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Using the method of averaged equations, we examine the difference in temperature 
between the bulk and fixed heated spherical particles under conditions in which q5 the 
volume fraction of the particles and E the Peclet number of the flow past the particles 
are both small. I f  q5 < €2 the particles are effectively isolated, and so their excess 
temperature has an O(e)  correction to the pure conduction estimate. On the other hand 
if q5 $ e2, the bulk heating is of sufficient magnitude to produce a significant temperature 
gradient throughout the fixed bed. This temperature gradient leads to an O(q54) 
correction to the pure conduction estimate of the excess temperature of the particles, 
and the correction depends on the details of the flow even though its magnitude is 
independent of E .  A study of the leading-order terms when q5 and c2 are of the same 
magnitude finds that the two small effects are not simply additive. 

1. Introduction 
The rate of heat or mass transfer from particles in a fixed bed to the surrounding fluid 

plays an important role, and is often the limiting factor, in a variety of physical 
operations such as ion exchange, chromatography and the burning of coal. Consider- 
able effort has therefore been devoted to the problem of determining the transfer rates 
and many empirical correlations - based entirely on experimental data - have been 
proposed which cover a variety of conditions (for past references, see Sherwood, 
Pigford & Wilke 1974 and Gunn 1978). In contrast, the theoretical studies of the 
problem have been few, and have been based exclusively on ‘cell’ models (Rowe 1963; 
Pfeffer & Happel 1964; Pfeffer 1964) whose reliability is uncertain. 

In  the past the development of more rigorous theories was hampered by a dearth of 
appropriate mathematical tools for dealing with such two-phase systems in which one 
phase is randomly dispersed. Recently, however, several techniques have appeared 
which permit a more rigorous approach and which have already yielded some signifi- 
cant results, e.g. when the particles are spheres, expressions for the effective conduc- 
tivity to O(q52) where q5 is the volume fraction of the spheres, the effective viscosity to 
O(q52), the sedimentation velocity to O(q5) and the force on a particle in a fixed bed to 
O(q5Inq5) (see the review of Batchelor 1974 for further details). In this paper we shall 
apply one of these recent methods, specifically the method of averaged equations 
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developed by Hinch (1977)) to obtain a rigorous theoretical solution, admittedly under 
restricted conditions, to the problem of heat transfer in a fixed bed. 

We shall study the temperature distribution in a bed of uniformly heated fixed 
spheres with fluid flowing through the bed, and we shall find how much hotter the 
particles are than the bulk. We shall study the simplest possible case in which the 
Reynolds number and the Peclet number E of the flow past the particles are small, as is 
the volume fraction of the particles $. When E is small and $ is suitably very small, 
Acrivos & Taylor’s (1962) analysis of a slow flow past an isolated particle should be 
appropriate. We shall see in $ 2  that  it does apply to the case $ < c2 < 1. 

I n  the other limiting case of exceedingly slow flows, e2 < $ < 1, one might expect 
that  conduction dominates and that to O($)  only the interaction between pairs of 
heated particles need be considered, so that only some average of the conduction 
solution for two heated spheres, as obtained by Aminzadeh et al. (1 974)) would have to 
be computed. We shall see in $ 2 ,  however, that when q5 $ e2 the bulk heating is of 
sufficient mbgnitude to lead to a significant temperature gradient throughout the 
fixed bed. In  9 3 we shall find that, as a result of this temperature gradient, the details 
of the flow become coupled into the first correction to the isolated particle estimate of 
the excess temperature of the particles, and that this correction is O(@) and not the 
anticipated O($).  Both the O(&) and the following O ( $ )  corrections are evaluated in 
$ 3 for the case when the thermal conductivities of the particles and the fluid are equal. 
The slightly more complicated case of unequal conductivities is examined in 0 4. 

We complete our study in $ 5 with an investigation of the case when $ and c2 are of 
a comparable small magnitude, and shall show that the small O ( E )  correction for 
q5 < e2 < I and the O(@) correction for c2 < $ < 1 are not simply additive. 

2. Governing equations 
As stated in the introduction, we consider a fixed bed of spherical particles having 

a radius a and a volume fraction $ which is assumed small. The Reynolds number of 
the flow through the bed is likewise assumed to be small and hence the velocity u and 
the pressure p satisfy the Stokes equations 

v . u  = 0, -vp+pv2u = 0, (2.1) 

where p is the fluid viscosity. The average velocity, which is equal to the volume flux 
per unit cross-sectional area of the bed, will be denoted by U,. Note that to avoid 
introducing unnecessary complications into many expressions, we use the volume flux 
per unit area of the complete bed and not the volume flux per unit area of the fluid part 
of the bed. 

The average of the force exerted on the fixed particles has been calculated by 
Brinkman (1 947)) Childress ( 1  972) and Howells (1  974)) as 

6npa U,[l + (3/2*) $4 + ?45$ In $ + O($)]. (2.2) 

The O(@) term derives from the fact that  the average of the velocity disturbance due 
to a particle in a fixed bed does not satisfy the Stokes equations (2.1) but rather, as we 
shall see in $ 3.3, satisfies approximately the so-called Brinkman equations, 

v . u  = 0, -vp+pv2u-;p$u-2u = 0. (2.3) 
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The additional body-force term, - $,u$a-2u, represents the force, approximately 
equal to - Gnpau, exerted by the other particles which are present in the fixed bed 
with a numbcr density 3$/4na3. The solution of the Brinkman equations (2.3) for 
uniform flow past a fixed sphere is 

3a [( 1 + KY + K 2 r 2 )  eK(a-7) - (1 + K a  + +&2)] 

9 
K2r 5 

+ #x( U, . x )  - [ ( 3  + 3 ~ r  + ~ ~ t - 2 )  eK(a-?) - ( 3 + 3 ~ a + ~ ~ a ~ ) ] ,  (2.4) 

in which = Thus, as was shown by Brinkman (1947), Childress (1972) and 
Howells (1974), the other particles in a fixed bed give rise to a screening effect, so that, 
at  large distances from one particle, the velocity disturbance falls off more rapidly 
than in an infinite fluid, specifically like U,a~-~r -3  instead of U0ar- l .  This screening 
is significant a t  large distances r 2 K - ~ ,  i.e. r 2 a#-*. 

The temperature field in the fixed bed of heated particles is governed by the steady 
balance between a heat flux F and heat sources Q 

Inside the particles we take Q = Qo a constant and in the fluid Q = 0. Inside the 
particles the heat transport is purely conductive with a conductivity ks, i.e. 

while in the fluid, heat is conducted with a conductivity kf and also is advected by 
the fluid with a heat capacity pcz, per unit volume, so that 

in the fluid. 

V . F  = Q .  

F = - k,VT inside the particles, 

F = pc,uT - kf VT 

By extending the definition of u to be zero inside the particles and by defining k 
to be the local value of the conductivity (i.e. k = kf a t  a point in the fluid and k = ks 
a t  a point in the particle), we may combine the above equations to obtain a single 
equation valid everywhere for the temperature field 

V . (pc,  uT) = V . (kVT) + &. (2 .5 )  
We shall find the average of the temperature field in the fixed bed using averages 

over the ensemble of realizations of the fixed bed, each realization having different 
positions of the particles, but, the same statistics of their relative positions. Such an 
ensemble average will be denoted by ( T ) , ( x )  and will be called the bulk average. 
We shall also take conditional averages over those members of the ensemble which 
have one particle with its centre a t  a fixed position x l .  This conditional average will be 
denoted by ( T ) ,  (xlx,) .  Similarly, we shall take conditional averages with two particles 
fixed a t  x1 and x2, denoting this by ( T ) 2 ( x / x l , x 2 ) .  Where the arguments of the 
averaged fields are clear we shall sometimes leave them out. The information about 
the relative position ofthe particles which we need in our calculation is the probability 
distribution of the separation between pairs of particles. We take the simplest case of 
a uniform probability 3$/4.rra3 for separations exceeding 2a and zero for separations 
less than 2a. 

Our problem is thus to solve (2.1) for the velocity field u, substitute this into the 
temperature equation (2.5) and thence find in average how much hotter the particles 
are than the bulk, i.e. we wish to eva1uat.e 
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where, as we shall see below, the temperature difference A!?' will actually be inde- 
pendent of position in our case. We shall proceed by the method of averaged equat'ions 
(see, for example, Hinch 1977), i.e. we shall derive an equation governing ( T ) ,  and 
solve it, as opposed to finding first the full temperature field T and then taking an 
average of that. 

The desired quantity AT depends on three dimensionless numbers: the volume 
fraction of particles $, the Peclet number E = pcpUoa/kf and the ratio of the con- 
ductivities a = k , /k f .  We shall assume $ and e to be small and allow a to take on 
arbitrary values. 

For an isolated heated sphere a t  t'he origin surrounded by stationary fluid, the 
temperature disturbance created by the particle is 

so that 
&,a2 501 + 1 
kf 15a 

AT = -- when q5 = E = 0. 

The effect of a slow flow past an isolated particle was studied by Acrivos & Taylor 
(1962), who found it necessary to consider the interaction of conduction on a length 
scale of a and advection on a length scale of kf/pcpUo.  For the case of an isolated 
(Q, = 0 )  and isothermal particle (a = 03) they found that 

i.e. as one might expect, the flow past the particle reduces its temperature. When the 
particles have a finite conductivity the leading-order term changes, with (5a + 1)/5a 
replacing the initial 1 of the bracket in expression ( 2 . 7 ) ,  but the O ( E )  and O(e2 Ins) terms 
remain unchanged. 

There is, however, a fundamental difference between an isolated particle and a fixed 
bed of particles a t  a small but non-zero volume fraction, because in a fixed bed there is 
a non-zero bulk heat source Q, q5 which renders the bulk temperature field non-uniform. 
Consequentially, if the fluid does not move (e = 0) ,  this bulk heating forces the bulk 
temperature to grow a t  least quadratically in space, and in this case the boundaries of 
the bed play a dominant role in determining the temperature distribution. On the 
other hand, if the fluid moves a t  a very slow velocity U, while being heated a t  a rate 
Qo$, a temperature gradient Q,$/pc,U, will be established in the direction of U,. 
Over the advection length scale kf /pcp  U, this temperature gradient leads to a tempera- 
ture drop Q, q5kf/(pc, Uo)2, which is negligible compared with the conduction tempera- 
ture drop of Q,a2/k, only if q5 < €2. Hence Acrivos & Taylor's results for an isolated 
particle can be used in a fixed bed if q5 < e2. In  the other limit e2 < q5, which we shall 
explore in $$ 3 and 4 of this paper, the bulk heating and the induced bulk temperature 
gradient cannot be ignored. For simplicity we deal first in $ 3  with the case in which 
the fluid and the particles have equal thermal conductivities (a = I), and then in $4, 
add the modifications for unequal conductivities. 

An alternative way of seeing that there might be a change in behaviour when e2 
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becomes comparable with 4 is to note that the advection length scale in Acrivos & 
Taylor's analysis is ue-1 and that the hydrodynamic screening length scale in a fixed 
bed is a#-*. We explore the transition between the two limiting regions, i.e. we study 
the case of 4 comFarable to e2, a t  the end of this paper in $ 5 .  

Before starting our calculation we non-dimensionalize the problem by scaling 
distances with a, velocities with U,, forces with paU,, stresses with pUo/u, heat sources 
with Q,, temperatures with Qoa2/kf and conductivities with k f .  We also choose the 
x axis in the direction of the mean flow U,. 

3. Slow flow and equal conductivities: e2 < # and a! = 1 

3.1 .  The bulk temperature gradient 
In $ 2  we saw how the dimensional bulk heat Source Q o 4  induces a dimensional bulk 
temperature gradient Qoq5/pc, C&. This suggests an asymptotic expansion for the non- 
dimensional temperature gradient in terms of powers of the Peclet number e starting 
with an e-l term, 

T ( x ,  e )  - S-~T_,(X) + T,(x) + eT,(x) as e+ 0. ( 3 . 1 )  

The temperature fields T, ( x )  will depend on the configuration of the particles and also 
on a! which for this section is being taken as unity. Substituting the expansion ( 3 . 1 )  
into the temperature equation (2.5) yields a sequence of problems 

6-1: 0 = V2T-,, ( 3 . 2 ~ )  

6': U. VT-, = V2T, + Q, 

U. VT, = V2T,. 

( 3 . 2 b )  

( 3 . 2 ~ )  

Thus the lowest approximation T-, is a conduction field which we may take to be 

T-, = Gx everywhere, ( 3 . 3 )  

since a temperature gradient perpendicular to the flow will not interact with the bulk 
flow which carries away the heat generated by the heat sources. The value of the 
unknown temperature gradient G is determined from ( 3 . 2  b )  which contains the heat 
sources. 

We therefore proceed to  examine ( 3 . 2 b ) )  which upon substituting our result ( 3 . 3 )  
for T-, becomes 

An ensemble average of this equation leads to 

V2To = u,G-Q. (3.4) 

because in our non-dimensionalization the bulk average velocity is unity in the x 
direction, while the heat source strength is unity within t.he particles and zero outside. 
Now we must take 

V2(T,), = 0, 

since, otherwise, (To), would grow a t  least as rapidly as r2 which will break the asymp- 
tobic form of our expansion ( 3 . 1 ) .  Hence we conclude that 

Q = $, ( 3 . 5 )  
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and thus we have determined the magnitude of the underlying temperature gradient, 
a result which of course could have also been obtained directly from an overall heat 
balance. Furthermore, since there are no heat sources in ( 3 . 2 ~ )  and in the equations 
for higher orders, we see that similar arguments will give 

(T,J0 = 0 ,for n 2 0. 

Clearly the leading-order term in the temperature field, S - ~ T - ~ ,  does not render the 
particles hotter than the bulk, i.e. does not contribute to the integral (2.6), and so we 
must examine further the next approximation To. 

3.2. Average temperature outside a fixed particle 

In  the previous sub-section we derived (3.4), the equation governing the temperature 
field To, which was then ensemble averaged to determine the value of G given in (3.5). 
We now conditionally average (3.4) with one particle fixed a t  x1 to obtain an equation 
governing the average tempemture outside a particle, 

V2(To>i = (uz>i $ - (&)I- (3.6) 

With our assumed uniform probability distribution for the separation of particles 
outside the excluded region Ix-xlI < 2 the conditionally averaged heat source (Q)l 
is given by 

$, r 2 3, 

{&)l(~/~l) = $(27-56*+30r2-r4))/16r, 1 < r < 3, (3.7) i 1,  r < 1,  

where r = (x - xll. The boundary condition on {To)l is that it should tend to the bulk 
far from the fixed particle, i.e. 

(To)l(xJxl)+O as r+m. 

We note that, in the governing equation (3.6), { U ~ ) ~ - + { U ~ ) ~  = 1 and = # as 
r -+ co so that far from the fixed particle the conditionally averaged equation assumes 
the balance of the bulk equation. 

The heat generated within the particle in (3.7) renders this particle hotter on average 
than the bulk by an amount 

We shall now concern ourselves with the corrections to this expression which results 
from the O ( $ )  terms from outside the fixed particle on the right-hand side of (3.6). As 
we shall consider these correction terms individually, it  is worth calculating first the 
contribution to AT from a general forcing q on the right-hand side of (3.6) which acts 
only outside the fixed particle. We thus consider 

AT 1 - 5  - 2 (a = 1) .  

Now the calculation of AT from (To)l in (2.6) involves an integral over a volume of a 
sphere. Thus only the spherically symmetric part of {To)l will contribute to AT and 
this part is forced by the sphericdly symmetric part of q. Let us denote the spherically 
symmetric part of a quantity by an over-bar, i.e. 
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The equation governing the spherically symmetric part of (To}l with the general 
forcing q(x) is therefore 

whose solution satisfying the boundary conditions of regularity a t  r = 0 and decay as 
r+co is 

Hence with q(r)  vanishing inside r = 1, we have the contribution to AT forced by 
P(X) as 

AT = - rq(r)dr .  (3.8) 
/IW 

With the above result we can readily calculate the contribution to AT forced by 
the varying part, (Q)l-$, of the heat source strength in the region 1 6 r 6 3 given 
by (3.7).  Simple integration yields a contribution 

AT2= -&be 

We now turn to the contribution from the velocity disturbance ( u ~ ) ~  - 1.  First we 
note that if we were to use for this velocity disturbance the expression from the 
solution of the Stokes equations (2.1) outside an isolated sphere, 

our integral (3.8) would clearly diverge. We remarked in $2, however, that in a fixed 
bed the average of the velocity disturbance satisfies to O(#)  the Brinkman equation 
(2.3), whose solution (2.4) gives in (3.8) a contribution 

24 
AT3 = $ K - ~  = ,q5”+0($*)  as # + O ,  (3.9) 

using a non-dimensionalized ~2 = :q5. We see then that the O ( $ )  forcing of V2(T0), 
produces a larger O(@) term in AT because we must integrate out a long distance 
r = O(4-4) before the integrand in (3.8) changes from its O(#)  value to an 0(qk2r2)  
decaying function in r 2 $-*. I n  addition though, since a small O(q5) term from the 
O( 1 )  velocity disturbance has produced a larger O($i) contribution to AT, we need to 
examine carefully the O(#)  corrections to the average of the velocity disturbance in 
case they produce unexpectedly larger effects in AT. 

3.3.  The average velocity disturbance in a$xed bed 

We obtain an exact equation governing (u), (xlxl) by conditionally averaging the 
Stokes equations (2.1) with an appropriate form of the conservation of momentum 
inside the particles. After some manipulations (see, for example, Hinch 1977) the 
non-diniensionelized result is 

v .(u)1 (XlXl) = 0, - V P f )  (XlXl) +WU)l (XlXl) 
” 
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in which pf is the pressure in the fluid, u the stress tensor, and P(x,Ix,) is the prob- 
ability of finding a second particle centred a t  x2 given that there is one centred a t  x,. 
(We have assumed earlier that P(x,Ix,) = 34/4n if 1x2-x11 2 2 and P(x,~x,) = 0 if 

To leading order at  large separations, the particle centred at  x, exerts a dimension- 
less force - 677- in the x direction, corresponding to the dimensional force - (inpa Uo. 
The first correction to the effect of the x,-particle is a modification of this force 
due to the velocity disturbance from the x,-particle, which changes this force to 
- 6n(u), (x,/x,). The next correctionisa change in the force exerted by t’he x,-particle 
in response to a similar change to - 6 7 7 - ( ~ ) ~ ( x ~ ) x ~ )  in the force exerted by the 
x,-particle - the so-called second reflexion. At higher corrections there is a third 
reflexion, plus a force-nV2(u), (x,lx,) which arises from the curvature of the flow 
and is given by Faxen’s law, and finally a force dipole reflecting the fact that the 
fixed bed has an effective viscosity different from that of the pure fluid. 

If we add to both sides of the momentum equation (3.10) a force density corre- 
sponding to x,-particles uniformly distributed in (x, - xll 2 1 exerting at  their centres 
forces - ~T(u),, we obtain without approximation Brinkman’s equation (2.3), but 
with a right-hand side forcing 

lx2-x,I < 2.) 

x 6(x’ - x) dA’ -K,(u), (x21x1) 6(x, - x)),  (3.1 1) 

where to a first approximation we can take 

K 2  = $4. (3.12) 

In  the last sub-section we calculated the contribution to AT, (3.9)’ using the velocity 
disturbance (2.4) which satisfies Brinkman’s equation (2.3) and so we ignored the 
effects of the small O ( 4 )  term on the right-hand side of (3.11). We shall now consider 
the velocity disturbance forced by this term. Actually we shall not calculate the 
whole of the velocity correction, but only that part which when multiplied by q5 
in the temperature equation (3.6) induces an unexpectedly large O($)  contribution 
to AT. 

Now the solution (2.4) of Brinkman’s equation without the right-hand side predicts 
that the non-dimensional drag on the x,-particle is increased from the Stokes value of 
677- to 67~( 1 + K + QK,). In  order to take account of the same effect of the fixed bed on the 
velocity disturbance with two fixed particles, which is used in evaluating (u), in 
(3.11)) we have to augment the magnitude of the force exerted by the x,-particle by 
the same factor in the Brinkman term which we added to the left-hand side of (3.10) 
to give (3.11). Thus we have to modify expression (3.12) for K to 

K 2 - 9  - z$(l +K++K, ) ,  

so that now 

( 3.12’) 
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Interestingly enough the next term for K is not O(@) but 0(@1n q5) corresponding to 
the q5 In Q term in the drag law (2.2) found by Childress (1972). Using this improved 
value of K ,  i.e. (3.12')) in the result (3.9) gives a more accurate expression for the 
contribution of the Brinkman velocity disturbance to AT,  

24 
AT3 = = q5* - 89 + O(q53ln q5) as q5 + 0. (3.9') 

After the above adjustment (3.12') of the magnitude of the Brinkman term, the 
leading-order term on the right-hand side of (3.11) comes from the second reflexion. 
Now the solution (2.4) of the Brinkman equation shows that in a fixed bed the velocity 
disturbance decays like r--1 in K r  5 1 and like ~ ~ ~ r - 3  in Kr 2 1. Hence the force density 
on the right-hand side of (3.11) coming from the second reflexion is O(q5r-2) for K r  5 1 
and O ( $ K - ~ ~ - ~ )  for K r  2 1. This force density in (3.11) will induce a velocity O(q5) in 
K r  5 1 and 0(qk6r6)  in K r  2 1. Such a velocity disturbance in the integral (3.8) yields 
a contribution to AT which is O(q5). By the same arguments, (1) the third reflexion has 
a force density O(4r-3, 9 h ~ ~ r - 7 ,  velocities O(q5r-l, q 5 ~ - ~ r - ~ )  and a contribution to AT 
O(q5*); (2) the Faxen correction to the force produces a force density O ( $ r 3 ,  ~ K - ~ T - ~ ) ,  

velocities O(q5r-l, q 5 ~ - ~ r - ~ )  and a contribution to AT O(q53); and (3) the O(q5) change in 
the effective viscosity adds an O(q5) correction to the basic solution (2.4) and hence an 
O(q5) change in its O(@) contribution to AT. To calculate AT correct to O(q5) we can 
therefore ignore the effects of the several higher corrections and study only the second 
reflexion. This we shall do in the next subsection. 

3.4. The contribution from the second reJEexion 

The solution of the Brinkman equation (2.3) for a point force F a t  the origin is (Howells 
1974) 

where 

and 

I n  the second reflexion, the second particle a t  x exerts a force equal to - 677 times the 
velocity induced a t  x by a point force a t  the origin which has a magnitude equal 60 
- 677 times the velocity induced a t  the origin by a point force a t  x with a magnitude 
- 6n in the x direction. Let the unit vector in the x direction be e.  Thus the velocity 
disturbance induced by the second reflexion is the solution of 

v.u = 0, - V p + V 2 ~ - ~ 2 ~  = $d[ef2+x(e.x) ( 2 f g + g 2 ) / r 2 ] .  (3.13) 

Now the pressure in (3.13) must be linear in e and so takes t'he form 

p(x) = &c2(e. x) P(r).  

Taking the divergence of (3.13) and using the continuity equation on u, we obtain an 
equation for P 
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the solution to which, with P regular at the origin and decaying at infinity (corre- 
sponding to the absence of an imposed pressure gradient), is 

P =Irrnl ~ ( $ f g +  $g2) dr‘ - $ / ; r f 2 ( f 2 +  $fg++g2)dr‘ .  

Substituting the general form of the pressure into the momentum equation (3.13), 
we have that 

V 2 U - K 2 U  = $ K 4 [ e ( f 2 + P ) + X ( e . X )  

Fortunately in order to calculate the contribution to AT we do not need the full 
solution of u but only the spherically symmetric part E(r)e which satisfies 

d2  
dr2 
- (TG) - K2rZ = KF,  

where 

The solution for ZL which decays a t  infinity and vanishes on r = 1 is 

Substituting this form of the velocity disturbance into the integral (3.8) yields a 
contribution to AT 

K 2 4 1 e  (i - eK(1-r)) F ( r )  dr, 
1 

which, on making use of the expression for F and integrating by parts, becomes 
co 

AT4 = f 4 I  { f 2 p ( l - - e - - p ) + ( 2 f 9 + g 2 )  L ( 1 S p ) e - P -  l+sP” /p}dP,  
0 

where we have changed the variable of integration to p = K r  and taken the limit 
K -+ 0 thereby introducing an O(#K)  = O(@) error. By numerical integration the value 
of the integral is found to be 0.259. 

Collecting together the various contributions to AT, i.e. ATlp4, we now have the 
result for equal conductivities (a = 1) 

AT = Q + ~ 2 9 ~ ~ - 1 . 5 1 1 # + O ( ~ ~ l n ~ ) ,  (3.14) 

when e2 < 4 < 1.  

4. Slow flows and arbitrary conductivities: c2 < 4 and arbitrary a 
4.1. The conduction solution 

We now turn to the modifications of $ 3  that are needed when the conductivities are 
not equal. In slow flows the temperature field can still be expanded in powers of the 
Peclet number a starting with an 6-l term as in (3.1) which satisfies the conduction 
equation 

V .  kVT-, = 0, (4.1) 
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with the non-dimensional conductivity E = 1 in the fluid and k = a in the particles. 
Although the full solution for T-, can no longer remain the simple linear field (3.3) when 
the conductivities are unequal, the bulk average of T-, must remain linear in order that 
the flow carries away the bulk heating, i.e. 

Again the value of the temperature gradient G can be found by considering the problem 
for the next order term To. From the overall heat balance, however, we can see here 
that its value will not change from G = 4 when a f 1.  

In  addition to the bulk average of T-, we shall need to know the conditional averages 
with one and two particles fixed. If we ensemble average (4.1) with one particle fixed 
a t  xl, we obtain 

V.aV{T-,),(xlx,) = 0, if Ix-xl) < 1, (4.3a) 

i.e. if x lies inside the particle centred at  xl, while outside the fixed particle 

(T-Jo = Gx. (4.2) 

V2(T-l)l(XIX1)+V.(a- 1) J, VV-,), (xIx1, xZ)m,lxl) dV2 = 0. (4.3b) 
x* -XI < 1 

Now the integral above is O(Gq5) and so to leading order as #-+ 0,  {T-,), is the well- 
known conduction solution for an isolated sphere in a temperature gradient 

Gx3/(a+2) ,  r 6 1, 

<T-l)l(XlXl) - Gx[1 - (a-1) / (a+2)r3] ,  r > 1, (4.4) 

as 4 --f 0 with r = Jx  - x,I . To estimate the errors introduced by neglecting the integral 
in (4.3b), we must first consider the problem for {T-,), which has two fixed particles. 
When an O(G4) integral involving {T-l)3 is neglected, the equation governing (T-,), 
is similar to (4.3) with the particle conductivity inside the two fixed particles and just 
the fluid conductivity outside. Thus a t  large separations, IX,-X,(  1, (T-,), has the 
x,-particle behaving as a dipole of strength O(G(a - 1)) with a correction dipole 
O(G(a-  l )2 /~x2-x l~3) .  In  the integral in (4.3b)) these dipoles change the conductivity 
outside the one fixed particle from the fluid value E = 1 to an effective value 

Such a change in the conductivity changes the leading-order solution (4.4) for {T-J, 
by O(Gq5 (a - 1)2)  inside the one fixed particle and by O(G4 (a - 1)2/r2) outside. After 
the leading-order dipoles the x,-particle has a quadrupole O(G(a-  1)2/Ix, -x1I4) 
which produces an O(Gq5 la - 1)2/r4) change in {T-,), outside the fixed x,-particle. 
Hence we may conclude that the temperature disturbance for one fixed particle is 
correctly given by (4.4) with a relative error O(q5 (a- 1 ) ) .  

Despite the complexity of the t,emperature field T-,, it cannot contribute to AT 
when the fixed bed is reflexionally symmetric, which we hereby assume it to be. (The 
fixed bed of spheres can first lose its reflexional symmetry in the three-particle statistics, 
which would yield a contribution to  A T  O ( G C - ~ ~ ~ ~ ) . )  Thus, as in the case of equal 
conductivities, we must proceed to consider the problem for To, 

When the conductivities are not equal, however, the piocess of taking ensemble 
averages of this equation iF beset by two difficulties. First, X: is discontinuous and must 
be handled as in (4.3b). Second the function T-, is no longer as simple as in (3.3) and 
so the nonlinear left-hand side does not reduce effectively to a linear term. We study 
this second problem in our next subsection. 

E" = 1 + 3 4 ( ~ - 1 ) / ( 0 l + 2 ) .  

u . VT-, = V. kVTo + Q .  (4.5) 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 23 Jul 2009 IP address: 131.111.16.227

4 14 A .  Acrivos, E .  J .  Hinch  and D. J .  Jeffrey 

4.2. Averages of the nonlinear advection term 

The bulk average of u.VT-, can be evaluated by a special trick. Specifically, if we 
denote fluctuations of quantities about their bulk average values by primes, then 

Now whereas (T-,), is linear in x, the local fluctuations of both u and T-, caused by 
the particles are statistically homogeneous, and so (U'TL,)~ does not vary with 
position. Thus 

(U.VT-,)~ = G ,  

and as in $ 3  we conclude that G = q5. 
On the other hand once we average with some particles held fixed, we lose the 

spatial homogeneity which formed the basis of the above simplification and hence we 
require another approach. This alternative method takes advantage of the diluteness 
of the bed and produces approximations for the averaged quantities which are 
asymptotic as q5 -+ 0. First we take a conditional average of u . VT-, with one fixed 
particle, and now we use a prime to denote a fluctuation of a quantity about its 
conditional-average value, so 

(u. VTL,), = (u),. V(T-,),+ (u' . VTIJ,. 

In  a dilute random bed, fluctuations about the conditional average with one fixed 
particle are primarily due to the infrequent occurrence of a nearby second particle, 
i.e. as q5+ 0 

(u' * VT31 S(U - (u>1>2. V(T-1- {T-1)1)2 m, 1x1) dV,. (4.6) 

This integral converges rapidly as x2 -+ co because (u - (u),), decays like Ixz - x1 I -l 
when K ~ X ,  - xlI 5 1 and (T-, - {T-,),), decays like I X ,  - xll-2, and so the integral is 
O(Gq5) as it naively appears. Although this term is small compared with the leading 
term O(G), it  cannot be neglected unless it induces a negligible contribution to AT in 
the integral expression (3.8). Thus we have to consider how rapidly (u' . VTL,), decays 
as Ix-xll -+a. First of all we note that, since a t  large distances from the fixed xl- 
particle the main contribution to the integral (4.6) comes from x, near x, it  would 
appear that in this region we should use the fluctuations for an isolated x,-particle 
with no x,-particle; but upon integration these fluctuations cancel, because without 
the x,-particle they essentially give the term in the bulk average (u' . VTL,), which is 
known to vanish. Hence (u' . VTL,), does decay as Ix - xll + co and we have to con- 
sider the effect of the x,-particle on the fluctuations around the second particle. Of all 
the possible first interactions between the two particles, which we have considered, 
the leading effect is a modification of the velocity disturbance outside the x,-particle 
caused by the velocity O( Ix2 - xl/-I, K - ~ ~ X ,  - x ~ ( - ~ )  induced by the x,-particle in the 
neighbourhood of the x,-particle. When multiplied by the temperature gradient 
fluctuation outside the x,-particle O(G(a - 1) Ix - x,]-~) and integrated over x2, we 
find 

(u'.VTL1)l = O(G(a-  ~ ) $ I x - x , ~ - ' ,  G(a-  l ) q 5 ~ - ~ ] X - X , l - ~ ) .  

This term induces a contribution to AT O(q58 (a - 1)) and so we can ignore it. 
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We should record here that the first correction to the estimate (4.6) comes from less 
frequent occurrences of two particles being nearby the one fixed particle. This cor- 
rection is 

.f.f (u - (u - (u>i>2>3 * V(T-i - < T - ~  - (T-1)1)2)3 p(x2, x3Ix1) d& dV2. 

We expect that  similar arguments to the above will show that this correction is 
O(G(a- 1)$2) and that it decays sufficiently rapidly as [x-x,I -to3 for it to be 
neglected. 

Finally we must note that a similar argument could be applied to the conditional 
average with two fixed particles, (u. VT-,),. All that we need to know about this 
quantityis that it approachesitsvalue Gwithdeviations 0(Glx-xi(-l, GK-2[x-xxi(-3) 
away from the two fixed particles. 

4.3. Average temperature outside one fixed particle 
We are now in a position to take a conditional average, with one fixed particle, of (4.5) 
which governs the temperature field To. The result is 

0 = aV2(T,),+1 in Ix-x,[ < 1, (4.7a) 

(u.VT-i)i = V2(To)i + <Q+>i + (Q)i in Ix-Xil > 1, (4.7b) 

i.e. inside the fixed particle, and outside 

where 
n 

Now the forcing of {To), inside the particle in (4 .7a)  produces a contribution to AT, 

AT, = (5a+ 1)/15a. 

The remaining forcing is outside the fixed particle, and for it5 contribution to AT we 
may continue to use the integral expression (3.8) even when the internal conductivity 
of the fixed particle is no longer unity. Thus - $ induces a contribution AT2 = - 64 
as in the case of equal conductivities, while the part (u), . V(T-,),- $ of the term 
(u . VT-,), contributes AT3 = 424 $4 - 0.1 11 q5 as in 3 3.3, including the second reflexion. 
The remaining part of the nonlinear term to be considered is, according to the approxi- 
mation derived in $4.2,  

This term vanishes when the conductivities ale equal. To evaluate the contribution 
from this term we can use in the integral (3.8) the approximation (4.4) for (T& and 
for (u), the unshielded Stokes solution, because the integrand decays like r-3 in the 
region K r  5 1. The result is AT, = &$ (a-  l ) / ( a +  2).  

We now turn to the contribution to AT from the new term (&+), in (4.7b), which is 
absent when the conductivities are equal. This term involves the average temperature 
field with two fixed particles (To)z (xlx,, x2) which satisfies 

and 

where 

+)1* V((T-,>,- ( ! W o ) .  

0 = aV2(To)2+l in Ix-xlI < 1 and in [x-xz[ c 1, (4.8) 

(U . VT-,), = V2(T0)2 + (Q+)2 + (Q>2  otherwise, 

r 
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Now outside the two fixed particles the terms (U.VT_,)~, (Q-l), and ( Q ) ,  are all 
0($75). By ignoring them we have that at  leading order (To), satisfies the problem of two 
heated spheres isolated in a fluid of conductivity unity. We shall solve this two-sphere 
conduction problem in the next subsection by the method of multipole expansions. 
For the present purposes of discussing the problems associated with calculating AT 
and the size of the errors in our calculation, we will denote by (501 + 1)/15a + T(x,, x,; a) 
the value obtained by substituting this leading-order approximation for (To), in the 
place of (T) ,  in the integral (2.6). Thus T represents how much hotter the x,-particle 
would be in the presence of a heated x,-particle, the two particles being surrounded by 
a stationary fluid with a conductivity of unity. 

A t  large separations Ix2-x11 = r 9 1, we have by the method of reflexions that 

1 a-11 a- 1 
T(x,, x,; a) = r Q--Q- -  a + 2 r 4 + ' ( 7 ) '  

When the conductivities of the particles and fluid are equal, we would only have the 
first term in which the x,-particle acts as a point heat source. When the conductivities 
are unequal, there are some higher-order terms. In  the first correction, the x,-particle 
acts like a dipole in the undisturbed temperature field outside the heated x,-particle, 
while in the following correction i t  acts like a quadrupole. 

We now return to (4.7) for (To), to consider the contribution of an x,-particle. The 
first effect of an x,-particle is to act like a heat source and this effect is accounted €or 
precisely by the contribution of the x,-particle to {Q) , .  The remaining effect of the 
x,-particle must therefore come through its contribution to From our preceding 
discussions concerning the form of T we have that {Q+), decays like 0($75(a- l)+) 
as the x,-particle behaves as a dipole. This leading dipole corresponds to the fixed 
bed having a conductivity k* = 1 + 3#(a - l)/(a + 2). We could incorporate this 0($75) 
modification of the effective conductivity into the VZ(To), term in (4.7) by a re- 
arrangement of the equation similar to that used to transform (3.10) to (3.11). The 
decay of {Q+),  is, however, sufficiently rapid for this to be unnecessary, so we can 
substitute (&+), directly into the integral (3.8) without further manipulations. In  the 
integration each x,-particle contributes T(x,, x,; a) - Q r-1 and thus we have a contri- 
bution to AT 

This convergent integral will be computed in the following subsection by the method 
of multipole expansions. 

Finally we have to return to the neglected 0($75) terms in (4.8). By similar arguments 
employed in deriving the behaviour of (Q+),  we can show that the (Q+),  will yield a 
contribution 0($75,) in AT and so can be safely ignored. The other two terms (U . VT-,), 
and ( Q ) ,  cancel far from the two fixed particles as they both approach the value $75, 
reflecting of course the bulk heat balance. It is the slow 

O( $75 I x - xi 1-1, q5K-21 x - xi 1-3) 

approach of (u . VT-,), to this eventual value which is potentially troublesome. This 
slow decay means that through (u.VT-,), there is an effective heat source on the 
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left-hand side of (4.8) with a total strength comparable to that inside the particles. 
While the total heat strength is comparable, we shall now see that a smaller contri- 
bution to AT is induced, because the effective heat source is distributed over a large 
volume o($-$). 

First we note that outside the fixed particles the effective heat source (u. VT-,), 
induces a temperature response (To), which is O( Ix - xi/-,) in K I X  - xi] 2 1 and O ( K )  
in K ~ x - x ~ ~  5 1. The associate temperature gradient is O ( ~ X - X ~ ~ - ~ )  in K I x - x ~ J  2 1 
and O(K, )  in K I x - x ~ ~  5 1. Thus in the presence of the x,-particle the x,-particle is 
hotter than the conduction estimate T through a pole term O ( ~ , r - l )  with a dipole 
correction O ( ( a -  1)~,~-2, (a- I)+), where r = ~ X , - X , ~ .  Now returning to (4.7), we 
see that the new pole-like behaviour of the x,-particle induced by (u.VT-J2 is 
accounted for precisely by the x,-particle contribution to (U . VT-,),. This contri- 
bution was studied in 9 4.2 where it was shown to be negligible because of a cancellation 
which occurred in the averaging. The remaining effect induced by (u.VT-J, is a 
correction to (&+), which is O($(a- l)K2r-l, $(a- 1 ) ~ ~ )  from the new dipole-like 
behaviour. This correction induces a contIibution to AT which is O($a(a- 1)).  

4.4. The two-sphere conduction problem 
We now return to the detailed calculation to T(x,, x,; a) which is needed in (4.9) to 
obtain the contribution AT5. We require the leading-order approximation to (To)2 
which satisfies (4.8) ignoring the small O($) terms outside the two particles. We solve 
this problem of pure heat conduction outside two heated spheres using the method of 
twin multipole expansions as set out by Jeffrey (1 973). Thus outside the two spheres we 
express the temperature field in terms of multipoles a t  the centre of the spheres with 
unknown amplitudes a, 

in JX-X,I,  JX-Xz/  2 1, 

where d = (x, - x,)/lxl - x2/ is the unit vector in the direction of the line joining the 
centres of the spheres. On account of the symmetry of the problem we can set the 
amplitudes for the two particles equal. Inside the x,-particle we express the tempera- 
ture field in terms of growing harmonics with unknown amplitudes bn 

in which the first term arises from the heating inside the x,-particle. Thereis a similar 
expression for (To), inside the x,-particle using the same amplitudes bn on account of 
the symmetry. 

The unknown amplitudes a, and b, are determined by applying a t  the surface of 
the x,-particle the boundary conditions of continuity of temperature and of normal flux 
of heat. To this end we need to express an x,-multipole in terms of growing harmonics 
centred on the x,-particle. It is straightforward to show by differentiating the Taylor 
seriesfor ~ ( X ~ - - X ~ ) + ( X - X ~ ) ~ - ~  that inside I x - x , ~  < Jx,-x,I 

O0 ( n + k ) !  J X - X ~ ) ~ ~ + ~  (d.V)n 1 -- 1 

rL! lx l -xz ln+~+l  n,! Ix--x,I' Ix--x,l n = O  
(-d.V)'- = 

'4 F L h l  I01 
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If we now introduce R = Ix1-x21 for the separation between the two spheres, we 
obtain from the boundary conditions on Ix-xll = 1 

and 

- ( n + l ) a , +  a k - - - a  ( n + k ) !  n!k!  Rn+k+l 1 - ( -- k + n b , ) .  
k = O  

This infinite system of equations for the amplitudes a,, which vary with R,  can be 
truncated and tackled directly on a computer. For our purposes of evaluating the 
integral for AT, in (4 .9)  it  is more convenient, however, to expand the amplitudes in 
inverse powers of R,  

m 

p = n + l  
a k  = x A,pR-p. 

The coefficients A,, can then be calculated one a t  a time from 

and 
A,, = 4, A ,  = 0 for p 2 1 ,  

(If the A ,  are known for n + p  < m, the above formula gives A ,  with n + p  = m + 1 
and m + 2 . )  From the amplitudes a, thus obtained the b, amplitudes can be found from 

2a+l + x O0 akR-l-k and b, = - 2 n + 1  an for n 2 I .  
bo = g, k =  0 n a + n + l  

We can now evaluate the excess temperature for the x,-particle due to the presence 
of the x,-particle 

5a+ 1 2a+ 1 
(T0)2 (XIXI, ~ 2 )  dJ'- - = b, - - 15a 6a T(x1, x2; a) = - 

w m  
= * & ! - I +  x x A R-n-P-1. 

np 
n = l p  = n+l  

On substituting this result into the integral (4 .8 )  and performing the integration, we 
find that 

w m  A 

The double sum was found to converge rapidly, three significant figures being given by 
the terms with n + p  < 6 for values of a: not too near 0 and a. 

Collecting together the various contributions to AT we now have the result for 
arbitrary conductivities 

when e2 4 $4 4 1 .  The dependence of the above curly bracket on a is given by figure 1 .  
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I I I I I I I I *  

0 2 4 6 8 1 0 1 2 1 4  

ff 

FIGURE 1 .  The dependence upon the ratio of the conductivities a of the coefficients of the I# term 
in A T .  The asymptotic result -1.889+0.948/a is better than 0*50,(, accurate when a > 10. 

5. Comparable advection and shielding: q5 = O(e2) 

When the flow is slow and the fixed bed is very dilute, q5 < e2 < I ,  Acrivos & Taylor’s 
1962 analysis of an isolated particle applies. Their result given earlier in (2.7) becomes 
in our non-dimensionalization 

5 a +  1 
15a 

AT N - -&, 4 < c2. ( 5 . 1 ~ )  

The O(s) correction comes from an advection region with a long length scale r 2 E - ~  

in which the heated particle appears as a point heat source. For this reason the O(E)  
correction is independent of a, the particle conductivity. On the other hand, when the 
fixed bed is dilute and the flow is very slow, e2 < Q < 1 ,  we have just found that 

5a+ 1 
1501 A T - -  + 32949)  €2 < 9. ( 5 . l b )  

The O(@)  correction here comes from the hydrodynamically shielded region with the 
long length scale r 2 q5-*. Again the correction is independent o f a  because the particle 
appears to be a point in the significant region. 

We now explore the transition between the two limiting cases above, i.e. we consider 
the case q5 = O(e2) with q5, E < 1 .  We can expect a correction O(E,  $4) from a region with 
a long length scale, and by restricting attention to just this leading-order correction 
we shall be able to make the following three simplifications: (1) t>he particle will appear 
as a point heat source in the region of interest; (2) the approximation (2.4) may be 
used for the flow, instead of the better results in 9 3.3; and (3) a number of O(4) effects 
can be ignored. 

14-2 
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We start by conditionally averaging with one particle fixed the temperature 
equation (2 .5 )  suitably non-dimensionalized, 

0 = V.aV(T) ,+ l  in Jx-xlI < 1, 

e(u. VT), = V2<T), + (Q+), + (Q) ,  in Ix - xl( > 1, 

in which (Q),  is given by (3 .7 )  and 
n 

Note that because we are no longer assuming e2 < q4 we must not expand the tempera- 
ture as in (3 .1 ) .  Now according to $4 .2  we introduce a negligible O(q5) error by replacing 
(u. VT), by (u), . V(T),. We also know from $ 5  4.3 and 3.2 that we can neglect the 
terms (Q+)l and (Q)l - q5 because they act in a region r = O( 1 )  and produce corrections 

We now concentrate on the region in which advection and hydrodynamic shielding 
are important by introducing the stretched variable p = er. In  the region of interest, 
p = O( l) ,  the particle appears to be a point source of heat of strength :T. Also in this 
region both (T ) ,  and (u), are within O(e)  of their bulk values, because they both decay 
like r-l to this region, and so we can write 

O(q5). 

(T) ,  = x + eT’ and ( u ) ~  = e + eu’, 

where e is the unit vector in the x direction and T‘ and u’ are O(1). With all the above 
approximations and the additional neglect of a small O(e)  term u‘ . V,T‘, our tempera- 
ture equation has become 

(5.2) e .  V,T’ - V;T’ = $7r S(p) - - e .  q4 u’, 
€2 

in which V, is the gradient operator in the p-scale. Pinally making relative errors O(q44) 
we use expression (2 .4 )  for the velocity disturbance 

in which we have introduced the parameter h = KE-1 - ($q4)& e-l and 8 the polar angle 
from the direction e of the mean flow. 

Now the response in T’ to the point heat source on the right-hand side of the 
governing equation (5 .2 )  is well known to be 

As p -+ 0 this takes the form 

Taylor & Acrivos (1962)  showed that this form can be matched to an expansion in the 
region r = O( 1) where p = O(e).  The Qp-l term matches the conduction solution for 
heated particle in a stationary medium, while the icos6  term matches to an O(E) 
advection correction which has a cos 8 dependence, and so produces no net contribution 
to AT. Finally the - Q term produces a uniform cooling in the r = O( 1)  region with a net 
contribution to AT equal to -Qe as given in (5.1a). 

The velocity disturbance on the right-hand side of (5 .2 )  is O(p- l )  as p-+ 0, and so it 

Qp-l exp [Qp (cos 8 - l ) ] .  

Qp-1 f i ( C 0 S  8 - I )  + O(p) .  
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forces a response in T' which is regular a t  p = 0. We can therefore evaluate the contri- 
bution to AT by evaluating the forced response of T' a t  p = 0. For this calculation we 
use the Green's function for the left-hand side, which of course is the response to a 
point heat source given above. The value of T' a t  p = 0 forced by the velocity dis- 
turbance is thus 

Collecting together the two contributions to AT we have when h2 = $ 4 ~ ~  is fixed 
and s+O 

1 h+l  h2(I-h2)ln- h +&(2h3-h2-1) . 5a+ 1 
15a 

AT-- (5.3) 

The O ( E )  correction is negative when h < 1 .  Here the bulk temperature gradient is 
unimportant and the flow cools the particles by assisting the conduction to remove the 
heat. The bulk temperature gradient is, however, important in the more concentrated 
case of h > 1, which has the O(s)  correction positive. Here the fluid near a particle 
moves slower than the bulk and 50 spends longer being heated with the consequence 
that both it and the particle are hotter than the bulk. As h --f 0 our result (5.3) becomes 

while as h -+ 00 our result becomes 

The leading-order corrections agree with the limiting results (5.1).  The following 
corrections (3$/4e) In (2e2/!3eq5) and - as do not however correspond to the corrections 
(2$)*/3 and - & which one would obtain if the small effects for q5 < €2 and e2 < 9 
were simply additive. 
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