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The spreading of a granular mass: role of grain properties
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Abstract We present 2D numerical simulations of the
collapse and spreading of granular columns for which
the final geometry of the deposit and the runout dis-
tance are studied. Both the effects of the initial geom-
etry and the effects of the details of the interactions
between the grains are investigated. The scaling of the
runout distance shows both a linear and a power-law
dependence on the aspect ratio of the initial column,
in agreement with previous findings (Balmforth and
Kerswell in J. Fluid Mech. 538, 399–428, 2004; Lajeu-
nesse et al. in Phys. Fluids 17, 103302, 2005; Lube et al.
in Phys. Rev. E 72, 041301, 2005; Staron and Hinch
in J. Fluid Mech. 545, 1–27, 2005), and independently
of the value of the inter-grain friction. The latter con-
trols the prefactor of the scaling, the effective frictional
properties of the flow, and its internal structure. The non-
trivial mass distribution induced by the initial geom-
etry of the column strongly influences the dissipation
process, and is believed to controlthe power-law
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1 Introduction

Many natural flows involving rocks, gravels and
various debris can be tackled as granular provided the
fluid trapped in the interstice (air, water possibly mixed
with fines) plays no or little role in the overall dynam-
ics [8]. Consequently, granular flows have been the
subject of numerous works, either theoretical, exper-
imental or numerical, with the definition of a proper
rheology as a main objective [19,3,6,16]. The use of
model granular material such as glass beads or calibrated
sand in experiments, or the choice of basic interaction
laws in numerical simulations, have considerably simpli-
fied the problem. In this framework, significant advance
has been achieved, and various models could be suc-
cessfully applied [18,1,7]. However, a comprehensive
understanding of the dynamics of a collection of grains
is still lacking, resulting mainly in the absence of reliable
prediction in a number of flow configurations, including
in first instance natural ones.

In this context, the issue of the flow runout, namely
the final distance covered by a flowing mass of grains, is
of great interest as it directly raises the question of pre-
dicting the destructive potential of natural flows. The
nature of the material involved, the topography as well
as the flow triggering mechanism are expected to play
important roles. However, even highly idealized runout
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experiments have shown a rich phenomenology which
still remain only partially understood [14,10,2,21,22].
The experiment consists of releasing an initially con-
fined column of granular material onto a horizontal
plane and letting it spread freely until the flow comes
to rest. The runout distance, namely the final distance
eventually traveled by the flow, was shown to depend
primarily on the aspect ratio a of the initial column.
Linear and power-law scalings depending on the value
of a are obtained both in 3D and 2D configurations.
A simple energy balance assuming the dissipation of
the initial potential energy by the constant friction of
the flowing mass does not account for the power-law
dependence [21]. On the contrary, assuming a simple
balance between the friction force and the hydrostatic
pressure at the front of the flow, together with sim-
ple dimensional arguments, allows one to recover the
proper scalings [10]. Meanwhile details of the spread-
ing dynamics could be achieved by means of discrete
numerical simulations [21,22]. In particular, the role of
the early stage of the collapse and the subsequent verti-
cal dynamics was shown to be major [21]. As a result, a
modification of the shallow-water equations to include
this vertical dynamics at the inlet of the flow and using
a basic rheology was sufficient to recover partly the cor-
rect behaviour [12]. Closer investigations of the inter-
nal structure of the flow were also performed [11,15].
However, the relation between the initial geometry, the
structure of the flow and the value of the runout remain
unclear.

In this contribution, we are interested in character-
izing the influence of the material properties on the
flow dynamics, and investigate how the details of the
interaction between the grains interfere with the early
dynamics induced by the initial geometry. Therefore, a
similar numerical setup is used as in [21]. The influence
of the value of the inter-grain friction is investigated.
Surprisingly it does not affect the power-law scaling pre-
viously obtained for the runout distance. While the early
dynamics of the collapse, following a free-fall, is only
slightly affected by the inter-grain friction, the effec-
tive dissipation properties of the flow undergoes signifi-
cant changes. Showing how the mass distribution in the
flow affects the dissipation process, we propose the early
free-fall dynamics to be at the origin of the power-law
dependence. When investigating the internal structure
of the flow, we show important differences induced by
the inter-grain friction, in particular the formation of a
static deposit during the spreading. The fact that differ-
ences in the interactions between the grains and in the
details of the structure of the flow do not change the
nature of the scalings satisfied by the runout is further
discussed in the conclusion.

2 The simulations

2.1 The contact dynamics algorithm

The simulations were performed using the contact
dynamics algorithm applied in two dimensions [17,9].
This algorithm assumes perfectly rigid grains interact-
ing at contact by mean of a simple Coulomb friction law
involving the coefficient of inter-grain friction µ. More-
over a Newton coefficient of restitution e controls energy
exchanges during binary collisions. Beyond the fact that
contact dynamics treats them as strictly non-smooth,
these contact laws are essentially similar to those more
commonly used in discrete simulations [22,4]. An impor-
tant difference lies in the fact that contact dynamics
tackles perfectly rigid grains, so that no soft contacts
involving linear deformation and viscous dissipation are
introduced. The behaviour of each grain is dictated by
the equations of the dynamics and the interactions with
the neighboring grains. The two coefficients µ and e are
the only parameters introduced in the simulations. In
the absence of any effect induced by the size, the shape
and angularity of the grains (which are not tackled in this
contribution), the value of both µ and e set the ability
of the granular material to dissipate its energy.

2.2 The simulations set-up

We consider circular disks of mean diameter D and
showing a slight uniform size-dispersity such that
(Dmax − Dmin)/D = 0.4. Columns of grains are built
up by mean of random deposition in the gravity field
between two vertical walls; R0 designates their initial
radius and H0 their initial height, and a = H0/R0 is the
aspect ratio. We have simulated six series of columns
with R0/D = 10, 15, 20, 30, 40 and 45, and with H0/D
varying between 20 and 240. The number of grains used
in each column varies between 1, 000 and 8, 000, and the
initial aspect ratio a varies between 0.2 and 20. At time
t = 0, the column is allowed to collapse onto a hori-
zontal plane on which grains of diameter D are glued
to introduce roughness. The grains glued have the same
properties as the grains in the columns, and induce con-
tacts with the same value of µ and e as anywhere else
in the flow. As a result of the collapse the granular mass
spreads sideways and eventually comes to a rest as a
heap of various shapes and runouts. In the following,
the runout, namely the final distance run by the flow,
is denoted R∞. An illustration of the collapse process
is displayed in Fig. 1 where layers of grains are dyed to
show the deformations during the process.

The simulation setup is thus essentially the same as
in [21], with the important addition of grains glued to
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Fig. 1 Collapse of a column of initial aspect ratio a = 11.7 at successive instants of the spreading t/T∞ = 0, 0.15, 0.24, 0.41, 0.56 and 1.,
where T∞ is the total duration of the spreading, and for a restitution e = 0.5 and a inter-grain friction µ = 1

the bottom, whose role is to change the dissipation at
the base of the flow. Moreover, the systems presented
hereafter explore a wider range of values for R0/D and
H0/D (including those investigated in [21]).

In the following, the effect of the value of the inter-
grain friction µ and of the coefficient of restitution e
are investigated. However, the initial columns were all
generated with the same value of both µ and e inde-
pendently of the values taken by these two parameters
during the flow. Hence, the initial columns used to study
the influence of either e or µ are strictly similar, with a
compacity around 0.82.

The results detailed hereafter were obtained from the
analysis of 95 independent simulations.

3 Varying inter-grain friction and/or restitution?

Increasing the value of the inter-grain friction µ in-
creases the amount of energy dissipated whenever two
grains slip at contact. Moreover, it makes slipping mo-
tion more difficult to occur, and thus frustrates the mo-
tion of the whole collection of grains. Equivalently, low
inter-grain friction leads to a lower rate of energy dissi-
pation and thus to longer spreading. In the same way, a
low restitution e will efficiently dissipate the energy dur-
ing collisions, thus rapidly stopping the flow, while high
restitution will allow grains to bounce further and fur-
ther. The way the parameters µ and e affect the columns
behaviour can be observed on Fig. 2a, b where an exam-
ple of the sensitivity of the shape of the final deposit is
displayed for different values of µ and e respectively.
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Fig. 2 Shape of the final deposit resulting from the collapse of
a column of initial aspect ratio a = 0.9 a for a constant restitu-
tion between the grains e = 0.5 and for different values of the
inter-grain friction µ = 0.05, 0.1, 0.5, 1 and 2 and b for a constant
inter-grain friction µ = 1 and for different values of the restitution
between the grains e = 0, 0.5, 0.9, and 1
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For the sake of simplicity, we have considered a column
with a relatively small initial aspect ratio a = 0.9 in order
to avoid the non-trivial effects induced by the vertical
dynamics which occurs for high aspect ratios.

From Fig. 2a, we observe that for large values of µ

(i.e. between 0.5 and 2), the shape of the deposit re-
mains nearly the same, namely the effective dissipation
seems to saturate. On the contrary, for small to very
small values of µ, the spreading of the mass consider-
ably increases, resulting in larger runout and smaller
final height. However the triangular shape of the pile is
mainly conserved.

From Fig. 2b, we see that only very high values of the
restitution, namely e → 1, change the overall dynamics
of the spreading and lead to a larger runout. In this case,
the shape of the final deposit changes from a triangu-
lar heap to a more rounded one. This is due to the fact
that high restitution changes the dynamics of the verti-
cal collapse as much as the dynamics of the horizontal
spreading, inducing a high agitation at the base of the
column. In addition, bouncing grains persist at the front
of the flow. Snapshots of these bouncing grains can be
seen in Fig. 3 during the spreading for restitution e = 0,
0.8 and 1.

Note that generalizing these results to large aspect
ratios is not straightforward due to the emergence and
increasing role of the vertical dynamics. This is particu-
larly true for the observations related to the coefficient
of restitution e, which significantly changes the behav-
iour of the grains at the base of the columns. As for µ,
its value seems to affect the vertical dynamics only in a
marginal way, so that we are confident the observations

presented for a = 0.9 should be valid for larger values of
a. The influence of the value of a is precisely the subject
of the forthcoming sections.

Since introducing high restitution e deeply affects the
dynamics of the vertical collapse itself, investigating its
influence on the horizontal spreading and the runout
is difficult. Moreover, the cloud of bouncing grains in-
duced by high e is a source of great uncertainty in the
determination of the characteristics of the front of the
flow (position, velocity...). Finally, the situation e → 1
is rather unrealistic and does not apply to most gran-
ular flows, natural or experimental. Hence, in the fol-
lowing, we will not investigate the influence of e, and
we set its value to e = 0.5 in all the simulations pre-
sented hereafter. On the other hand, we have seen that
very small values of µ were necessary to affect signifi-
cantly the spreading. In the coming sections, we will
thus be interested in comparing the behaviour of two
sets of simulations performed with a large value µ = 1,
and a very small value µ = 0.01. Doing so, we expect
to maximize the effects induced by inter-grain friction.
However, intermediate values of µ will also be consid-
ered for evaluating the role of inter-grain friction on the
effective dissipation properties.

4 The runout

4.1 The scaling

Investigating aspect ratios a ranging between 0.2 and
20, and considering the two following values of the

Fig. 3 Snapshots of the front
of the flow resulting from the
collapse of a column with
a = 0.9 and µ = 1, and e = 0
(top picture), 0.8 (middle
picture) and 1. (bottom
picture) taken at the same
instant t/T0 � 1, where
T0 = (2H0/g)1/2. The grains
glued to the bottom are not
represented
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Fig. 4 Normalised runout distance (R∞−R0)/R0 as a function of
the aspect ratio a for two values of the inter-grain friction µ = 0.01
and µ = 1

inter-grain friction µ = 0.01 and µ = 1, we are able
to plot the normalised runout (R∞ − R0)/R0 as a func-
tion of the aspect ratio a in Figure 4. We observe a
very similar behaviour in the two cases, showing first
a linear dependence followed by a power-law depen-
dence, with an exponent α nearly constant. Figure 4
gives:

R∞ − R0

R0
�

{
λ1(µ) a, a ≤ a0(µ)

λ2(µ) aα(µ), a ≥ a0(µ),
(1)

with λ1(0.01) = 6.95 and λ1(1) = 2.36, and λ2(0.01) =
8.58 and λ2(1) = 2.8. The error bars (not represented)
are not larger than the size of the symbols used. The
exponent α is equal to 0.69 ± 0.015 and 0.70 ± 0.01 for
µ = 0.01 and µ = 1. respectively, and can thus be con-
sidered independent of µ. The value of the aspect ra-
tio a0 characterizing the transition between linear and
power-law dependence seems also to be independent
of µ; from Fig. 4, a0 � 2.5. This behaviour is in agree-
ment with previous experimental and numerical works
[13,10,14,11,2,21].

The inter-grain friction changes the dissipation rate,
as observed in [2]; the case µ = 0.01 induces a runout
nearly three times larger than the case µ = 1. However
this factor is small compared to the factor 100 between
the two values of µ, which shows that dissipation dur-
ing the collapse and the flow is still very efficient due to
collisions between the grains.

The fact that inter-grain friction does not change the
dependence of the runout on a even for very small values
of µ suggests that the initial condition (the geometry of
the initial column), dominates the spreading dynamics
rather than the details of the interactions between the
grains.
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Fig. 5 Normalised free-fall time square (tf /t0)2 as a function of
the aspect ratio a for two values of the inter-grain friction µ = 0.01
and µ = 1

4.2 The free-fall dynamics

The role of the initial geometry on the spreading dynam-
ics is apparent when analyzing the dynamics of the ver-
tical collapse [21]. When tracking the position of the
top of the column in the course of time, we show that it
undergoes a free fall over a time interval tf during which
it remains undeformed. For each collapse we measure tf
with an accuracy of � D/(2gH0)

1/2, namely of the order
of 10−3s. Figure 5 displays the plot of (tf /t0)2, where
t0 = (2R0/g)1/2, as a function of the aspect ratio a of
the columns, and for the two values of the inter-grain
friction µ = 0.01 and µ = 1. For small aspect ratios tf
is zero. For larger values of a, tf becomes non-zero and
we observe a linear dependence t2f ∝ t20a, which allows
us to write:

tf �

⎧⎪⎨
⎪⎩

√
2
g (H0 − 2.7R0), µ = 0.01√
2
g (H0 − 4R0), µ = 1.

(2)

These relations imply that the free-fall can occur only
when the aspect ratio is over a certain value, here 2.7
or 4. Accordingly, we expect a0 = 2.7 for µ = 0.01 and
a0 = 4 for µ = 1, where a0 is the value of the aspect
ratio characterizing the transition from linear to power-
law dependence in the scalings (1), although these values
are not obvious on Fig. 4 (certainly a much greater num-
ber of simulation would be necessary to characterize
the transition without ambiguity). These predictions are
slightly different from previous simulations performed
on a smooth flat bottom [21], indicating an important
effect of the roughness of the surface on the early stage
of the collapse.
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The relation (2) suggests that the transition between
the power-law and the linear dependence given by the
runout scalings (1) should result from a transition be-
tween a behaviour dominated by free-fall, and a behav-
iour where the spreading simply results from the failure
of the edges of the column. In this last case, Coulombic
friction would dominate the collapse dynamics: accord-
ingly a0 should depend on the inter-grain friction µ. For
large aspect ratio however (namely a >> a0), the col-
lapse dynamics should be mainly independent of µ.

The total duration of the spreading T∞ shows a lin-
ear dependence on T0 = (2H0/g)1/2 independent of the
value of the aspect ratio (Fig. 6):

T∞ �
{

4.80T0, µ = 0.01
2.30T0, µ = 1.

(3)

In other words, the duration of the flow is related to the
initial height of the column H0 in the case of a collapse
dominated by a Coulombic-like failure as well as in the
case of a collapse dominated by a free-fall dynamics.

4.3 The effective friction: small aspect ratios

In the case of small aspect ratios, the columns undergo
no free fall. The spreading mainly results from the failure
of the edges, while the top of the column remains essen-
tially undisturbed in the central areas [10,21]. Hence
the amount of energy dissipated during the spreading
δE can be easily recovered using the simple shape of the
final deposit and volume conservation (see Fig. 7). The
difference of potential energy between the initial and
the final states gives

δE = 1
6

gρ(R∞ − R0)H2
0 , (4)
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Fig. 6 Total duration of the spreading T∞ as a function of the
characteristic time T0 for two values of the inter-grain friction
µ = 0.01 and µ = 1, and for all values of a

R0 R∞

H0

Fig. 7 Scheme of the collapse of a column with a small aspect
ratio. The amount of energy δE lost in the process can be evalu-
ated from the runout distance R∞ − R0

where ρ is the surfacic density of the packing. We
suppose this energy to be dissipated by the work of fric-
tion forces Wµ over the total distance run by the center
of mass G of the spreading material. Thus we consider
the flow of the mass set in motion 1

4ρ(R∞ − R0)H0 over
two thirds of the runout distance 2(R∞ − R0)/3 (consid-
ering the triangular shape of the final deposit and the
initial and final positions of the center of mass). More-
over we introduce the effective coefficient of friction
µe characterizing the mean dissipation in the flow. The
work of friction forces is thus

Wµ = 1
6
µegρ(R∞ − R0)

2H0. (5)

Equating δE and Wµ gives µe(R∞ −R0) = H0. The scal-
ing given in (1) leads directly to the relation µe = λ−1

1 .
This would give µe = 0.14 for µ = 0.01, and µe = 0.42
for µ = 1.

To check these predictions, we consider a set of sim-
ulations with aspect ratios a = 0.21, 0.37, 0.55, 0.73 and
0.9, and different values of the inter-grain friction µ =
0.01, 0.05, 0.1, 0.5, 1 and 2. For each value of the aspect
ratio, we compute the amount of energy δE actually
dissipated during the spreading, and compare it with
W = ∑

Np
gmprp, where Np is the total number of grains,

mp is their mass, and rp is the total horizontal distance
run by each of them. Considering the collapse of the
column with the five values of the aspect ratio listed
above, we check that δE and W are proportional for
any value of µ; the coefficient of proportionality gives a
measure of the effective coefficient of friction µe. This
coefficient is essentially independent of the value of the
aspect ratio a, so that the error bars on the evaluation
of µe are very small. We are thus able to plot the value
of µe as a function of the inter-grain friction µ (Fig. 8).
The results are in agreement with the values predicted
from the geometry of the final deposit. The behavior of
µe can be nicely fitted by a power-law dependence on µ

for small values of µ: µe = 0.425µ0.20. This power-law
dependence reflects an important “lubrication” of the
granular mass in the sense that its mobility is extremely
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Fig. 8 Effective coefficient of friction µe (full circles) as a func-
tion of the inter-grain friction µ, evaluated from columns collapse
with a = 0.21, 0.37, 0.55, 0.73 and 0.90. The dashed line shows a
power-law fit, while the dotted line shows the unity line

enhanced by small reduction of the inter-grain friction.
For large values of µ however, we observe a saturation,
and the effective friction seems no longer to depend
on the details of the inter-grain friction. Comparing the
relation between µe and µ with the unity line, we observe
that macroscopic friction is strongly reduced compared
to the microscopic one for µ ≥ 0.33. Of course this
behaviour is expected to be dependent on the shape of
the grains, not investigated in the present work.

In the following, we will no longer consider small
aspect ratios for which the scaling can be explained by a
simple Coulomb-failure-like behavior. On the contrary,
we will focus on large aspect ratio for which the effects
of free fall are non-trivial.

5 Propagation of the flow: large aspect ratios

5.1 Velocity of the front

An example of the evolution of the normalised position
of the front of the flow (r − R0)/(R∞ − R0) as a function
of normalised time t/T∞ is displayed in Fig. 9a during
the collapse of a column with a = 11.7, and for the two
values of the inter-grains friction µ = 0.01 and µ = 1.
Figure 9b shows for the corresponding propagation the
time evolution of the velocity of the front v, norma-
lised by the characteristic velocity (2gH0)

1/2. In both
cases we first observe a period of acceleration followed
by a period of deceleration, and no constant velocity
propagation actually occurs. The flow never reaches a
stationary regime where friction would balance the driv-
ing forces; and although a nearly stationary propagation
could be reasonably approximated in the case µ = 1, it
remains short compared with the flow duration.
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Fig. 9 a Position r −R0 of the front of the flow normalised by the
final runout R∞ − R0 and b velocity of the front v normalised by
the typical velocity (2gH0)

1/2 as a function of the time normalised
by the spreading duration T∞ for the two values of the inter-grain
friction µ = 0.01 and µ = 1 and for a = 11.7
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Fig. 10 Maximum velocity va reached by the front of the flow
for aspect ratios a > 2.5, and for the two values of the inter-grain
friction µ = 0.01 and µ = 1

We denote va the maximum value reached by the
front velocity v; va shows the following dependence
(Fig. 10):

va/(gR0)
1/2 �

{
1.84a1/4, µ = 0.01

1.14a1/4, µ = 1.
(6)

We propose no explanation of this dependence. Using
the velocity va as an approximation of the velocity of
the front during the total duration of the spreading T∞,
we can make a prediction of the runout: (R∞ − R0) ∝
vaT∞ ∝ vaT0, which gives directly (R∞ − R0)/R0 ∝
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a3/4. The exponent 3/4 = 0.75 is slightly larger than the
exponent actually observed in the scalings α � 0.70
(Fig. 4). This difference might be due to the fact that
assuming the front velocity to behave like va, i.e. assum-
ing the acceleration phase to control the runout, does
not accurately describe the front propagation. Note that
this result does not match previous measurements show-
ing v ∝ (gR0)

1/2 [10,21] obtained by the analysis of the
shape of the front trajectory r(t), likely less accurate.

The relative duration of the acceleration and decel-
eration periods show a systematic dependence on the
inter-grain friction µ. As can be seen from Fig. 9b, the
deceleration phase is longer for weak inter-grain
friction.

5.2 The mass distribution

The sideways spreading of the grains is initiated by the
vertical acceleration of the grains following a free-fall
dynamics. Accordingly the flow is fed by an increasing
flux of grains of increasing energy. The consequence of
this initial condition is a non-trivial mass and energy
distribution in the flow while it is propagating.

To compare the mass distribution in the flow in the
course of time, we consider vertical sections of fixed
width dx = 5D. The flow is thus divided between R0
and r(t) into nk = int((r(t)−R0)/dx) sections situated at
xk = kdx of the base of the column. The mass of grains
m(xk) in each of these sections is computed in the course
of time. This gives the mass distribution in the flow at

each instant t of the spreading. To compare the mass
distribution in the course of time, m(xk) is normalised
by the mass corresponding to a uniform distribution at
instant t. We denote mk this normalised mass at the
position xk:

mk = m(xk) × nk∑
l m(xl)

. (7)

In Fig. 11, mk is plotted as the function of the norma-
lised position in the flow xk/(r(t)−R0) every 1/80 s for a
column with an aspect ratio a = 11.7 and an inter-grain
friction µ = 0.01. We observe the formation of a bump
corresponding to the propagation of a mass wave in the
flow, which eventually vanishes during the deceleration
phase. For comparison, Fig. 12 display the normalised
mass distribution in the flow resulting from the collapse
of a column with a = 0.73 and for the same value of
µ; no bump is observed and the flow keeps a triangular
shape all through the spreading.

One effect of this bump is to propagate the momen-
tum released by the column free-fall to the front of the
flow. This phenomenon is illustrated in Fig. 13 where the
profile of the momentum p normalised by m0(2gH0)

1/2

is plotted as a function of the normalised position in the
flow xk/(r(t) − R0) at different instant of the spreading,
for a column of aspect ratio a = 11.7 and an inter-grain
friction µ = 0.01. We see the maximum of momentum
propagating outwards from the base of the column to the
front of the flow. We denote rm its position. In Fig. 14,
(rm − R0)/R0 is compared with the normalised position

Fig. 11 Normalized mass
distribution during the
collapse and the spreading of
a column with aspect ratio
a = 11.7 plotted every 0.0125 s
(left-hand side graph) and at
three different moments of
the spreading (right-hand side
graph). The inter-grains
friction is µ = 0.01
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Fig. 12 Normalized mass
distribution during the
collapse and the spreading of
a column with aspect ratio
a = 0.75 plotted every 0.0125 s
(left-hand side graph) and at
three different moments of
the spreading (right-hand side
graph). The inter-grains
friction is µ = 0.01
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Fig. 13 Successive profiles of the momentum in the course of
the spreading plotted every 0.0125s (top) and at three different
moments of the spreading (bottom) as a function of the norma-
lised position in the flow for a = 11.7 and µ = 0.01

of the flow front (r − R0)/R0 in the course of time for
two values of the aspect ratio a = 11.7 and a = 0.73.
In the case a = 11.7, the momentum wave leaves the
base of the column once the vertical collapse is over and
rapidly propagates towards the front of the flow. On the
contrary, for the small aspect ratios a = 0.73, the max-
imum of momentum remains located in the vicinity of
the base of the column.
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Fig. 14 Normalised position (r − R0)/R0 of the front of the flow
(dashed line) and normalised position (rm−R0)/R0 of the momen-
tum wave in the course of the normalised time t/T0, for an aspect
ratio a = 11.7 (top graph) and a = 2.2 (bottom graph)

5.3 The effective friction: large aspect ratios

The mass distribution during the spreading necessarily
plays a role in the dissipation process. As a result, con-
sidering the runout distance R∞ or the position of the
center of mass of the flow RG to estimate the work of the
friction forces is not equivalent for large aspect ratios.
Evidence of this is given when plotting the normalised
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Fig. 15 Final normalised position of the center of mass
(RG − R0)/R0 (square symbols) and normalised runout distance
(R∞ − R0)/R0 (circle symbols) for inter-grain friction µ = 0.01
and µ = 1, and for aspect ratios such that a > 2.5

distance (RG − R0)/R0 run by the center of mass during
the spreading as a function of the aspect ratio a (Fig. 15):
we no longer observe the power-law dependence given
in (1), but we observe linear scalings showing:

(RG − R0)/R0 �
{

0.62a1.0 µ = 0.01

0.24a1.0, µ = 1.
(8)

The proportionality (RG − R0) = λH0 given by the
scaling (8) allows us to define an effective coefficient
of friction µe as done previously for small aspect ratios
(Sect. 4.3). We suppose that the initial potential energy
δE = 1

2 m0gH0 is completely dissipated. The work of
the friction force is given by Wµ = µem0g(RG − R0).
Equating δE and Wµ leads to µe = (2λ)−1, where λ is
the prefactor in the scaling (8).

This prediction gives µe = 0.8 for µ = 0.01 and
µe = 2.08 for µ = 1, namely much higher values than
those found in the case of collapses with small aspect
ratios (Sect. 4.3). The reason is that supposing the initial
potential energy to be entirely injected in the spread-
ing dynamics is wrong; indeed, the multiple collisions
occurring at the base of the column for large aspect ra-
tios efficiently dissipate a great part of the energy, so
that only a fraction is available for the sideways flow.
In other words, we should write δE = k

2 m0gH0, with
k < 1. If we assume that the effective friction properties
of the sideways flow are the same for small and large as-
pect ratios, namely µe(0.01) = 0.14 and µe(1) = 0.42
following Sect. 4.3, we find that k = 0.20 and k =
0.17 respectively. Both values are close to what was ob-
tained for similar numerical experiments [21]. Interest-
ingly, the value of k seems to be only slightly dependent
on the value of the inter-grain friction. At this point,

the value of the restitution e is probably the relevant
parameter.

6 Details of the velocity field

The value of the inter-grain friction µ is expected to
affect the internal structure of the flow. To compare the
two cases µ = 0.01 and µ = 1, we consider a verti-
cal section of width dx = 10D situated at a distance
(R∞ − R0)/3 from the base of the column, and in which
the velocity profile is measured. We have checked that
this arbitrary choice for the location of the section did
not qualitatively changed the results, beside the fact that
measurements become less accurate when considering
sections closer to the front due to the increasing shal-
lowness of the flow and its shorter duration.

Figure 16a shows an example of the time evolution of
the velocity profile for a column of aspect ratio a = 11.7.
In the case µ = 1, the profile can first be approxi-
mated by a plug flow, then turns to a linear profile
with a zero velocity at the bottom, and eventually re-
mains linear while a static deposit of increasing height
hd forms. The time evolution of the height of the deposit
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Fig. 16 a Normalised velocity profile of the flow vh/(2gH0)
1/2 as

a function of the normalised depth h/D for time intervals of 1
16

s., for µ = 1 (full circle) and µ = 0.01 (empty circle). The sec-
tion where the profile is measured is situated at r = r∞/3, and
the column is such as a = 11.7. The arrow shows the direction of
increasing time. b Normalised thickness hd/D of the static layer
forming at the bottom of the flow displayed in (a) with µ = 1 in the
course of the normalised time. The two symbols corresponds to
two different velocity criteria for tracking hd (see text for details)
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hd is plotted in Fig. 16b. The two different symbols
stand for two different criteria for tracking hd: indeed,
grains at the top of the static layer are not strictly sta-
tic in the sense that they have a mean agitation, and
their identification will depend on the velocity criteria
adopted. The symbols + correspond to a velocity thresh-
old of (gD)1/2, while ∗ symbols correspond to a veloc-
ity threshold (gD)1/2/10. In both cases, we observe the
gradual growth of the static layer until the whole sec-
tion comes to a rest, as already observed by [11]. These
general features of the velocity profile are apparent in
Fig. 17 where the deformation of an initial vertical sec-
tion of grains is shown in the course of the spreading for
µ = 1.

In the case µ = 0.01, the profile is mainly linear with
a decreasing but non-zero velocity at the bottom. By
contrast with the case µ = 1, we are not able to track
the growth of a static deposit due to the very short time
during which it forms. Relative to the duration of the
flow, the formation of the static deposit and the freezing
of the flow are quasi-instantaneous.

The influence of µ is also visible in the evolution of
the shear rate γ = �v/�h, where �v is the variation of
velocity in the section of the flow over the flowing depth

�h = h − hd. For both values of the inter-grain friction
µ, γ varies in the course of time, and no clear stationary
regime is achieved.

In the case µ = 1, we compute γ only from the time
ti on at which velocity profiles tend to be linear (we
can show that ti ∝ T0). The evolution of the normalised
shear rate γ (D/g)1/2 is plotted as a function of the nor-
malised time (t − ti)/T0 in Fig. 18 for different values of
the aspect ratio a. All the plots show a slow decrease
and roughly collapse following a main tendency which
is well approximated by:

γ (D/g)1/2 � −0.14(t − ti)/T0 (+0.13). (9)

The important dispersion occurring for increasing time
reflects the large uncertainties in the evaluation of �h,
due to the evaluation of the height hd of the static layer
building up while the flow is slowing down.

For µ = 0.01 (Fig. 19), γ (D/g)1/2 in no longer mono-
tonic. It first increases, and then decreases up to the time
tf for which the layer becomes static. When plotting the
evolution of γ (D/g)1/2 as a function of the normalised
time (t − tf )/T0, the decreasing part of the plots roughly

Fig. 17 Deformation of a
vertical section of grains in
the course of the spreading
reflecting the velocity profile,
for µ = 1 and a = 11.7. In
particular one can recognize
the formation of a static layer
in the stretching of the
section. Snapshots are taken
at the following successive
times t/T∞ = 0.30, 0.4, 0.55,
0.65 and 1
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Fig. 18 Normalised shear rate γ (D/g)1/2 as a function of the
normalised time (t − ti)/T0, for µ = 1 and a = 20, 16.8, 13.4, 11.7,
10.2, 10.1, 7.4, 6.6, 5.8 and 4.9 corresponding to 3 different values
of the initial radius R0
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Fig. 19 Normalised shear rate γ (D/g)1/2 as a function of the nor-
malised time (t − tf )/T0, for µ = 0.01 and a = 20, 16.8, 13.4, 11.7,
10.2, 10.1, 7.4, 6.6, 5.8 and 4.9 corresponding to 3 different values
of the initial radius R0

collapse following the tendency:

γ (D/g)1/2 = −0.32(t − tf )/T0. (10)

These tendencies of the shear rate suggests that the
evolution of the velocity profile is related to the initial
condition through the emergence of the characteristic
shear rate (g/H0)

1/2 in the dependence given by (9) and
by (10). These observations are in agreement with exper-
imental observations by [15], but contrast with observa-
tions of [11] who worked with smaller aspect ratios for
which the vertical dynamics is less determining.

However, the flow being non-stationary, relating its
characteristics to the initial state is difficult and uncer-
tain. As a consequence, assessing which of the initial
condition or of the properties of the grains is actually
determining the internal structure of the flow is not

straightforward. In any case, the inter-grain friction µ

has a paramount influence and induces significant differ-
ences. It is interesting that these differences do not affect
the general behaviour of the runout in the sense that the
dependence of the aspect ratio given by the scaling (1)
is the same irrespective of the value of µ.

7 Summary and discussion

In this paper we have presented 2D numerical simu-
lations of the collapse and the spreading of a granular
mass in which both the effects of the initial condition
and the effects of the details of the interactions between
the grains were investigated. The experiment was simi-
lar to previous setup used in [21,22,11,14] and consists
of suddenly releasing column of grains onto an horizon-
tal plane and letting it spread freely until it comes to rest
as a deposit of various shape and runout.

We first observed that the coefficient of restitution
e was dramatically changing the behaviour of the sys-
tems for e → 1; in particular, this dramatic change is
expected to become more important for increasing val-
ues of a. On the contrary, for e ≤ 0.8, the influence of the
coefficient of restitution becomes negligible. Consider-
ing these results, we focused our analysis on the influence
of the inter-grain friction µ only, in a wide range of val-
ues, namely from µ = 0.01 to µ = 2. The scaling for the
runout distance showed both a linear and a power-law
dependence on the aspect ratio of the initial column,
in agreement with previous findings [21,22,11,14], and
independently of the value of µ. Analyzing the early
stage of the collapse, we show that free-fall dynamics is
driving the spreading process providing the aspect ratio
is large enough, and is only slightly sensitive to the value
of µ. Its occurrence coincides with the transition from
linear to power-law dependence of the runout. For small
aspect ratio, the spreading results from a Coulomb-like
failure of the edges and imply no free fall of the col-
umn. In this case, the effective friction properties of the
flow can be simply predicted from the shape of the final
deposit. The effective coefficient of friction µe was com-
puted and plotted as a function of the inter-grain friction
µ. For large values of µ, the effective properties satu-
rates and µe no longer varies with µ. On the contrary,
small values of µ induce an important lubrication of the
flow and the rapid drop of the effective friction.

For large aspect ratios, in which we were mainly inter-
ested, the dissipation process is more complex due to
the free-fall dynamics. Indeed the vertical acceleration
of the grains induces a non-trivial mass distribution in
the flow while propagating. This mass distribution plays
a dominant role in the power-law scaling law obeyed by
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the runout. Indeed, when considering the final position
of the center of mass of the deposit instead of the runout
distance, namely when accounting for the mass distribu-
tion, one obtain a linear scaling with a and no longer a
power-law.

Finally, we have shown that the value of the intergrain
friction µ was deeply affecting the internal structure of
the flow. In particular, large inter-grain friction leads to
the gradual growth of a static layer at the base of the
flow, while small inter-grain friction does not allow this
static layer to build up, and the flow freezes in a very
short time.

It should be noted that the collapse experiment is
highly transient and no clear stationary regime was ob-
served. On the contrary, the acceleration and the decel-
eration phases cover nearly the whole duration of the
spreading. This makes the analysis of the structure of
the flow and its relation with other characteristic of the
system uneasy.

Considering this, we were able to show nevertheless
how the initial condition was dominating the behaviour
of the spreading through the mass distribution induced
in the flow. This means that the knowledge of the final
runout is not a sufficient characterization of the deposit:
one also needs to know how mass is distributed to under-
stand the dynamics and the dissipation process. This is
expected to be true in natural contexts as well as in
experiments.

While the inter-grain friction µ does not affect the
early vertical dynamics, nor the power-law dependence,
it controls the effective frictional properties of the flow,
and its internal structure. It is interesting to note that
the details of the structure of the flow do not influence
the final runout dependence, and thus seem to play a
marginal role in the overall behaviour of the spread-
ing. This could explain why simple shallow-water model
with basic rheology but where the free-fall dynamics was
accounted for could reproduce the runout scalings [12].
At this stage, it appears that the collapse experiment
for large aspect ratios mixes two very different dynam-
ics: while the second stage consists of a “conventional”
horizontal granular flows, the first stage implies a large
vertical acceleration. It shows how the initial condition
can be repercuted in the overall behaviour of a granular
system, and suggests that triggering mechanisms play a
crucial role in the case of natural flows. This stresses
the necessity of accounting for vertical acceleration in
continuum models in the perspective of producing real-
istic prediction of the behaviour of granular flows.
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