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Wavy Instability in Liquid-Fluidized Beds
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Experiments on the primary wavy instability in a liquid-fluidized bed are designed to test the
two-phase flow governing equations. The wave is shown to saturate along the bed. The saturated
wave can be well described as a cnoidal wave. The solid-phase viscosity and pressure which are
unknown in the two-phase model are deduced from the shape of the saturated wave. The validity
of the two-phase Newtonian model is then questioned.

1. Introduction

To fluidize a bed of particles, a fluid is pumped
upward at the bottom of the bed through a porous plate.
At low flow rates (below minimum fluidization), the bed
is packed. As the flow is increased, the drag force on
the particles increases until it is sufficient to balance
their buoyant weight. The particles then become free
to move, and the bed is said to be fluidized. When the
flow is increased above minimum fluidization, the bed
expands to accommodate the upward flow.

Uniform and homogeneous fluidized beds are rarely
realized in practice. Fluidized beds present usually a
variety of complex flow regimes above minimum fluidi-
zation. Gas-fluidized beds are very unstable and rapidly
attain a bubbling regime. In this regime, bubbles, which
are regions essentially devoid of particles, rise through
the bed.’=3 Liquid-fluidized beds exhibit voidage insta-
bility waves.*~” The instability remains one-dimensional
only in narrow beds. The measured disturbances were
shown to grow exponentially upward along the bed
height and eventually to lead to a saturated finite
amplitude.*® In wider beds, there is a secondary gravi-
tational overturning instability. A conjecture is that
bubbles originate from the later evolution of this
secondary instability .89

Most of what is known about fluidized beds comes
from experiments. A complete theory for fluidized beds
is not yet fully established. Two-phase modeling has
been used extensively over the past 2 decades with some
success; see, in particular, the pioneering work of
Anderson and Jackson.1%11 The fluidized bed is assumed
to be one-dimensional and infinite, and the conservation
equations for the mass and the momentum are written
for the two phases, the particles and the fluid. To close
these equations, it is then necessary to postulate
expressions for the interphase force and the stress
tensors associated with the fluid and particle phases.
An empirical correlation, the Richardson—Zaki law, can
be used for the drag force in terms of the relative motion
between the phases. This law depends on the particle
volume fraction, ¢. A Newtonian fluid form is usually
adopted for the stress tensors. It is not clear, however,
how to describe the pressure, ps, and the viscosity, us,
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of the solid phase. These parameters may increase with
an increase of the particle volume fraction.

One of the most pressing problems in the fundamental
understanding of fluidized beds is the uncertainties in
the governing equations. The objective of the present
paper is to test the individual terms by using an
experimental investigation of the primary wavy insta-
bility of fluidized beds. This primary wavy instability
is an interesting problem in itself and is also the first
step in the understanding of bubble formation.

2. Convective Nature of the Instability

From a hydrodynamic point of view, a fluidized bed
is an open flow; i.e., fluid particles are not confined in
the fluidization column. Instabilities evolving in such
flows can be classified in two categories. If the instability
is sensitive to external perturbations (noise), it is said
to be convective. Perturbations are then amplified while
convected by the mean flow, and the flow can be
described as a noise amplifier. On the contrary, if the
instability has an intrinsic behavior, it is said to be
absolute. The flow then behaves as an oscillator.1?

Experimentally, the behavior of the fluidized bed can
be determined by investigating the response of the
suspension to a localized and controlled perturbation.
The nature of the wavy instability was examined
experimentally for a liquid-fluidized bed. A fluidized
suspension of glass spheres (with diameter d = 685 +
28 um and density ps = 4.0 & 0.1 g cm~3) in water was
contained in a thin vertical glass tube with a minimum
fluidization velocity of gms = 0.82 + 0.07 cm s (see
Figure 1). The typical Froude number of the present
experiment was 0.06. The suspension was held by a
porous piston which can be moved with a sinusoidal
motion at a given frequency and with an amplitude of
1.5d. This piston-type distributor was used to study the
response of the suspension to a local harmonic forcing.

Above this special distributor, the wave propagation
can be visualized by backlighting the column with a
neon light. A CCD camera captures a one-dimensional
image of the tube, and a digital imaging system is able
to construct spatiotemporal plots from successive 1D
images. Figure 2 shows such plots and demonstrates
the convective nature of the instability. When a sinu-
soidal perturbation (larger than the “natural noise” of
the distributor) is applied, the waves are periodic and
follow the forcing, as can be seen for two different
frequencies in Figure 2. Further details on the spatial
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Figure 1. Schematic of the fluidized bed.
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Figure 2. Spatiotemporal plots: waves forced at 0.5 (a) and 1.5 Hz (b). The mean particle volume fraction is 0.500 &+ 0.001. The inclined
white lines in these plots correspond to low concentration regions of the suspension moving upward with nearly constant velocity. The

sinusoidal motion of the porous piston can also be seen.

stability of the two-phase equations as well as on the
experimental results may be found in refs 13 and 14.

Though not formulated in the absolute/convective
framework, the spatial evolution of the wave was noted
in the early work of Anderson and Jackson.* The power
spectra of the waves were found to be very broad
(without forcing). There was clear evidence, however,
of a dominant low-frequency mode. Its amplitude was
found to increase along the bed and eventually to
saturate.5~7

3. Nonlinear Saturation of the Wave

Because the instability is convective in nature, any
perturbation at the bottom of the bed (natural noise or
controlled perturbation) is amplified up the suspension.
It is then fundamental to investigate the spatial evolu-
tion of each mode independently. To this end, a more
guantitative experiment was designed in which the
particle volume fraction was measured with a light
attenuation technique, using a He—Ne laser beam as a
light source. A synchronized average method was used
to separate the forcing mode from other modes (noise),
using the moving piston as a reference signal.

The amplitudes of the unstable modes were found to
saturate. As can be seen in Figure 3, which is typically
of many further observations, the saturated wave can
be described as a succession of concentration dips and
plateaus. Within experimental errors, the wave seems
to be symmetric about the minimum of concentration.
It can be well fitted by a cnoidal wave (a periodic
solution of the Korteweg—de Vries equation?®):

(1) = Pmax — (¢max - ¢min)cn2[a)(t_t0)|m] (1)

where ¢max and ¢min are maximum and minimum
concentrations, @ is the frequency, and t is time. The
parameter m (~0.99 in the present case) is a hidden
parameter of the cnoidal function cn (a Jacobian elliptic
function®). It is interesting to mention that such a
cnoidal solution has been found in weakly nonlinear
analysis of the two-phase equations.'”

4. Questioning the Two-Phase Model

Using the experimental measurement of the shape of
the saturated wave, it is then possible to estimate the
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Figure 3. Example of a saturated wave (points) fitted by a cnoidal function (dashed line) measured 5 cm above the distributor. The
coefficients of (1) are ¢o = 0.503 £ 0.02, fo = 1.17 £ 0.03 HZz, ¢max = 0.5199, ¢min = 0.44, @ = 11.30 s~1, m = 0.9989, and t, = 1.0968 s.

viscous and pressure terms (us and ps), which are
unknown parameters in the two-phase model. For the
purpose of the present work, we choose to consider the
model of Anderson and Jackson.1%1! The fluidized bed
is assumed to be one-dimensional and infinite, and the
conservation equations for the mass and the momentum
are written for the two phases in the following forms:

¢+aix(¢V)=0 @

u_q1 ¢2’ ®3)
¢(§¥+ g;) &+ﬁ(u—v)—¢(ps—pf)g+
) o2

oG +u ') @

In this formulation, u and v are the fluid and particle
velocities, g is a constant mixture velocity (equivalent
to fluidizing flow rate), and pr and ps are the fluid and
solid densities, respectively. The parameter C is the
added-mass coefficient, which cannot be neglected in
liquid fluidization and depends a priori on the particle
volume fraction ¢. The drag on the solid phase is
represented by the coefficient 3, which can be related
to the useful Richardson—Zzaki law.®

These equations are rewritten in a reference frame
moving with the saturated wave at velocity s, Where
the spatial coordinate is X = X — Csatt. After elimination
of u and v with (2) and (3), a single equation can be
derived from (4) which describes the shape of the
saturated wave:

4 @) o+ (u @)~ 2 f’)) ]+
Fi(@®) + [Fo(6) = (@) = 0 (5)
with

w'(p) = dug/dg, p'y(¢) = dpy/de,

o g(ps - pf)rq - Csat(l - ¢*/¢) .
e e 1] (6)
~ [q sat(qb* - 1)]
F.(#) = psp(1 + C) a- ¢)
(ps fC)( t” ) (7)

The Richardson—Zaki parameters are v;, the terminal
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Figure 4. Solid-phase viscosity plotted against concentration for
three different waves: fo =1 (1), fo = 1.4 (2), and fo = 2.1 Hz (3).
The volume fraction is the same (¢o = 0.5) for these waves. The
viscosity increases with decreasing frequencies.

velocity of a single particle, and n, an exponent depend-
ing on the Reynolds number. The volume fraction ¢* is
theoretically equal to ¢o, the mean particle volume
fraction, but may differ slightly because of experimental
errors in the measurement. The saturated wave velocity
was observed not to vary much with the forcing fre-
quency (Csat = 3.8 £ 0.2 cm s71).

Theoretical studies®” assume some expressions for
the viscosity us(¢) and pressure ps(¢) and then use (5)
to solve for the shape of the steady wave of ¢(X). Here
we do the opposite. From the experimental observations
of the shape of the wave, we solve (5) to find the
unknown viscosity and pressure functions.

For a symmetric wave such as that found experimen-
tally, the pressure term balances the inertial terms and
therefore

Ps = Fy(¢) )

The viscous term balances the gravity and drag terms
[F1(#)]. The solid viscosity can then be found numeri-
cally. Further details can be found in ref 18.

The deduced viscosity increases with increasing vol-
ume fraction and seems to diverge at large volume
fractions as can be seen in Figure 4. The existence of
the three separated curves means that the “viscosity”
depends also upon the frequency of the forcing mode
and of the mean volume fraction of the suspension. This
assertion assumes that the quasi-static Richardson—
Zaki drag law can still be applied, which we believe to
be true because the fluid typically passes a particle in
10 ms, a time much shorter than the period of waves.
This finding suggests that a Newtonian description of
the stress tensor of the solid phase may not be valid.
However, these results are strongly dependent on the
assumed cnoidal form of the wave. Further work is
necessary to confirm and fully understand these results.
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