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Numerical simulations of sink flow in the

Hele-Shaw cell with small surface tension

E. D. KELLY and E. J. HINCH

DAMTP, Uni�ersity of Cambridge, Sil�er St., Cambridge CB3 9EW, UK

(Recei�ed 29 January 1996; in re�ised form 19 August 1996)

The motion of an initially circular drop of viscous fluid surrounded by inviscid fluid in a Hele-

Shaw cell withdrawn from an eccentric point sink is considered. Using a numerical algorithm

based on a boundary integral equation, the solution for small, finite surface tension is observed.

It is found that the zero-surface-tension formation of a cusp is avoided, and instead a narrow

finger of inviscid fluid forms, which then rapidly propagates towards the sink. The scaling of

the finger in the sink vicinity is determined.

1 Introduction

1.1 Case of zero surface tension

As detailed in Howison, Lacey & Ockendon (1988), for the Hele-Shaw suction problem

with zero surface tension, we have two classes of problems: solutions which do not develop

singularities in finite time, and those which do. In the former case we have three sub-classes :

(i) solutions removing all the fluid from a finite region. For a given suction mechanism

DiBenedetto & Friedman (1984) have shown that there is only one initial shape from which

all the fluid may be extracted without singularities forming. In the case of a point sink (the

case we shall be concentrating on), a concentric circle of fluid is the only such shape; (ii)

solutions leaving residual fluid in an infinite region, for example, the evolution of a finger

in the Saffman–Taylor problem (1958) ; and (iii) solutions removing all the fluid from an

infinite region.

On the other hand, singularities such as a cusp on the surface can develop in a finite time

(Polubarinova-Kochina, 1945). Starting from an initial limaçon of fluid containing a sink,

Howison et al. (1985) demonstrate how a three-halves power cusp is formed. In this simple

suction case, the analytic solution breaks down at the formation of the cusp, and no

continuation beyond the time of formation of the singularity is possible. In fact, the time

reversibility of the Hele-Shaw problem with no surface tension leads to the conclusion that

a constant-suction mechanism can only cause the fluid domain to shrink to zero in finite

time if the fluid domain itself can be produced by the corresponding blowing mechanism

starting with no fluid present.

Richardson (1972) solved the problem of injecting into an initially circular domain from

an off-centre point. Due to the time-reversibility of the Hele-Shaw equations this analysis

could then be used to study the complementary problem of suction, rather than injection,

in this geometry up to the point of cusp formation. Richardson has recently (1994)
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F 1. Collapse of 10% offset sink for zero surface tension. Plots, from the outer perimeter

inwards, are at times t¯ 0.0, 5.0, 10.0, 15.0, 19.0, 20.0, 21.0 and at the formation of the cusp,

tE 21.45.

expanded upon this theory, taking into account multiply-connected domains and barriers,

analysing, among others, the situation where air becomes trapped by the advancing fluid

and the rigid boundaries.

1.2 Flows with surface tension

For the case of non-zero surface tension, no analytic solution exists for the suction

problem. Researchers attempting to tackle this problem analytically have tended to

assume, on physical grounds, that surface tension would provide a regularization of the

problem, i.e. the presence of surface tension would ‘round’ the cusp, avoiding the

sharpening of the interface, thereby allowing the solution to exist after the break-down time

for zero surface tension. Howison et al. (1988) looked at both cases of non-zero and the
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F 2. Plot of theoretical stability curve and quartic spline results for γ*¯ 10−$.

zero surface tension. For the purposes of their analysis, they set the time of cusp formation

to t¯ 0. For the case of small surface tension, they concentrated on the small time

behaviour of the interface in the region where a cusp would otherwise have formed.

Hohlov et al. (1994) expanded upon the work of Howison et al. (1988). They touched

briefly upon the idea of a ‘viscosity ’ type of regularization, where the free boundary is

modelled as a smooth transition layer between the viscous and inviscid regions, but

concentrated on two other methods of regularization. The first is the usual introduction of

surface tension, giving the ‘Gibbs–Thomson’ condition as they refer to it, the second being

a regularization due to kinetic undercooling, which provides the ‘kinetic ’ condition where

the pressure jump at the interface is proportional to the normal velocity. Their analysis is

on such a lengthscale that the ‘crack’ is considered instead as a ‘slit ’ of zero thickness,

concealing the intricate short wavelength ‘dendritic ’ patterns which are frequently

observed. This also gets round the ill-posedness of the crack model (it can have

singularities, determined by the initial thickness, which cause finite-time blow-up), at the

expense of introducing some arbitrariness in the motion of the slit tip.

Both the crack and slit models, however, are incomplete, and a complete analytic

solution to the problem remains elusive. Here we apply a boundary integral method to

achieve a numerical solution of the problem.

An alternative scenario to the crack}slit model has been investigated by Tanveer (1993),

Siegel & Tanveer (1996) and Siegel, Tanveer & Dai (1996). In their analyses, the effect of

small surface tension is to produce some ‘daughter singularities ’ in a certain complex plane.

When these daughter singularities approach the image of the physical boundary, the
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F 3. Time-lapse picture of the development of the interface at t¯ 21.69, 22.25, 22.68, 23.00,

23.22 and 23.36 with N¯ 80 and γ*¯ 3¬10−$.

behaviour changes dramatically from that with zero surface tension. Typically, multi-

headed dendritic fingers are formed. No predictions have however been made for the sink

flow studied in this paper.

2 Formulation

The basic equations of the sink flow problem are very much the same as those for the

quadrupole problem tackled by Kelly & Hinch (1997). The standard theory of flow in a

Hele-Shaw cell, as detailed in Lamb (1932), is used. Application of Green’s second identity

results in

"

#
p(x)¯®

Q

2π
ln rxr­, 0p(x«)

¥G(x,x«)
¥n«

®G(x,x«)
¥p(x«)
¥n« 1 dl «, (1)

with G(x,x«)¯ 1}2π ln rx®x«r, and x a point on the viscous-inviscid interface. The first term

on the right-hand side of equation (1) corresponds to a point sink at the origin of strength

Q(Q! 0 gives a point sink, Q" 0 a point source).

The velocity of the interfacial point is given by

u(x)¯®
h#

12µ
~p(x). (2)
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F 4. Time-lapse picture of the development of the interface at t¯ 21.44, 21.91, 22.26, 22.51,

22.68 and 22.78 with N¯ 80 and γ*¯ 10−$.

At the interface we have a pressure jump due to surface tension, such that

p(x)¯γκ(x), (3)

where γ is the surface tension coefficient (assumed constant), and κ(x) is the local curvature.

We ignore the Park & Homsy (1984) factor here.

As this is effectively a two-dimensional problem, we choose to rescale all our lengths by

the initial radius of the fluid blob, D. This allows us to rewrite equation (1), highlighting

the two competing flow driving forces, as,

p¯O(Q)­O 0γD1 . (4)

This gives us our dimensionless surface tension coefficient as γ}rQrD, which we denote by

γ*. We non-dimensionalize the pressure with Q, lengths by D, velocities with h#rQrµD, and

therefore the time by µD#}h#rQr.

3 Richardson’s solution for zero surface tension

As mentioned in the introduction, Richardson (1972) in a worked example provides the

exact solution for the off-centre sink with zero surface tension. The shrinkage of an initially

circular blob with 10% off-set sink is depicted in Figure 1 to the time of cusp formation
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F 5. Time-lapse picture of the development of the interface at t¯ 21.27, 21.68, 21.96, 22.17,

22.31 and 22.40 with N¯ 100 and γ*¯ 3¬10−%.

at tE 21.45, with snapshots at regular time intervals until close approach to the cusp. The

singularity in the curvature of the interface is of the form of a 3}2 power-law cusp.

4 Numerical method

The basic numerical techniques employed in this problem are to a great extent very similar

to those employed in Kelly & Hinch (1995). The N points on the viscous–inviscid interface

are interpolated by a quartic spline, with the x and y coordinates interpolated

independently, in each case the spline parameter τ having unit range between neighbouring

points, e.g. x
"
3x(τ¯ 1), x

#
3x(τ¯ 2), etc.

The curvature κ at a point x is then given by

κ¯
xτ yττ®yτ xττ

(x#
τ­y#

τ)$/#
, (5)

and the outward normal n as

n¯
(yτ,®xτ)

ox#τ­y#τ

. (6)

Due to an eigensolution of (1) with zero eigenvalue corresponding to p¯ const.

producing no flow (¥p}¥n¯ 0), the matrix of the discretized form was purged, by adding

a product of this eigenvector and its adjoint which changes the eigenvalue from zero. The
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F 6. Time-lapse picture of the development of the interface at t¯ 21.20, 21.57, 21.82, 22.00,

22.12 and 22.20 with N¯ 200 and γ*¯ 10−%.

motion due to the presence of the sink was imposed after elimination of spurious area

changes. Tests of the accuracy of the methods employed are detailed in Kelly & Hinch

(1995). Savings in computations were made by taking advantage of the symmetry of the

fluid drop about the y-axis.

Tangential redistribution of the boundary nodes was also employed. Here it was used to

pack actively certain areas of the interface where greater detail was needed, at the expense

of sections where little change occurs. As it was assumed that the solution for small surface

tension would be similar to the case of zero surface tension, observation of Figure 1 showed

that the greater part of the motion of the interface occurs in a small wedge about the

positive y-axis, and thus the tangential motion of the nodes was augmented to ensure a

greater density in this region. Later results revealed the development of a thin, rapidly

moving, inviscid finger with high tip curvature in the cusp region which necessitated a

weighting in favour of regions of high curvature in the redistribution algorithm.

5 Stability analysis

The sink flow with zero surface tension is highly unstable to small perturbations, to the

extent of being an ill-posed problem. As a further and demanding test of the numerical

method, the stability of the concentric sink flow was examined with small non-zero surface

tension. The growth of a small perturbation of the form a
n
cos (nθ), n `., ®π% θ%π, on



540 E. D. Kelly and E. J. Hinch

F 7. Time-lapse picture of the development of the interface at t¯ 21.18, 21.53, 21.77, 21.94,

22.06 and 22.14 with N¯ 200 and γ*¯ 6¬10−&.

a circular drop of radius R
!
(t), centred on the sink, was studied. Linear stability analysis

gives

d ln (a
n
(t))

dt
¯

1

12 (
(n­1)

2πR#

!

®
γ*(n#®1) n

R$

!

* , (7)

which we will refer to as the perturbation growth equation.

As can be seen in equation (7), there are two competing effects in the development of the

disturbance. The first term in brackets on the right-hand side of equation (7) represents the

destabilizing effect of the sink flow. The second term represents the stabilizing effect of

surface tension, smoothing out noise.

The numerical code was then tested against this result. A sinusoidal perturbation of

O(10−') was placed upon a circular drop of unit radius, with γ*¯ 10−$, and the growth of

the disturbance was analysed at t¯ 1. The results of this test is displayed in Figure 2, where

we plot ln (a
n
(1)}a

n
(0)).

Note how the matching is excellent for the lower modes, but loses accuracy as n is

increased. This is due to the interpolating spline being less and less able to give accurately

the curvature of the higher order perturbations.

Similar tests were also carried out to study the damping effect of surface tension on

Gaussian random noise imposed initially. Due to centre of gravity and area perturbations

resulting from the imposition of noise, all analysis was carried out via the local curvatures,



Numerical simulations of sink flow in the Hele-Shaw cell 541

F 8. Comparison of finger widths for a sequence of surface tension strengths. y
t
¯ 0.05

in each case. The time for the tip to reach this point is also recorded.

rather than the actual position of the boundary nodes. The noise was found to behave as

predicted by the perturbation growth equation for a range of values of γ*.

Requiring that at least the top half of the N}2 possible numerical wavenumbers are

physically stable leads to a restriction on the number of nodes required:

N" 1.6γ*−"/#. (8)

6 Results

The initial conditions for each experimental run were similar. The interface was set up with

the nodes evenly distributed on a circle of radius 1, with its centre at the point (0.0,®0.1).

The sink was placed at the origin, i.e. 10% offset from the centre of the initial circle.

6.1 Evolution of a finger

The shape of the interface as it approaches the sink is illustrated for a range of values of

γ* in Figures 3–7. The particular snapshots of the development of the drop are for times

corresponding to y
t
¯ 0.3 down to y

t
¯ 0.05, at intervals of 0.05, where y

t
denotes the

height of the finger tip above the sink. Of note in each of these pictures is the relative

immobility of much of the interface as the finger forms, with most of the action taking place
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F 9. Plots of the decrease in ®1}κ
t
and ®1}�

t
as the sink is approached.
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F 10. (a) Collapse of curvature plots, showing 1}3 power-law dependence of ®1}κ
t
on γ*; (b)

collapse of velocity plots, showing 1}6 power-law dependence of ®1}�
t
on γ*. The dotted line is the

prediction from the crack model of §6.6.
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in a tight wedge about the positive y-axis. All the simulations with surface tension continue

beyond t¯ 21.45 when a cusp forms with zero surface tension at y
t
¯ 0.232.

6.2 Comparison of finger widths

Figure 8 illustrates the variation of the width of the inviscid finger with surface tension. The

range is as previously covered in the time-lapse figures. In each case y
t
¯ 0.05. Note how

the finger gradually narrows as γ* decreases. Also of note is that the time for the tip to

reach the height of observation diminishes with the surface tension.

6.3 Curvature and velocity scalings with the surface tension

The behaviour of the local curvature at the tip, κ
t
, and the velocity of the tip, �

t
, as the sink

is approached is depicted in Figure 9 for the range of surface tension values considered. In

both cases, since the quantities go to negative infinity at the sink, their negative inverses are

plotted as functions of the distance of the tip from the sink y
t
. Note that the fingers move

towards the sink faster than the circle would have if it had zero offset, as given by the dotted

line. The fingers move faster because almost all the constant flow into the sink comes from

the small sector of the finger, and thus the velocities of the fingers are inversely proportional

to their width.

Given the behaviour illustrated in Fig. 9, a power-law dependence on the surface tension

was sought, i.e. tests were made to find an m such that at each y
t

®
1

κ
t

£γ* "

m. (9)

The best fit for the data was found to be for m¯ 3, as illustrated in Figure 10. The fit is

good over the range displayed, which as Figure 3 to 7 show is the limit of the existence of

the finger. The stray points at y
t
¯ 0.25 and 0.3 for γ*¯ 3¬10−$ are due to the interface

only having just begun to show signs of finger development, as can be seen in Figure 3.

Similarly, a power-law dependence on the surface tension was sought for ®1}�
t
.

Excellent matching was achieved for m¯ 6 over the range of interest, as can also be seen

from Figure 10.

6.4 Self-similar shape of the fingers

Now we have seen in Figure 9 that for a given value of the surface tension γ* the radius

of curvature of the tip ®1}κ
t
is proportional to the distance of the tip from the sink y

t
. In

Figure 11, for two different values of the surface tensions, we superpose fingers at different

times by scaling with y
t
, i.e. plotting x and y each divided by y

t
(t). We see that the rescaled

curvature at the tip remains constant, as given earlier in Figure 9. We also see that as the

finger grows in time it asymptotes to a fixed shape (in these rescaled coordinates).

Now Figure 10 showed additionally that the curvature of the tip at any y
t

was

proportional to γ*−"/$. We have therefore superposed fingers at different γ* for y
t
¯ 0.1 by

rescaling the width of the fingers with γ*−"/', i.e. plotting y}y
t
against x}y

t
γ*"/', as may be

seen in Figure 12 We see that the shapes agree not only at the tip, but also as far as the
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F 11. Superposition of fingers scaled by y
t
¯ 0.3, 0.25, 0.2, 0.15, 0.1 and 0.05,

with γ*¯ 3¬10−% and 10−%.
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F 12. Superposition of fingers for a range of values of γ* with y
t
¯ 0.1, scaled by y

t
in the

y-coordinate and y
t
γ*"/' in the x-coordinate.

fingers are formed. The fingers thus seem to adopt a universal self-similar form, at least for

the 10% offset sink.

6.5 Effect of offset shift

The effect of a shift in the position of the sink was also observed. A 20% offset sink, with

the blob initially centred at (0.0,®0.2) and surface tension γ*¯ 3¬10−% was chosen.

Figures 13 and 14 illustrate the effect of this shift in comparison with the previous results

for γ*¯ 3¬10−% with the 10% offset. In Figure 13 we see that although the viscous finger

forms much earlier for the 20% offset case, the dimensions of the finger itself are

unaffected. This is borne out in the succeeding comparisons of the curvature and velocity

of the tip in Figure 14. Thus once the fingers form their shape and behaviour does not

depend on the particular value of the offset.

6.6 Relation between curvature and velocity of the tip

In an attempt to explain the scalings of κ
t
and �

t
, we consider modelling the inviscid finger

as a thin crack along the positive x-axis (for convenience of this subsection), with the tip

very near to the origin and the sink at (®a, 0). Under the transformation z¯ ζ # with
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F 13. Comparison of finger widths for 10% and 20% offset sinks, with γ*¯ 3¬10−%.

10% offset case is at t¯ 22.3575. 20% offset case is at t¯ 15.395.

x¯x­iy and ζ¯ ξ­iη, the crack becomes stretched out near to the ξ-axis with a sink at

(0,oa). If we assume that the crack is approximately a p¯ const. surface near to the ξ-axis,

then we need an image source at (0,®oa). The expression for the pressure is then

p¯2 ( 1

2π
ln 0ζ®ioa

ζ­ioa1* . (10)

Near to the tip of the crack, ζ'oa

pC2 ( i

π

ζ

oa*¯2 ( i

π

z"/#

oa*¯®
1

π'
r

a
sin

θ

2
(11)

in polar coordinates. The local velocity near the tip is

�rθ=π ¯®
1

12

¥p
¥r )θ=π

¯
1

24πoar
. (12)

Now we have assumed that the crack is a p¯ const. surface, i.e. a η¯ const surface.

Then using x­iy¯ ξ#®η #­2iξη, so ξ¯ y}2η, we find this surface is

x(y)¯®η#­
y#

4η#

, (13)

which has a curvature at y¯ 0 of

x
yy

¯
1

2η#

. (14)
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F 14. Comparison of the decrease in ®1}κ
t
and ®1}�

t
as the sink is approached for

10% and 20% offset sinks, with γ*¯ 3¬10−%.
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Now in our numerical simulations we find the curvature of the tip

κ
t
¯®

k

a
γ*−"/$, (15)

with kE 0.3. This gives at y¯ 0

r¯®x¯ η#¯
1

2κ
¯

a

2k
γ*"/$. (16)

Hence, the above model predicts that the velocity of the tip is

�
t
¯

γ*"/'

a

o2k

24π
. (17)

The expressions for κ
t
and �

t
for k¯ 0.3 are plotted in Figure 10. We see that Laplace’s

equation successfully links the scalings of κ
t
and �

t
.

It should be noted that the model is based on the assumption that the interface has

p¯ const. The precise value at the tip is γ*"/'}πo2k, which is very much larger than the

capillary pressure γ*κ¯kγ*#/$}a while a(γ*"/#πk$/#o2.

7 Conclusions

The results of our simulations confirm what has been the generally accepted hypothesis as

to the behaviour of the fluid once surface tension forces are included. The solution exists

well beyond the time of cusp formation for the case of zero surface tension, forming a

narrow, rounded finger where before a 3}2 power-law cusp was evident, thus demonstrating

the singular perturbation nature of the problem. Certain interesting features of this finger

have been revealed. Its width diminishes with the surface tension of the fluid, with the

curvature of the tip region having a 1}3 power-law dependence on γ*. The speed at which

the tip approaches the sink also depends on the surface tension, in this case in the form of

a 1}6 power-law. This contradicts Howison et al. (1988), who suggest a 2}3 power-law

dependence on γ* for the tip curvature and a 1}3 power-law for the velocity. At this time

we are unable to offer any explanation for the scalings found in our simulations. We note,

however, that the model of Howison et al. assumes a steady state finger which is not

possible in the continually converging geometry of the sink flow.

The simulations have further shown that the fingers adopt a self-similar shape as they

approach the sink, a shape which does not depend on the value of the initial offset of the

sink, a shape whose width scales with γ*"/'.

The shape of the self-similar finger is simple and not the dendritic form caused by

daughter singularities as in Siegel, Tanveer & Dai (1996). We suggest for the sink flow that

the daughter singularities must remain further from the image of the physical boundary

than the zero of the original zero-surface-tension map. One interesting feature of the

analysis of Tanveer (1993) is the existence of a γ*"/' scaling. We are, however, unable to

identify the physical balance responsible for this scaling which might then be applied to the

sink problem of this paper.
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