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The low-frequency dielectric response of a suspension of spherical particles surrounded 
by thin double layers has been studied and the analysis of Dukhin and Shilov has been 
extended to asymmetric electrolytes. In addition to the cases of constant surface charge 
density and of constant surface potential, the case in which changes in the surface charge 
density are determined by changes in the surface potential according to a first-order kinetic 
equation has also been examined. 

It is well known that the dielectric response of a colloidal suspension can be 
quite different from that of the suspending electrolyte alone, especially at low 
frequencies. Typical examples are the experiments of Schwan et al.’ and of Ballario 
et a1.’ on suspensions of polystyrene particles. Relative permittivities of 1000 or 
more were measured at low frequencies. (See Chou and Shah3 for references to 
other experiments.) Standard Maxwell-Wagner analysis for a two-phase material 
is unable to explain such results, which are thought to be caused by the charged 
double layers surrounding the particles. Early analyses47s ascribed frequency-depen- 
dent properties such as surface conductivity and capacity to the double layers. 
Dukhin and Shilov6 studied the flux of ions in thin double layers and the surrounding 
symmetric electrolyte and successfully fitted their predictions to the experimental 
results. Similar analyses have been presented by Chew and Sen7 and by Fi~man.*’~ 
Full numerical solutions over a range of double-layer thicknesses have been obtained 
by DeLacey and White,” while O’Brien’’ has studied the limit of low potentials. 
Here we consider thin double layers and asymmetric electrolytes, following 
O’Brienl’ and Hinch and Sherw00d.l~ We examine the dominant role played by 
the counter-ions of highest valence. It is also straightforward to compare the effect 
of various boundary conditions at the surface of the charged particle. 

Our analysis is similar to that of Dukhin and Shilov.6 The frequency is assumed 
to be sufficiently low so that within one cycle the ions can diffuse a distance 
comparable to the particle radius a. Thus, to a first approximation, the thin double 
layer is quasi-static. We obtain the form of the solution outside the double layer 
and must then determine the constants in this solution, in particular the effective 
polarization of the spherical particle. This is achieved by studying the ion flux 
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balances obtained by integration through the double layer. At very high surface 
potentials the tangential flux of the counter-ions with the highest valence cannot 
be ignored and is evaluated from our knowledge of the structure of the double layer. 

GOVERNING EQUATIONS 

The suspending electrolyte contains I species of ions with valences z', mobilities 
ui and number densities ni(r ,  t ) .  The electric potential 4 and the charge density 
p are related by Poisson's equation 

. .  
V . E V C $ = - ~ = - C  ezlnl 

where the permittivity E = E, in the electrolyte and we assume that E is negligibly 
small inside the particle. If the imposed oscillating electric field has magnitude E 
and frequency a, then, in spherical polar coordinates, we require 

I 

4 - - E  exp (iat)r cos 8 as r +  00. 

The boundary condition at the surface of the particle has the form 
+=[ on r = u  when E = 0 .  

When E # 0 we initially assume either a constant surface charge density 

or a constant surface potential 

4 unchanged on r = a. 

Later we shall give an intermediate condition representing relaxation of the surface 
charge density. 

The ions are convected by the fluid velocity u and move relative to the fluid 
under the influence of electric and thermodynamic forces. The ion-conservation 
equation becomes 

an' 
- + + * [ u n ' - o ' ( e z ' n ' ~ ~ + L ~ ~ n ' ) ] = ~  
at 

with boundary condition 
n ' + n L  a s r + m  

where 

C z'nk = O  
1 

for electrical neutrality of the bulk electrolyte. We initially take the boundary 
condition at the surface of the particle to be 

n -  [un ' -  o'(ez'V4 + L T V ~ ' ) ]  = o on r = a 

where n is the normal to the particle surface. This requires any change in the 
surface charge (in the case of constant surface potential) to be provided by the free 
movement of charges within the particle. Later this condition will be modified to 
permit the ions to supply this change in the surface charge. 
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At typical frequencies and for small colloidal particles we can neglect fluid inertia. 
The motion of the fluid is therefore governed by the Stokes equations: 

0 = -vp+ p v 2 u  - p v 4  
v * u = o  

where p is the pressure and p is the viscosity of the suspending fluid. We take the 
boundary conditions to be 

u+O a s r - + a  
u=O o n r = a .  

Note that we have assumed that a small force acts on the particle to keep it stationary. 
In reality this force is not applied. The particle will therefore move, as in elec- 
trophoresis, with a velocity equal to force times mobility. For a sphere with thin 
double layers the mobility is (tinpa)-', with very small corrections due to the double 
layer. 

The imposed electric field E exp (iat) is assumed weak compared with the natural 
electric fields within the thin double layer. Thus we expand all variables in the 
above equations as an unperturbed term (with subscript 0) and a perturbation 
(subscript 1) linear in E exp (iat), e.g. 

4=40+41. 
We ignore corrections which are non-linear in E and the consequent higher har- 
monics. 

OUTSIDE THE DOUBLE LAYER 

There is no fluid motion when there is no imposed field ( uo = 0), so the linearized 
form of the ion flux equations is 

an; 
-+V { ~ ~ n ~ - o ' [ e z ' ( n ~ V ~ ~ +  nbV41)+ kTVnf]} =O.  
a t  

Outside the thin double layer, which has thickness 

K-' = (&,kT/C e2zi2nk)1'2 
1 

the undisturbed electrolyte is unaffected by the double layer. Hence 
+ o = O  and nh=nL. 

Now ni is proportional to exp(iut), so freely interchanging n ;  with its Fourier 
amplitude and using V u = 0, the ion-flux equation becomes 

iun; - oi(ez'nLV2& + kTV2n;) = 0. 
Poisson's equation gives 

ezinkV241 = kTK2zink 1 zin{ /C(zi)*n',. 

Hence the general solution for the number densities outside the double layer is a 
linear combination of the eigensolutions with a first harmonic variation 

i 1 
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with eigenvalue hk and eigenvector A; satisfying 

Now we restrict the frequency to be not very high, so that the distance the ions 
diffuse during an oscillation is much larger than the double layer thickness,, i.e. 
( oikT/a)"2 >> K - ' .  In this case there is one eigenvalue A: = K~ and A', cc z'n;. 
This is merely the linearized double layer. If all the ions have the same mobility, 
the remaining eigensolutions are A 2  = b / w k T  with 1 ziAJ = 0, i.e. the eigensolutions 
represent neutral charge clouds. In general, though, w ' varies between ion species, 
so we adopt the normalization 

c ziAi = A ~ K - ~  c zi2nL, 
i i 

k = 2 , 3 , .  . . , I. 

Then 

and we see that the eigensolutions are non-neutral at O ( & / K ) ~ .  Substituting this 
expression for A into the preceeding normalization yields a polynomial in A 2  of 
degree I - 1 for h 2 , .  . . , Al. For an electrolyte with just two species of ions 

This is exact if w ' = 02, and holds more generally for our restricted frequency range. 
Similarly 

where we have used the neutrality condition z'nk+ z2nL = 0 .  The B(A/ K ) ~  degree 
of non-neutrality of these eigensolutions, extending over distances O( A - l )  which 
are large compared with the double-layer thickness K - I ,  results in an O(1) change 
in the potential. Thus outside the double layer the electric potential takes the form 

where the constant P is the effective polarization of the particle together with its 
double layer. The evaluation of P is the object of this study. 

INTEGRATED FLUX BALANCE ACROSS THE DOUBLE LAYER 
AT MODERATE POTENTIALS 

We can obtain the unknown constants c2, c3 , .  . . c, and P in the solution outside 
the double layer without a full determination of the solution within the double 
layer. Integrating through the double layer the equations for the perturbed ion- 
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number densities we find the integrated flux balances 

i a  [ dl n: d r + [ d l V * u , n k d r - ~ d , V ~ ~ u i ( e z i n b V t ~ l + k T V t n ; )  dr 

where dl stands for the double layer, dl+ stands for just outside the double layer 
and V, is the tangential differential operator. In obtaining the above flux balances 
we have used the no-flux boundary conditions on r = a and the results 

Vt+o = 0 everywhere 

ar outside the double layer. 

At moderate potentials (to be defined later) order-of -magnitude arguments allow 
us to neglect the integral terms in the above flux balances. Since 

ni = O(nLeEu/kT) 
the first integral 

i u  ni dr = O(un&eEa/kTK). 

This must be compared with a leading order term in the flux balance 

= O( o 'enLE). 

The ratio of these two terms is 

*(S o'kT L). UK 

Since we are assuming u = O ( u k T / a 2 ) ,  this is small. 
Now the fluid motion is driven by electrostatic forces O(en,E), which, acting 

across the double layer, induce a tangential velocity 6( en,E/pK2).  The tangential 
divergence of this tangential velocity produces a radial component of the velocity 
O( en,E/pu K 3).  Thus we estimate the magnitude of the second neglected integral 

jdl  V ulnh d r =  O ( e n & E / p u ~ ~ )  

and the ratio of this to the leading order term is 

Now the first factor is a property of the electrolyte. For water at normal temperatures 
and ions with mobility 4 x  10" kg s-' this factor is 0.26, and hence the second 
neglected integral is smaller than the retained terms by the factor ( u K ) - ' .  
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Finally for the third integral, the tangential component of the electric field Vt+l 
has magnitude E and so 

~~~vt .o ' (ez 'nk0,01+krT8,ni )  d r =  O(w'enkE/aK) 

which, like the other two integrals, is O(aK)-' smaller than the terms retained. 

flux balances the forms of 41 and nf outside the double layer and obtain 
Neglecting the three integral terms, we substitute into the simplified integrated 

Thus we have determined the constants at moderate potentials 
P = 1 / 2  and Ck=o, k = 2 , 3  ,..., I. 

These arguments, however, break down at very high surface potentials 5. The 
counter-ions with highest valence then become so numerous that the above estimates 
need correcting. We label these ions as the I th  species. Their number density close 
to the particle is enhanced by the factor exp (-ez"c/kT), where ez"c < 0. This high 
density of counter-ions effectively screens the high surface potential 6 to a moderate 
value 0(4kT/ez')  over a small fraction of the double layer of thickness 
K-' exp (ez'b/2kT). Thus all the above estimates for the neglected integrals need 
correction in the case of the special I th species by a factor exp (-ezz6/2kT), which 
is the enhanced number density multiplied by the distance over which it is integrated. 
We therefore conclude that the result 

P =  1/2 

exp (ilez'clkT) << a K .  

We now proceed to higher potentials and examine the internal structure of the 
double layer in order to evaluate the three integrals. 

is only appropriate at moderate potentials satisfying 

THE UNDISTURBED DOUBLE LAYER 
When no external electric field is applied, the ions are in a Maxwell-Boltzmann 

distribution 
n6 = nk exp (-ez'+o/kT). 

Thus Poisson's equation for the undisturbed potential in the thin double layer is 
. .  

- -1 ez'& exp (-ez'40/kT). &,-- 
d240 
dr2 I 

This can be integrated once: 
2 

&cW( 9) = C kTnk [exp ( - e ~ ' + ~ /  kT)  - 11. 
1 

A further integration is well known for a symmetric electrolyte: 
&,=-In 2kT (a -exp[ - ( r - a )~ ]  

ez" a + e x p [ - ( r - a ) ~ ]  
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where 
exp (-ez1Y/2kT) + 1 
exp (-ezz5/2kT) - 1' 

f f =  

In the case of a general asymmetric electrolyte, however, it is not possible to find 
an explicit expression for 40(r). At low potentials we may linearize the Poisson- 
Boltzmann equation, while at high surface potentials we can obtain an expression 
for &(r)  in the inner part of the double layer. In regions of high potential 
le40/ kTI >> 1 the counter-ions with the highest valency will be more dense than any 
other ion by a factor exp (e(zz - zi)40/kTI. Hence in this region 

few( F)2 - kTnL exp (-ezz40/kT). 

Integrating , we find 

40-ETln [exp ( ez ' ( / 2kT)+~~( r -a ) ]  ez 
where K;' is a Debye-Huckel distance based on the Ith species alone: 

K :  = e2zz2nk/2~,kT. 
The restriction that the potential be high restricts this solution to the inner part of 
the double lay&- 

r - a = O [ K T ~  exp ( e z ' ~ / 2 k ~ ) ] .  

THE PERTURBATION ION DENSITY AND POTENTIAL INSIDE 
THE DOUBLE LAYER 

To leading order the perturbed ion density n;  is governed by the radial flux 
balance 

Here we have applied the no-flux boundary condition, having first assumed that 
the double layer is quasistatic and that the fluid motion is negligible. Using the 
Maxwell-Boltzmann distribution for n& (r) we can integrate the radial flux balance 
to yield, within the double layer, 

n : ( r )=exp( -e~~+~/kT) (  n;(+)-ny-[41-41(+)]) ez 

where nf  (+) and &( +) are the values just outside the double layer 
kT 

Z 
nf  ( +) = C ckAi cos 8 exp (iat) 

k = 2  

and 
k T  

41( + ) = -( Ea( 1 + P )  + - 1 c.) cos 8 exp (iat). 
e k = 2  

Note that the above solution for ni merely represents a Maxwell-Boltzmann 
distribution for the combined densities 
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within the double layer, ignoring terms O(E)2. Substituting this perturbed ion 
density into Poisson's equation gives the equation governing the perturbed potential 

&,-- a241 - -I ez'ni (+) exp (-ez'40/kT) a r2 I 

We look for a solution in the form 

where 
ez'nf (+) 

- -c dr2 dr dr dr2 I Ew 
exp (- ez '40/ k ~ )  --+2--- d2f d40 dfd240 

which integrates to 

kTni (+) 
[exp ( -ez i+o/kT)  - 13. 

i &w 

The constant of integration B1 must be zero if f is not to grow like exp ( 2 4  at 
the edge of the double layer. Using our previous expression for (d40/dr)2 we obtain 

4 f r C n i (  + >[exp (-ezi40/ k ~ )  - 11 
f = B 2 + l J  

2 a I n&[exp ( - e ~ ' + ~ / k T )  - 11 
i 

and within the inner part of the double layer 
1 n : ( + ) ( r - u )  

n 2  f - 2 + j  

The constant of integration B2 is determined by the boundary condition at r = a. 
For the constant potential condition 

while for constant surface charge density 

At high surface potentials, with the inner part of the double layer dominated by 
the counter-ions with the highest valency, the above expressions for B2 become 

-l ez' 
kT &- - Z K I  - &( +) exp (ez1 l /2kT)  for constant potential 

and 
n : ( + )  B2 - ~ K T '  7 exp ( ez1{/2kT) for constant charge. 

no0 
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THE FIRST INTEGRAL IN THE FLUX BALANCE 

We are now in a position to evaluate the first of the neglected integrals in the 
flux balance. For the special I th species 

icT jdl ni  d r = i a  Id, ( n f ( + ) - -  n'ez' - "' f )  exp (-ez'+o/ kT) dr 
k T  dr 

= -ia[n2B2 exp (-ez'c/kT) -kn{ (+)K;' exp (-ezZl/2kT)] 

integrating by parts and using the form for f within the inner part of the double 
layer. Substituting the values for B2 we have, for the constant potential boundary 
condition, 

i a  ni dr = -&dn&KF1 exp (-ez'l/2kT) cos 0 exp (iat) 

and for the constant charge boundary condition 

1 ez' 
i a  Id, n: dr = o [  iaKF'n,eEa exp (-ez'l/2kT) . 

FLUID MOTION IN THE DOUBLE LAYER 

The radial component of the momentum equation is to leading order a balance 
between the radial pressure gradient and the strong radial component of the electric 
force 

340 
ar ar ar -P1-- P O  - 2, 

which integrates once to yield 

p = c  kTn~(+)[exp(-e~'4~/kT>-l]-~ ez'nk exp(-ez'40/kT)*fi 
I I dr 

Substituting this into the tangential component of the momentum equation, we 
derive an equation for the tangential component of velocity ue valid within the 
double layer 

a2ue 1 ap 1 a+l 
P T = ; s + P O - -  a a0 

= sin exp ( i d )  - c ckAl [exp ( -  ez'~,h~/ kT) - 11 [-a"',,. 
E ( I + p ) + - - - C  ck 1 ez'nk exp(-ez'#O/kT) . 

t:k ) i  1 
While the second term can be integrated twice for a contribution to ue of 

E ~ ~ - ' [ C -  40(r)] 
ae k 
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the first term does not integrate so simply. If we restrict attention to the inner part 
of the double layer, the two terms take a similar form, dominated by the I th  species 
of ions. Hence in the inner part of the double layer 

Integrating the equation for ue to the outside edge of the double layer, we find 
that the double layer produces an effective slip velocity V sin 6 exp (iut) with 

where the O(kT/e) term comes from all the species of ions and can be evaluated 
only if a full solution of the undisturbed potential +o is known. The slip velocity 
induces a motion outside the double layer (satisfying the Stokes equation with no 
electric force and negligible radial motion into the double layer) 

where ẑ  is the unit vector E / E .  This motion requires a force -47rpaV exp (iat) 
to hold the sphere fixed. Thus a free sphere in an oscillating electric field will move 
with velocity V exp ( i d ) .  

THE SECOND INTEGRAL IN THE FLUX BALANCE 

From the detailed form of the fluid motion in the inner part of the double layer 
we can now calculate the second integral in the flux balance for the special I th  
species of ions. First we make some manipulations which eliminate the radial 
component of velocity: 

c c 

V e u , n i  d r =  V*u,(n;-nk)dr  Id, Id, 
because n& is a constant and V 9 ul = 0. The radial component then integrates 
to zero because u1 = 0 on r = a and nk-- n&+ 0 at the edge of the double layer. Hence 

a 
[dl ae V ulnA dr  = ( a  sin 6)-' -sin 8 ue(n i  - nk) dr 

= -cos e exp (iat) 

iu - - z c k ( * 2  kT I ) ] exp (- ezI{/ 2 kT) ae k ktt) kT-iu 

using the forms of ue and n; in the inner part of the double layer. 

THE THIRD INTEGRAL IN THE FLUX BALANCE 

The final integral in the flux balance needs no additional investigations. Using 
our expressions for +1 and n:,  and for 4o within the inner part of the double layer, 
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we obtain 

V, w ' (  e z ' n ~ V , ~ ,  + kTV,n:) dr 
-[dl 

= f Id, [ez'nL&( +) + kTn: ( +)] exp (-ez'&/ kT) dr 

= -cos 8 exp (iut) ( 2 w ~ ~ ~ ~ L )  [ Ea ( 1 + P )  

kT --' e k  Ck(A~w'kT-iu i' 
)] exp (-ezrt/2kT). 

INTEGRATED FLUX BALANCE FOR HIGH SURFACE POTENTIALS 

Bringing together the results for the integrals, we can now evaluate the integrated 
flux balances at arbitrary potentials. The balances for all but the special Ith species 
are unchanged from the form at moderate potentials, i.e. for i = 1,2, .  . . , I - 1: 

Including the integrals which cannot be neglected at very high potentials, the 
integrated flux balance for the I th  species becomes, for the case of the constant 
potential boundary condition, 

- exp (-ez'5/2kT) 
UKZ 

and for the case of the constant charge boundary condition the same equation with 
the term $iuu2/o'kT omitted. 

It is not possible to solve explicitly the system of linear equations for the constants 
P, c 2 , .  . . , and so we must consider particular cases. 

RESULTS FOR AN ELECTROLYTE WITH JUST TWO TYPES OF 
CHARGED IONS AND WITH THE CONSTANT POTENTIAL 

BOUNDARY CONDITIONS 

If I = 2 there is just one mode outside the double layer. Solving the system of 
linear equations, we find for the case of the constant potential boundary condition 

P = t-ia( t x + p ) /  [ 1 + y + .( $ x + p ) (  1 + 4 
and 
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in which 
2 ~ , k T  --ZIO1 

a K I  9 P = l + (  e2z22pw2 ) ’ Y = p ’  
exp ( - e z2 ( /2kT)  

a =  

l + h a  aa2 
6 =  and I=- 

1 + h a  +ih2a2 02kT’ 

At low frequencies the polarization takes the form of a real constant part with 
a small imaginary part proportional to frequency 

The real part of this low-frequency,limit is at moderate potentials (low a )  and 
decreases to the possibly negative value at very high potentials (high a) .  At very 
high potentials, the integrated tangential fluxes of the special I th  species would be 
so large, because they include the large factor a, that they must virtually vanish if 
they are to take part in the flux balance with other integrated fluxes, which are 
O(1). Thus we find that the tangential electric field [characterized by the factor 
41( +)I  adjusts so that the integrated tangential flux of the I th  species of ions driven 
by the electric field virtually balances that driven by Brownian motion, i.e. there is 
a Maxwell-Boltzmann distribution around the particle for n:,  as well as across the 
double layer. The tangential electric field also adjusts so that there is virtually no 
integrated tangential flux of the I th  species advected by the flow. 

At low frequencies, the electrophoretic velocity approaches the real value 

At moderate potentials this takes the classical value &,(E/p .  At higher potentials, 
this low-frequency limit of the electrophoretic velocity attains a maximum value 
0[2&,kTE In ( a ~ ~ ) / p z ’ e ]  at a = 6(1), before dropping to a value B(&,kT/pe)  at 
high a. As explained in the section on fluid flow in the double layer, the 6( kT/ e l )  
term in the expression for $V requires knowledge about all the species of ions, not 
just the I th  species. In the case of z1 = - z2 ,  it is possible to make the necessary 
calculations analytically and find that this limiting value of the electrophoretic 
velocity for very high potentials and low frequencies is 2 In 2~ ,kTE/pez .  The drop 
in the electrophoretic velocity corresponds to the drop in the fluid flow as the 
tangential electric field adjusts to produce virtually no integrated tangential flux of 
the I th  species advected by the flow. 

As the frequency increases, the real part of the polarization decreases monotoni- 
cally to its high-frequency limit of -1 while the imaginary parts of the polarization 
increase to a maximum O(1) before eventually decreasing like 

The high-frequency form of the polarization is 

Thus the approach to the high-frequency limit is independent of the potential 
(independent of a) .  The criterion for the frequency to be large, however, is 
X b 4( 1 + y)(  1 + ap)/a. Thus at moderate potentials (low a )  the polarization does 
not attain its high-frequency form until very high frequencies. Note, however, that 
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our restriction to moderate frequencies does not permit us to consider frequencies 
above the limit Z> u ~ K ' .  

At high frequencies the diffusional length scale A-' becomes small. Only a small 
value of n: (+) is therefore needed to provide a diffusional flux of the co-ions in 
order to balance the O(1) electrically driven flux. Neutrality outside the double 
layer then requires that n: ( + ) should also be small. The rapidly oscillating number 
of the special species of ions in the double layer must be supplied by the integrated 
fluxes, and this ensures that the number of these ions Id, n: dr = $ ~ l ' [ n $ ( e z ~ / k T ) + ~ ( + )  4- n:(+)]exp ( -ez2( /2k2')  

is small. Hence = -Eu( 1 + P) cos 0 exp (iat) is also small and so P - -1. 

RESULTS FOR AN ELECTROLYTE WITH TWO SPECIES OF 
CHARGED IONS AND WITH THE CONSTANT CHARGE 

BOUNDARY CONDITION 

The results for the constant charge boundary condition are very similar to those 
for constant potential, except that i a  I n: is now small and terms in Z therefore 
vanish. Solving the system of linear equations we find 

P = +-;a.p/[ 1 + y + ap( 1 + ys)] 

and 

At low frequencies the polarization takes the form 

The real part is identical to that for the previous case of constant surface potential. 
The small imaginary part does, however, show the change in the boundary condition. 

As the frequency increases, the real part of the polarization decreases monotoni- 
cally, while the imaginary part increases to a maximum O [ a 2 / (  1 + a)'] and then 
decreases at high frequencies like 

At high frequencies the polarization takes the form 

as Z-m. 

For the constant charge boundary condition, the high-frequency limit is attained 
when I; = O(1). The limiting mechanism at high frequencies is quite different from 
the previous case of constant surface potential because now Idl n: dr - 0.  The second 
and third integrals in the flux balance are both proportional to 

[ez2n$41(  +) + kTn:( +)I exp ( - e z ' 5 / 2 k ~ )  

and the balance between these integrals and the outer solution determines P. At 
high potentials this balance requires that ez'n$&( +) + kTn: ( +) is small. But, as 
in the previous case, n f  (+) is small at high frequencies. Thus +'( +) is small and 
P--1. 
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RELAXATION OF THE SURFACE CHARGE DENSITY 

In this section we consider an intermediate boundary condition in which perturba- 
tions in the surface densities N ;  of the i species ( i  = 1 ,  . . . , I, and, additionally, 
i = O  for charges moving within the particle) are induced by perturbations in the 
surface potential &( r = a )  according to a first-order kinetic equation 

PN; + N ;  + X i 4 1 ( r  = a )  = 0 

where T~ is the reaction time constant and x i  is the surface capacity for the 
perturbations in surface charge. With the assumed time dependence of the perturba- 
tions, the kinetic equation gives 

Before employing any of the earlier results for the structure of the double layer, 
we must observe that they are based on the distribution within the double layer 

n: =exp (-ezZ4,1kT){n:( + ) - n ~ ( e z ' / k T ) [ ~ , - ~ , ( + ) ] ) .  

This distribution follows from the leading order approximation of zero net radial flux 

an: 
ar 

-o'ez'(n: a+, /ar+ n& a & / a r )  - o ' k T - - - = =  0. 

When the surface densities of the ions change, the radial fluxes will not, however, 
vanish. Estimating the surface ion density Nf as O [ ~ : K ; '  exp ( - e t z l / 2 k T ) ] ,  we 
see that the surface ion flux iuN: is smaller than o'kTan:/ar= 
O[w'kTn:~~  exp (-ez'c/2kT)] by O ( U K ' ) - ~  at moderate frequencies c = 
O(okT/a2) .  Thus the non-zero surface flux boundary condition does not change 
the leading order radial flux balance and the results deduced from it. 

Modifying the earlier results for the thin double layer at high surface potential, 
we apply the electrical boundary condition on the surface charge 

to find 

B2=cos 8 exp (ict)z'KT1 exp (ez'c/2kT) { $ (l:x)(eEa:;p)) - 

and hence 

ia )]. kT 
- E a ( l + P ) + - z  e 2 Ck (h&o'kT-iu cos 8 exp (ict) 

l+x 
& ( r  = a )  = 

In these expressions we have introduced 

1 ez ix 
x =C x i  with x i  = . exp (ez'(/2kT). 

0 E , K ~  ( 1  +ieT1) 
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We can now apply the integrated flux balance, including the surface fluxes, to 
obtain, for i # 0 or I 
-iaNi = oiZinL 

and for the I th  species 

Solving the case of an electrolyte with just two types of charged ions, we find 

This expression reduces to the previous result for constant surface potential (with 
perturbations to the surface charge not provided by ions from the electrolyte) when 
xl, x2 ,  1 << xo, and to the previous result for constant surface charge when xo, x1 << 1. 
We note that the results for constant surface potential with the perturbations in the 
surface charge provided by the counter-ions, i.e. xo, xl<< 1 << x2 ,  can not be 
distinguished from the results for constant surface charge, i.e. xo, xl, x2<< 1, within 
the asymptotics for thin double layers at high potentials. 

We might similarly relate surface dissociation or adsorption to the number 
density of ions in the solution adjacent to the surface. O'Brienll studied this at low 
surface potentials and found no effect on the dielectric response of the suspension. 
At higher potentials we observe that the response is, in general, modified. 

DIELECTRIC RESPONSE 

DeLacey and White" show that the mean current (i) in a suspension is related 
to the mean electric field ( E )  by 

(i) = (C o inLe2zi2 + im, ( 1 - 3cP)(E) 

where c is the (small) volume density of spheres in the suspension. The out-of-phase 
contribution to the current is interpreted as a permittivity E * ,  and thus 

1 ) 
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where P=Preal+iPimag and (3 is a mean mobility W C &zi2 = C  oin2zi2.  The large 
term in (uK)' is due to the high conductivity of the suspension. The presence of 
the particles, and consequent complex P, changes the phase of the current. This 
shows up as a change in the permittivity, which can be large at low frequencies even 
if c is small. 

The experimental results of Ballario et aL2 are generally similar to those of 
Schwan et aL,l but are harder to discuss in detail as UK was at most 4. Chew and 
Sen7 considered one particular experiment of Schwan et al. and it is convenient to 
use this as an illustrative example. Schwan studied a suspension of polystyrene 
spheres in a solution of KCl and measured a low-frequency relative permittivity of 
2.4X lo3. The sphere had radius 0.94x m, and we can estimate UK =60 from 
the conductivity of the suspension. We take y = 1 and p = 1.5. Note that the volume 
fraction c = 0.3 is far from dilute. 

At constant surface charge density 

as Z-+ 0. 
9p2y exp (-ez'l/ kT)  

4(1+y)2(1+a/3)2 
100 mV corresponds to e l /  kT = 4, exp (eg/ kT) = 55 and at UK = 50 we predict 
~ * / & ~ = 3 . 3 x l O ~ c ,  which is a factor 2 smaller than the exact results of DeLacey 
and White" (their fig. 2) .  Electroviscous ca l c~ la t ions~~  have similarly shown that 
thin double-layer analyses are accurate only at very high values of UK.  E* increases 
with U K ,  as found by DeLacey and White. However, E* approaches a limit indepen- 
dent of UK when a becomes small. We require e l /  kT = 3 to agree with Schwan's 
experiment. The surface charge density 

4enm sinh ( e ( /  2 kT)  
for a 1 - 1  electrolyte 

K 

rv- X C m-2 for Schwan's experiment 
kT 

is therefore much larger than the value 4 X lop3 C m-* determined by Ballario et al. 
At constant potential 

9 c ( a ~ ) ~  exp (-ez1(/2kT) 
&*/  E, - 8 U K I  ( (1;;;;:;;)2) as x-+o* 

This is much larger than for the case of constant surface charge and can be large 
even in exp ( - e z z l /2kT)  is O(1). Our theory is not valid for such low potentials, 
though the case of a symmetric electrolyte could of course be treated analytically 
for arbitrary 6. We now require e l /  kT = 0.8 to agree with Schwan's experiment. 
This value of ( is indeed too small for our final result to be valid, but the surface 
charge density will clearly now be closer to that reported by Ballario. 

Note that E* is proportional to a (when a is small), as found experimentally by 
Schwan. However, we also predict E * K  K. Schwan et al. found a slight decrease in 
E* with K (see their fig. lo), while Ballario et al. found a slight increase. An 
explanation would require knowledge of how f varies with K.  
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