, do not have any factors associated with their external legs.

Miscellanea—A few other rules complete the list:

• Conserve momentum at each vertex. This automatically ensures that the total momentum for the
ingoing and outgoing particles is conserved.

• To ensure that the spinor indices are contracted correctly, for each solid line begin at the head and
systematically work backwards until reaching the tail.

• Occasionally, there are extra minus signs that need to be included due to Fermi statistics. This is
best illustrated with an example; see Question 1.

• Divide each diagram by its appropriate symmetry factor.
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