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The formation of sand ripples in oscillating flows is thought to be due to a steady
streaming current which near the bottom is towards the crests. We present quantita-
tive observations of this mean flow over self-formed and artificial ripples, by observing
the displacement of a coloured filament after a number of oscillations in the simple situ-
ation of viscous Couette flow. Confusingly, the filament moves in the ‘wrong’ direction,
because it follows the Lagrangian mean flow. We calculate the Lagrangian mean flow. A
complication is that the amplitudes of the oscillations in the experiments are not small.
We compare the predictions with the experimental observations of displacements of the
filament, showing good agreement.

1. Introduction
1.1. Scope of the paper

The oscillating motion of a fluid may generate a slow Eulerian mean flow related to inertia
effects, known as “steady streaming” (Riley 2001). Such a mean flow can be produced by
acoustic waves in compressible flow (Rayleigh 1883, Lighthill 1978) or surface waves in
incompressible irrotational flow (Stokes 1847). It can also arise in incompressible flows
oscillating near a solid boundary, or in the reverse situation of an oscillating wall in
a fluid at rest, whenever there exists a gradient of the wave phase or wave amplitude
(Batchelor 1967). A phase gradient typically corresponds to a gravity wave travelling
over a flat bottom; here the streaming flow is uniform and consists of a near-bed jet in
the direction of the wave advance (Longuet-Higgins 1953, Unluata & Mei 1970, Craik
1982). A gradient of the amplitude is encountered when the fluid oscillates over a wavy
wall; there the streaming flow has a cellular structure, spatially periodic.

The latter situation of fluid oscillation over a wavy bottom is of particular importance
when the bottom is erodible, typically a sand bed. Over any disturbance of the flat
bottom, advection generates a mean flow which is directed from troughs to crests near
the bed. When stronger than stabilising effects such as that of gravity, this flow drags
the particles up to the crests, thus amplifying the bottom disturbance. This is the usual
explanation of the formation of ‘rolling grain ripples’ on a sandy bottom, first analyzed by
Bagnold (1946). However, a quantitative assessment of the relation between the streaming
flow and the particle flux is still lacking. In fact, no experimental evidence has been
provided, until now, that the shear stress associated with the streaming flow over a wavy
bottom is responsible for the particle drift.

The present paper reports calculations and measurements of the fluid drift associated



2 E. Larrieu, E. J. Hinch and F. Charru

x

y U0 cosωt

h

λ = 2π/k

η0

Figure 1. Sketch of the oscillating flow over a wavy bottom.

with an oscillating Couette flow over a wavy bottom, either fixed or erodible (figure 1).
Observations of particle motion will be reported in a future paper. This paper follows pre-
vious investigations aiming at a better understanding of the interaction of the fluid flow
and particle motion (Charru, Mouilleron-Arnould & Eiff 2004; Charru, Larrieu, Dupont
& Zenit 2007). For practical reasons, these experiments involve a viscous Couette flow
with finite depth. This situation does not correspond to that of ripples formed by wa-
ter, but it allows the desired observations and accurate comparison with theory. Note
that viscous flow is also relevant to some engineering applications (Schaflinger, Acrivos
& Stibi 1995; Wallner & Schaflinger 1998; Charru & Mouilleron-Arnould 2002). In par-
ticular, observations of ripple formation under oscillatory flow in a capillary tube have
been reported by Zoueshtiagh et al. (2008), in connection with microfluidic issues. In the
experiments to be presented, it appeared first that the direction of the observed drift of
fluid particles was opposite to the one expected. It was then realised that these obser-
vations corresponded to the Lagrangian drift whereas calculations were for the Eulerian
velocity. Hence the Lagrangian drift calculations form the theoretical part of this paper.
Flow calculations corresponding to our experiments are presented in §§2-3, with the so-
lution for small amplitudes oscillations in §4, and then for large amplitudes in §5 because
the amplitudes in the experiments were not small. The experiments are then presented
and measurements compared to the calculations in §6. Conclusions are given in §7. The
remaining part of this section is devoted to a review of the literature on streaming flow
over a wavy bed.

1.2. Streaming flow over a wavy bed: review of the literature
We start with a focus on theoretical studies, proceeding to experiments towards the end.
The problem is complicated with seven independent length scales, although one is not
relevant to flow calculations and another is always too large to play a role. Roughly in
order of increasing size, they are the following.
• d the diameter of the particles. This occurs only in the particle transport and not

in the flow.
• η0 the amplitude of the ripples. Necessarily d� η0.
• λ the wavelength of the ripples. Vortices are shed if the slope η0/λ is not small.
• δ the thickness of a Stokes oscillating boundary layer, δ =

√
2ν/ω.

• ` the excursion of fluid in the oscillating flow far above the ripples, ` = U/ω.
• h the depth of water.
• L the wavelength of water waves in the case of sea ripples.
Sea ripples have λ, δ � h, L, so that h and L become irrelevant. In order to make

progress, additional limiting cases are considered by different authors. The first relevant
calculation seems to have been made by Schlichting (1932), who studied the case of a
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thin boundary layer δ � h, small slope η0 � λ and small fluid excursion ` � δ to
obtain a simple expression for the Eulerian steady streaming. Lyne (1971) first reworked
Schlichting’s result in his Case (i), and then tackled large fluid excursions ` � δ in his
Case (ii) where he needed to make an additional assumption of thin boundary layers
δ � λ. The problem of Case (ii) then becomes quasi-stationary, permitting the use of
Benjamin’s (1959) analysis of the critical layers in the flow. [At the time, Benjamin was
interested in wind-generated water waves.] Lyne gave expressions for the Eulerian steady
streaming, in Case (ii) an integral requiring numerical evaluation. Independently, Sleath
(1974) derived the same results as Lyne, making minor corrections to certain formulae.
In Sleath (1976), he went on to calculate numerically the Lagrangian displacements in
Case (ii). With simple ideas about the movement of the particles, he suggested ripples
would be formed with wavelengths similar to the fluid excursion, `/λ = O(1), with a weak
dependence on the boundary layer thickness, which was confirmed by his experiments.
In this paper, only the wavelength of the ripples was observed.

The next calculation was by Kaneko & Honji (1979), who considered small fluid excur-
sions `� δ and expanded in the amplitude of the ripples retaining terms to O((η0/δ)7).
Numerical assistance was required to evaluated the many coefficients in their solution
of coupled ODEs. They found the Eulerian steady streaming in several examples, up to
η0/δ = 0.7, without vortex shedding. They also took some photos of the flow pattern of
the steady streaming, although it is unclear how their technique eliminated the oscillat-
ing component. Note that they only observed the pattern of the flow and its direction,
and that their calculation yielded no simple expression.

The next development comes with Hara & Mei (1990). They again studied two cases:
(i) small fluid excursion ` � λ but arbitrary slope η0/λ = O(1), and (ii) small slope
η0 � λ but arbitrary fluid excursion `/λ = O(1). The novelty in their calculation of the
flow is to have strong steady streaming. This can occur because while the forcing of the
mean flow is small it is limited by viscosity which is small compared with inertia which
limits the oscillating components. Stuart (1963) and Riley (1965) had developed the ideas
required to tackle this strong steady streaming. It is unlikely that this regime occurs in
sea conditions. Hara & Mei needed to evaluate numerically an infinite system of coupled
ODEs. In a later paper, Hara, Mei & Shum (1992) extended the results for Case (ii)
by semi-numerically evaluating a series up to (η0/λ)6, without vortex shedding. Shum
(1995) used a full numerical method for the flow and then could track the Lagrangian
displacement of particles. He gave examples of how dye lines which are initially either
vertical or horizontal develop in a chaotic manner. He did not however find the mean
flow. Particle transport finally arrived in the studies of this group in Mei & Yu (1997).

At the same time as the Hara & Mei paper, Blondeaux (1990) introduced for the first
time a model of particle transport to be solved in parallel with the flow. For the flow,
he linearised in small amplitudes η0 � δ, but left the boundary layer thickness and fluid
excursion arbitrary, δ/λ and `/δ both O(1). To evaluate the Eulerian steady streaming,
a matrix of coefficients has to be solved numerically. (In the light of the work of Hara &
Mei, Blondeaux’s approach implicitly assumes weak steady streaming, as did Lyne and
Sleath, as is appropriate for sea conditions.) His calculation of the flow is nearly identical
to that by Vittori (1989). The particle transport equation predicted the onset condition
for ripples in a Froude-Reynolds number phase diagram, and predicted the wavelengths
of the ripples; these predictions were tested satisfactorily against new experimental data
obtained when Sleath visited Genoa. A second paper by Vittori & Blondeaux (1990)
made a small finite amplitude expansion for ripples near to onset in the Froude-Reynolds
diagram. Later papers by Blondeaux and Vittori consider 3D effects and turbulent flows
with DNS, e.g. Scandura (2007). Calculation of the detached flow over steep ripples,
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such as that considered by Longuet-Higgins (1981), is a different problem which is not
reviewed here.

The case of an oscillating Couette flow, which is relevant to the experiments described
in this paper, corresponds to h � δ, so there is no boundary layer. It is not possible to
take a limit of the results above for sea ripples with δ � h to obtain any results for our
experiments with h� δ. This situation was investigated by Charru & Hinch (2006b), who
calculated the Eulerian mean flow for long waves of small amplitude (η0 � h� λ), and
`/λ arbitrary. An erosion-deposition model for the particles was used, first introduced in
Charru & Hinch (2006a), see also Charru (2006). However the Lagrangian drift necessary
here was not calculated.

Turning to experiments, it appears that there are far fewer than theoretical analyses.
Most deal with the steady streaming near a flat bottom induced by propagating surface
water waves. Early results are discussed by Longuet-Higgins (1953), while recent mea-
surements are by Ourmières & Mouazé (2007). These results for a flat bed cannot help
to understand the formation of ripples.

For oscillating flow over rippled beds, many visualisations can be found in the lit-
erature, providing qualitative pictures of instantaneous streamlines with the important
vortex behind sharp-crested (large amplitude) ripples, see e.g. Ourmières and Chaplin
(2004). Marin (2004) reports PIV measurements of the velocity field induced by surface
waves over a rippled bed; however, horizontal and time averaging removes the effect of
ripples and retains the effect of the surface wave only. Rousseaux et al. (2007) present
PIV measurements above ripples, showing transient eddies in qualitative agreement with
the calculations by Vittori (1989), but the mean flow was not measured. The only quan-
titative measurement of the mean Eulerian flow we found is that of Du Toit & Sleath
(1981). Their experiment consists in oscillating a body of water over self-formed ripples,
with parameters corresponding to rough turbulent regime (with `/λ = 0.74, λ/δ = 126,
2η0/λ = 0.20). Measurements at λ/6 and λ/3 from the crest were compared with numer-
ical simulation of the Navier-Stokes equations, showing same flow direction but quanti-
tative differences of the order of the velocity itself.

2. Idealised problem
Motivated by the experiments to be described in §6, we study a thin layer of viscous

liquid driven in a planar Couette flow by a sideways oscillating top boundary and per-
turbed by a stationary wavy bottom boundary of sinusoidal form (figure 1). The Stokes
drift and Eulerian mean flow due to small inertial effects are calculated. Two cases are
considered:- (i) small amplitude displacements of the top boundary compared to the
wavelength of the wavy bottom, and (ii) arbitrary amplitudes.

2.1. Problem statement
We solve the incompressible Navier-Stokes equations

ρ

(
∂u
∂t

+ u ·∇u
)

= −∇p+ µ∇2u,

∇ · u = 0,

subject to no-slip boundary conditions on the top plate which oscillates with frequency
ω and velocity amplitude U0

u = (U0 cosωt, 0, 0) on y = h
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and on the stationary wavy bottom which has a perturbation amplitude η0, wavenumber
k and sinusoidal form

u = 0 on y = η0 cos kx.
The amplitude of the perturbation is taken to be small compared with the height of the
channel, η0 � h, and also to have small slope, kη0 � 1.

The Lagrangian motion x(t) is found by integrating the flow

ẋ = u(x, t).

2.2. Non-dimensionalisation
We scale vertical distances y on the height of the channel h, horizontal distances x on the
wavenumber of the wavy bottom k, and time t on the frequency ω. Hence the horizontal
velocities u are scaled on ω/k and vertical velocities v on ωh.

This non-dimensionalisation produces four non-dimensional groups of parameters, three
of which we take to be small.
• Thin-layer approximation, kh � 1. We assume that the channel height is small

compared with the wavelength. We shall calculate only the leading order term in this
approximation. The corrections are O((kh)2) and have the same phase as the leading
order term, so produce only small corrections to the mean effects.
• Small disturbance approximation, ε = η0/h � 1. We assume that the magnitude

of the perturbations of the bottom boundary are small compared with the height of the
channel. In the thin-layer approximation, this restriction on the magnitude also makes
the slope small. We need to find the O(1) base flow for a flat-bottom boundary and then
the first correction O(ε) due to the wavy bottom.
• Small Reynolds number, Re = ρωh2/µ � 1. We assume that inertial effects mea-

sured by an oscillating Reynolds number are small. The leading order O(1) terms are
a Stokes flow which is reversible and so produces no mean Eulerian flow and no mean
Stokes drift. Hence we need to consider the small first corrections O(Re). (Note that
the classical Reynolds number ρU0h/µ is the combination ReA/kh where A is defined
below.)
• Amplitude A = kU0/ω. The fourth non-dimensional group is the ratio of the dis-

placement of the oscillating top plate to the wavelength of the wavy bottom, kU0/ω. We
shall first consider the case of small displacements A � 1 and then order one displace-
ments A = O(1).

2.3. Non-dimensionalised problem
In the thin-layer approximation, we need only solve the horizontal momentum equation

Re

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+
∂2u

∂y2
.

Here we have omitted the O((kh)2) small horizontal diffusion of momentum. To leading
order with a O((kh)2) correction, the vertical component of the momentum equations
gives that the horizontal pressure gradient does not depend on vertical position, i.e. is
only a function of horizontal position and time. The vertical component of velocity is
instead found from the incompressibility

∂u

∂x
+
∂v

∂y
= 0.

Integrating this condition from the lower boundary, which to the approximations we
consider may be taken to be the unperturbed lower boundary y = 0, to the upper
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boundary gives the constraint that the horizontal flux∫ 1

0

u dy is independent of x.

This constraint determines at each x the horizontal pressure gradient.
The non-dimensionalised boundary conditions are

u = (A cos t, 0) on y = 1,

u = 0 on y = ε cosx.
And finally the Lagrangian motion is calculated from

ẋ = u(x, t).

2.4. Expansion
We make a double expansion in the two small parameters of the small disturbance ε and
small inertial effects Re.

u ∼ u0 +Reui+ε
(
ũ0 +Reũi

)
v ∼ +ε

(
ṽ0 +Reṽi

)
p ∼ +ε

(
p̃0 +Rep̃i

)
The superscripts 0 denote the leading order Stokes flow, while the superscripts i denote
the first corrections due to inertia. The overbars denote the solution for a flat bottom,
while the tildes denote the first disturbances produced by the wavy bottom. For the flat
bottom there is no vertical flow and no pressure gradient.

Substituting the expansion into the boundary conditions yields on the top boundary

u0 = A cos t on y = 1,

with all other horizontal and vertical velocity components in the above expansion van-
ishing on the top boundary. Transferring the boundary condition from y = ε cosx to the
mean position y = 0, we have

ũ0 +
∂u0

∂y
cosx = 0 and ũi +

∂ui

∂y
cosx = 0 on y = 0,

with all the other velocity components in the expansion above vanishing on y = 0.

3. Solution for flow
3.1. Couette flow

The base flow is the Couette flow for a flat bottom

u0 = U
0
(y) cos t with U

0
= Ay.

3.2. Inertial correction
The inertial correction ui is governed by

∂2ui

∂y2
=
∂u0

∂t
,

subject to boundary conditions of vanishing on y = 0 and 1. The solution is

ui = U
i
(y) sin t with U

i
= 1

6A(y − y3).
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While the base Couette flow moves to the right at t = 0, inertia makes the flow continue
flowing to the right at t = π

2 , at which time the top plate is stationary.

3.3. Stokes perturbation due to wavy bottom
The first correction due to the wavy bottom ũ0 is governed by

0 = −∂p̃
0

∂x
+
∂2ũ0

∂y2
,

subject to

ũ0 =

{
0 on y = 1,
−A cosx cos t on y = 0.

with the pressure gradient ∂p̃0/∂x such that there is no mean flux
∫
ũ0 dy varying with

cosx. The solution is

ũ0 = Ũ0(y) cosx cos t with Ũ0 = A(−1 + 4y − 3y2).

At low levels near to the crest of the wavy bottom x = 0, this horizontal velocity is
negative when the base flow is positive, in order for the sum of these flows to vanish on
the crest. At higher levels the flow is positive over the crests, because there is no net
horizontal flux.

Using the incompressibility condition, the vertical component of velocity can be found

ṽ0 = Ṽ 0(y) sinx cos t with Ṽ 0 = A(−y + 2y2 − y3).

This flow is downwards between the crest at x = 0 and trough at x = π at times when
the base flow is positive.

3.4. Inertial correction to wavy bottom disturbance
The inertial correction ũi to the above disturbance is governed by

−∂p̃
i

∂x
+
∂2ũi

∂y2
=
∂ũ0

∂t
+ u0 ∂ũ

0

∂x
+ ṽ0 ∂u

0

∂y
,

subject to

ũi =

{
0 on y = 1,
− 1

6A cosx sin t on y = 0.

with the pressure gradient ∂p̃i/∂x such that there is no mean flux
∫
ũi dy varying with

cosx and sinx. The solution is

ũi = Ũ i1(y) cosx sin t+ Ũ i2(y) sinx cos2 t,

with

Ũ i1 = 1
60A(−10 + 32y + 3y2 − 40y3 + 15y4),

Ũ i2 = 1
60A

2(−2y + 6y2 − 10y4 + 6y5).

At time t = π
2 , the contribution from Ũ i1 to the flow is negative at low levels over the

crest x = 0 and positive at high levels, with no net flux. It has two parts, one from inertia
making the flow ũ0 continue in time an extra π

2 , and one from the boundary condition
where a negative value is needed on the crests when the flow ui is positive (at t = π

2 ).
The contribution to the flow from Ũ i2 is towards the crests at low levels, away from the
crests above, and vanishes on both boundaries. It is driven by advection by the base flow
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u0 of the vorticity associated with ũ0. There is a positive advection of negative vorticity
from the crest at x = 0 towards x = π

2 at t = 0 and at t = π a negative advection of
negative vorticity towards x = π

2 from the trough at x = π. Both advections result in
negative vorticity being deposited at x = π

2 , which produces there a negative flow at low
levels and a positive velocity above.

The Ũ i2 part has the Eulerian mean flow,

〈u(x, t)〉 = εRe 1
2 Ũ

i2(y) sinx, (3.1)

which at low levels is towards the crests, i.e. negative at x = π
2 and positive at x = −π2 ,

see figure 2.
Using the incompressibility condition, the vertical component of velocity can be found

ṽi = Ṽ i1(y) sinx sin t+ Ṽ i2(y) cosx cos2 t,

with

Ṽ i1 = 1
60A(−10y + 16y2 + y3 − 10y4 + 3y5),

Ṽ i2 = 1
60A

2(y2 − 2y3 + 2y5 − y6).

At t = π
2 , the contribution to the flow from Ṽ i1 is positive at x = −π2 before the crest

and is negative at x = π
2 after the crest, giving the return flow of Ũ i1 which on the

crest is negative a low levels and positive above. The contribution to the flow from Ṽ i2

is positive over the crests, giving the return flow of Ũ i2 which is towards the crests at
low levels.

4. Stokes drift at small amplitude, A� 1
We first make the classical calculation of Stokes drift assuming that a Lagrangian

particle moves a only small distance from its central position X during a single oscillation,
i.e. we write

x(t) ∼ X(T ) + δx(t),

with the horizontal displacement small compared with the wavelength and the vertical
displacement small compared with the height, |δx| � 1 in our nondimensionalisation.
These restrictions are achieved if the amplitude of the oscillation of the top plate is small,
A � 1. The central position X changes very little during one oscillation, drifting as we
shall find later on the long timescale of 1/εRe, so we set T = εRet. To leading order,
the small displacements are simply integrals in time of the above velocity components
evaluated at a fixed position X, i.e.

˙δx = u(X, t),

where we need only include the oscillatory components of the flow.
The Lagrangian mean motion of a fluid particle comes partly from the Eulerian mean

motion at a fixed point, 〈u(X, t)〉 averaging in time, together with the Stokes drift which
comes from the correction to the calculation above when the flow is evaluated at the
slightly displaced position X + δx instead of at X. Thus the Stokes drift is classically
calculated as

VStokes = 〈δx ·∇u|X〉 ,
again averaging over time.
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4.1. Linear displacements
Making again the double expansion in the two small parameters ε and Re

δx ∼ x0 +Rexi+ ε
(
x̃0 +Rex̃i

)
,

δy ∼ ε
(
ỹ0 +Reỹi

)
,

we find by simple integration in time

x0 = U
0
(Y ) sin t,

xi = −U i(Y ) cos t,

x̃0 = Ũ0(Y ) cosX sin t,

ỹ0 = Ṽ 0(Y ) sinX sin t,

x̃i = −Ũ i1(Y ) cosX cos t+ 1
4 Ũ

i2(Y ) sinX sin 2t,

ỹi = −Ṽ i1(Y ) sinX cos t+ 1
4 Ṽ

i2(Y ) cosX sin 2t.

In the last two expressions, a drift linear in time has been omitted because it is the
Eulerian mean flow.

4.2. Drift
We are interested in the x-component of the Stokes drift

VStokes =
〈
δx
∂u

∂x
+ δy

∂u

∂y

〉
.

Now u0 and ui are independent of x, so only ũ0 and ũi contribute to ∂u/∂x. Similarly,
δy only has components ỹ0 and ỹi. Hence the leading contributions to VStokes are O(ε)
and O(εRe). The O(ε) terms are however products of sin t and cos t, so have zero average
in time. Hence the leading non-zero mean contributions are O(εRe), the slow drift rate
declared earlier. Thus

VStokes = εRe

〈
x0 ∂ũ

i

∂x
+ xi

∂ũ0

∂x
+ ỹ0 ∂u

i

∂y
+ ỹi

∂u0

∂y

〉
.

Substituting the small displacements and velocity components, we find

VStokes =
1
2
εRe

[
−U0

Ũ i1 + U
i
Ũ0 + Ṽ 0 dU

i

dY
− Ṽ i1 dU

0

dY

]
sinX.

Now substituting the detailed expressions, we obtain

VStokes =
1
60
εReA2(6Y 2 − 2Y 3 − 25Y 4 + 21Y 5) sinX. (4.1)

In figure 2 we plot the velocity profiles for this Stokes drift and the Eulerian mean flow
obtained earlier, together with their sum, the Lagrangian mean flow. The Stokes drift
is away from the crests at low levels and towards the crests at high levels, i.e. in the
opposite sense to the Eulerian mean flow. We see that the Stokes drift is about four
times larger than the Eulerian mean flow, and so dominates the Eulerian mean except
very near the bottom boundary, where the Stokes drift vanishes quadratically and the
Eulerian mean vanishes linearly. Thus the Lagrangian mean flow is towards the crests in
0 < y < 0.1194 next to the bottom boundary.
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Figure 2. The Eulerian mean (3.1) (E), Stokes drift (4.1) (S) and Lagrangian mean horizontal
velocity (E+S) divided by A2εRe as a function of height across the channel Y , on the up and
down slopes.

To understand the Stokes drift, consider a particle which starts near to the top bound-
ary in the middle section of the down slope at x = π

2 . Near the top boundary, the wavy
bottom causes a slightly stronger oscillation in the narrow section at the crests com-
pared with the wider section at the troughs, with an inertially driven continuation of
the oscillation after the top boundary has stopped at t = π

2 . During the first quarter
period, the base flow will move the particle towards the trough where the oscillation is
weaker, so the inertially driven continuation is weaker away from the crests, which is
equivalent to a small displacement towards the crest. During the next half period, the
base flow moves the particle towards the crest where the oscillation is stronger, so that
the inertially driven continuation is stronger towards the crests, which is equivalent to a
small displacement also towards the crest. Hence near the top boundary there is a Stokes
drift towards the crests. A similar argument can be made to understand the origin of the
Stokes drift away from the crests near to the bottom boundary. The argument near the
bottom boundary is however complicated by the need to include the vertical flow, which
near the top vanishes quadratically, so can be ignored there.

Integrating through the depth of the channel, there is no net flux in either the Stokes
drift or Eulerian mean flow. The net Eulerian flux is controlled by the mean pressure
gradient, which we have chosen to vanish. The vanishing of the net Lagrangian flux
follows from the symmetry of the oscillation.

5. Stokes drift at A = O(1) amplitudes
When the amplitude of the oscillation of the top plate is comparable with the wave-

length of the wavy bottom, it is no longer appropriate to consider a Lagrangian fluid
particle as moving only a small distance from its central position during a single oscilla-
tion. Instead we have to study small deviations relative to an O(1) oscillation with the
base Couette flow, i.e.

x(t) ∼ x0 +Rexi+εx̃0 + εRex̃i,

y(t) ∼ y0 +εỹ0 + εReỹi,
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where the oscillation with the base Couette flow is

x0 = X(T ) + U
0
(Y ) sin t,

y0 = Y (T ).

The drift time remains T = εRet.
The different order contributions to the displacement must be found from the appro-

priate contributions to the velocity plus corrections to previous orders of the velocity due
to the small displacements. This approach is the required generalisation of the standard
Stokes drift calculation.

5.1. Inertial correction to Couette flow
When the bottom is flat, the flow is horizontal and depends only on the vertical coordinate
and time. Thus any correction Rexi to the basic oscillating position x0 will not change
the value of the O(Re) correction to the flow seen by the moving particle. Hence

ẋi = ui = U
i
(Y ) sin t.

And so integrating,

xi = −U i(Y ) cos t.

5.2. Wavy-bottom correction to the Stokes flow
The vertical O(ε) correction to the basic oscillating position changes the O(ε) horizontal
velocity seen by the moving particle, although not the vertical velocity

.

x̃0 = ũ0 + ỹ0 du
0

dy
,

.

ỹ0 = ṽ0.

First we tackle the vertical motion:
.

ỹ0 = Ṽ 0(Y ) sin
[
X + U

0
(Y ) sin t

]
cos t,

which can be integrated to

ỹ0 = −Ṽ 0(Y )
cos
[
X + U

0
(Y ) sin t

]
U

0
(Y )

.

This result can be substituted into the problem for the horizontal motion

.

x̃0 = Ũ0(Y ) cos[x0(t)] cos t− Ṽ 0(Y )
cos[x0(t)]

U
0
(Y )

dU
0

dY
cos t,

where x0 = X + U
0
(Y ) sin t is the basic oscillation with the Couette flow. Integrating,

we find

x̃0 =

[
1− Ṽ 0

U
02

]
dU

0

dY

(
sin
[
X + U

0
(Y ) sin t

]
− sinX

)
.

The last sinX is a constant of integration, chosen to avoid any singular behaviour as
Y → 0. Note that this horizontal displacement has no mean drift, because this approxi-
mation is for reversible Stokes flow over a wavy bottom.
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5.3. Inertial correction to wavy-bottom flow
There are a number of contributions to the O(εRe) velocity seen by the moving particle.

.

x̃i = ũi + ỹi
∂u0

∂y
+ ỹ0 ∂u

i

∂y
+ xi

∂ũ0

∂x
,

.

ỹi = ṽi + xi
∂ṽ0

∂x
.

First we tackle the vertical motion:
.

ỹi = Ṽ i1(Y ) sin[x0(t)] sin t+
[
Ṽ i2(Y )− U i(Y )Ṽ 0(Y )

]
cos[x0(t)] cos2 t,

with integral

ỹi =
∫ t

0

Ṽ i1(Y ) sin[x0(t′)] sin t′ +
[
Ṽ i2(Y )− U i(Y )Ṽ 0(Y )

]
cos[x0(t′)] cos2 t′ dt′.

We now find the average in time of the horizontal motion,

VLagrangian = εRe

〈 .

x̃i
〉
.

We need several averages of trigonometric functions which can be related to the zeroth
Bessel function

J0(z) = 〈cos(z sin θ)〉.
In particular, we need

〈sin(z sin θ) sin θ〉 = − J ′0,
〈cos(z sin θ) cos2 θ〉 = J0 + J ′′0 ,

and 〈sin(z sin θ) sin θ cos2 θ〉 = − J ′0 − J ′′′0 .

We then find the Lagrangian mean horizontal velocity as

VLagrangian = εRe

[
Ũ i1J ′0 + Ũ i2(J0 + J ′′0 )

+
dU

0

dY

(
Ṽ i1J ′′0 − (Ṽ i2 − U iṼ 0)(J ′0 + J ′′′0 )

)
− Ṽ

0

U
0

dU
i

dY
J ′0 + U

i
Ũ0(J0 + J ′′0 )

]
sinX, (5.1)

where all the Bessel functions are evaluated at z = U
0
(Y ). This expression agrees with

the Lagrangian mean horizontal velocity found earlier in the limit A� 1. We can identify
Ũ i2 in the second term as the Eulerian mean flow. However the large amplitude oscillation
reduces the contribution by a factor 2(J0 + J ′′0 ), by averaging the sinx in the Eulerian
mean over the excursions of the large amplitude oscillation. At small amplitudes of the
displacement of the top boundary, A� 1, the Lagrangian mean flow increases quadrat-
ically, O(A2). But at very large amplitudes, the Lagrangian mean decreases through the
Bessel functions as O(A−1/2), due to averaging sinx over many wavelengths. However
near the bottom, there is always a region where the local amplitude AY is small and
where the small amplitude predictions are sufficient. In figure 3, we plot the profile of
the Lagrangian mean flow divided by A2εRe for A � 1, A = 1 and A = 3. We see the
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Figure 3. The Lagrangian mean horizontal velocity on the down slope at x = π/2, divided by
A2εRe as a function of height across the channel Y for A� 1 (eqs. 3.1+4.1), A = 1 and A = 3
(eq. 5.1).

Lagrangian mean flow does not increase as A2 for A > 1, dropping by 30% at A = 3. We
also see that the curves merge near the bottom.

6. Experiments
6.1. Annular channel

Experiments were performed in two apparatus, first an annular channel and then a
straight channel. The annular channel avoided open-end effects but suffered a small
secondary circulation, while the straight channel allowed plane flow but had a gradual
loss of particles from the test section and a possible problem of balancing flows.

The annular channel was made of Plexiglas, with mean radius R = 200 mm, width
∆R = 40 mm and height h = 16 mm (figure 4a). The oscillating fluid motion was created
by the rotation of the upper plate, with velocity U0 cosωt. The bottom of the channel
was covered with either solid ripples of triangular shape (figure 4b), or an erodible bed of
particles (figure 4c). The wavelength and amplitude of the solid ripples were 2π/k = 50
mm and η0 = 1 mm (half vertical distance between troughs and crests), whereas those
of the erodible bed were 2π/k ≈ 70 mm and η0 ≈ 1 mm. The mean fluid thickness was
h = 15 mm with the solid bottom and h = 7 mm with the erodible bed. Particle Image
Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements over the flat
bottom have shown that the flow is close to plane Couette flow with a small secondary
flow directed outwards in the upper half and inwards in the lower half. This secondary
flow due to centrifugal forces has characteristic radial velocity (ρU0h/µ) (h/R)U0, of a
few percent of U0, see Charru, Mouilleron & Eiff (2004) for a more complete description.

Two silicon oils with different viscosity were used, µ = 0.05 Pa s (density ρ = 940
kg m−3) and µ = 1 Pa s (ρ = 980 kg m−3). The erodible bed was made of acrylic particles
with density ρp = 1180 kg m−3; these particles were sieved, and diameter distributions
were then determined from optical measurements under a microscope. Two distributions
were used, one with mean diameter d = 0.580 mm and small standard deviation of 0.044
mm, and the other with d = 0.500 mm and larger standard deviation of 0.120 mm.
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(a)

(b) (c)

R = 200 mm

U0 cosωt

h

Figure 4. Sketch of the annular channel. (a), general view with the oscillating upper plate;
(b), lower wall covered with solid triangular ripples; (c), lower wall covered with particles.

6.2. Drift over the wavy bottom

Due to the slowness of the drift motion as compared to that of the main oscillation,
techniques providing the instantaneous velocity such as Particle Image Velocimetry (PIV)
or Laser Doppler Anemometry (LDA) lack the precision required. The drift has therefore
been measured by means of a dyed filament placed vertically in the channel. The dye
was first dissolved in a few drops of a mineral oil (Soltrol) and then mixed with the same
silicon oil as the surrounding fluid. It was deposited carefully through a small hole in
the upper moving plate, with the help of a syringe fitted with a hollow needle. Figure 5a
shows an example of such a filament, enhanced by image processing. Taking care of the
verticality of the filament, and of the absence of any bubble or dust, the deformation was
reproducible. The motion of the filament was recorded with an interlaced colour CCD
camera, with resolution 768× 576 pixels and a sampling frequency of 25 Hz. The field of
view was 40× 30 mm2. For each run, a few tens of oscillations were recorded. At longer
times, molecular diffusion tended to blur the filament, especially for large amplitude
motions or with the low viscosity fluid. On erodible beds, measurements of the bed
profile with an ultrasonic probe (Charru, Mouilleron & Eiff 2004) gave the amplitude η0
and wavelength 2π/k of the ripple.

As the driving plate is set in oscillatory motion, the filament is stretched back and forth,
as shown in figures 5a-e; here the filament is placed above a solid ripple at the middle of a
down slope, and the upper plate motion corresponded to dimensionless velocity A cosωt
(with scale ω/k). It can be noted that after one period, the filament does not recover
its initial straight shape, but appears bent (figure 5e). This departure from the vertical
initial position does not correspond to any drift but to an inertial transient effect due to
the fact that the fluid is initially at rest. We have verified that the same departure also
occurs over a flat bottom, and reaches a stationary shape typically after one period. The
displacement of fluid particles corresponding to the exponentially decaying part of the
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Figure 5. Pictures of the dyed filament in the annular channel on the down slope (a-e), during
the first period at times 25ωt/2π = 0, 2, 12, 23, 25 (with the filament enhanced by image
processing), and (f), comparison of the dimensionless displacement in (e) (◦) to the calculation
of the transient effect. Parameters: h = 0.015 m, µ = 1 Pa s, U0 = 0.16 m s−1 and f = 1 Hz
(kη0 = 0.126, ε = 0.067, Re = 1.4 and A = 3.2).

fluid motion, ut(y, t), can be calculated using the Laplace transform, giving

xt =
∫ ∞

0

utdt = −A
6

(y − y3).

This dimensionless displacement does not depend on the Reynolds number, unlike the
characteristic time Re/π2 of the transient, which was less than unity in the experiments
presented here. The displacement after one period shown in figure 5e is compared to the
above prediction in figure 5f, showing good agreement.

As the number of oscillations increases, the drift becomes apparent: the filament at
the end of each oscillation takes an S-shape whose amplitude increases with time, as
illustrated in figures 6b. This figure corresponds to the flow over a solid ripple in the
annular channel after 39 oscillations. It can be seen that the drift is directed towards
the crest in the upper part of the fluid layer, and towards the trough at mid-height, in
agreement with the Lagrangian calculations. At a distance of about one millimetre above
the bottom boundary, which is about one-tenth of the channel height, the displacement
is small and the filament nearly vertical. There, close inspection shows that the small
drift is directed towards the crest.

We have verified that the deformation is symmetric on the other side of the ripple, and
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(a) (b)

Figure 6. Dyed filament in the annular channel, on the right side of a solid ripple: (a), initial
straight filament; (b), deformed filament after 39 periods of oscillation; the length of the dark
marks is 5 mm. Same parameters as in figure 5.
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Figure 7. Observed drift of the dyed filament in the annular channel (◦) compared to the
calculations for A� 1 (thin curve) and A = 3.2 (thick curve). Same parameters as in figure 5.

that the filament remains straight when it is deposited above a crest or a trough, when
the transient effect is substracted. For other runs with different oscillation frequency and
amplitude, and also with the erodible bed, the deformed filament exhibited the same
shape.

In order to compare quantitatively the measured drift to calculations, points of the
deformed filament were extracted from the images. The displacement after one period,
which corresponds to the transient effect, was then subtracted from the displacement
after typically 40 periods, and divided by this time, giving the experimental mean drift
velocity. The result is shown in figure 7, and compared to the calculations. It can be
seen that in the lower part of the channel, the agreement is good for both the small
and large amplitude calculations. Near the top moving wall, the velocity from the small-
amplitude calculation (thin curve) overpredicts the measured velocity by a factor about
four; the large-amplitude calculation (thick curve) is much closer to measurements. The
remaining difference might be due to the Reynolds number being not small as assumed
in the calculations (Re = 1.4), or to some coupling between the drift and the centrifugal
recirculation flow.
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(a) (b)

U0 cosωt particles h

Figure 8. Sketch of the straight channel. (a), side view showing the pulley driving the
oscillating upper and lower plates, and the fixed plate supporting the particles; (b), cross view.

6.3. Further experiments in a straight channel

The dyed filament in the annular channel was observed to deform radially when seen from
above, due to the centrifugal recirculation flow, with displacements in the azimuthal and
radial planes of the same order of magnitude. Although the streaming flow due to ripples
in the annular channel is a priori weakly coupled with the slow centrifugal flow, the
small radial flow may be responsible for the difference observed near the upper plate. In
order to confirm this explanation, a second apparatus has been built which avoids the
problem of the centrifugal flow. This apparatus consists of a straight channel enclosed
in a plexiglas box two meters long, 0.066 m high and 0.120 m wide (figure 8). The wavy
bottom was a bed of particles – no fixed bottom – deposited on a horizontal plate placed
at mid-height in the box. The Couette flow is created by the oscillating motion of two
plates, close to the upper and lower walls of the enclosing box. Both plates are driven by
an electric motor monitored by a computer, through a system of pulleys and cables as
sketched in the figure. The upper plate creates the shear flow above the bed, whereas the
lower plate drives a back flow to avoid a longitudinal pressure gradient. The maximum
allowed amplitude of the plate motion is U0/ω = 200 mm. The thickness h of the fluid
layer was varied between 11 and 16 millimetres.

In order to verify that the upper and lower flows were balanced and that there was no
residual pressure gradient, the bed of particles was replaced by a flat rigid plate, and fluid
velocity was measured using a particle imaging velocimetry (PIV) technique, up to Re =
119. Figure 9 displays velocity profiles in the vertical plane of symmetry of the channel,
at phases of the oscillation separated by 2π/5, and Re = 119. These measurements are
compared to the expected parallel flow at the same Reynolds number, governed by the
momentum equation ρ∂tU = µ∂yyU with the no-slip boundary conditions at the walls.
It can be seen that the agreement between the measurements and the expected flow is
quite good. Such a good agreement was found to hold in the middle half-width of the
channel, as well as in its middle half-length (one meter). Note that the Reynolds number
for all the subsequent experimental data is much smaller.

The vertical dyed filament was deposited in the channel as shown in Figure 10a. As the
number of oscillations increases, the drift becomes apparent, with the filament remaining
in the vertical plane: figure 10b corresponds to the flow over an erodible rippled bed after
8 oscillations. As in the annular channel, the drift is directed towards the crest in the
upper part of the fluid layer, and towards the trough at mid-height, in agreement with
the Lagrangian calculations. At a distance of about one millimetre above the bed, the
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Figure 9. Oscillating Couette flow on the flat bottom in the straight channel: (+), measured
fluid velocity at the center of the channel, at phases separated by 2π/5; (◦), measured upper
plate velocity; (—), solution of the momentum equation at the same phases. Parameters: f = 0.1
Hz, U0 = 55 mm s−1, h = 16 mm, ρ = 940 kg m−3, µ = 0.05 Pa s, (Re = 119).

(a)

(b)

Figure 10. Dyed filament in the straight channel with the erodible bed, on the right side
of a self-formed ripple: (a), initial straight filament; (b), deformed filament after 8 periods of
oscillation; the length of the dark marks is 5 mm. Parameters: h = 0.011 m, µ = 0.05 Pa s,
U0 = 0.07 m s−1 and f = 0.5 Hz, 2π/k ≈ 0.070 m, η0 ≈ 1.1 mm (kη0 ≈ 0.10, ε ≈ 0.1, Re = 7.1
and A = 2.0).

displacement of the filament is small, so that its direction cannot be decided because the
particles oscillate and this motion mixes the fluid and blurs the filament.

Figure 11 compares the predictions to measurements over an erodible rippled bed. As
for the annular channel, the small-amplitude calculation predicts larger velocity, whereas
the large-amplitude calculation provides good agreement. When compared to figure 7,
it can be seen that the agreement between measurements and calculations near the
upper plate is better in the straight channel than in the annular channel, confirming our
expectation about the effect of the slow centrifugal flow.
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Figure 11. Observed drift of the dyed filament in the straight channel (◦) compared to the
calculations for A� 1 (thin curve) and A = 2.0 (thick curve). Same parameters as in figure 10.

7. Conclusion
As discussed in the introduction, the usual explanation of ripple growth on an erodible

bed is that the mean motion of particles from troughs to crests is driven by the mean fluid
flow created by advection. Flow calculations assume that the bed is fixed, and that the
particle flux is related to the bed shear stress by some semi-empirical power law similar
to those used for steady flow. These assumptions, which ignore in particular the effect of
particle motion on the fluid flow as well as particle inertia, have not received any exper-
imental confirmation until now, with quantitative assessment. Hence the motivation of
this paper, which reports quantitative measurements of the mean drift in viscous Couette
flow, with comparison with theory; observations on particles motion are postponed to
a future paper. The mean drift of a dyed filament of fluid was measured over artificial
and self-formed ripples. In both cases this drift appears to be towards the crests near the
upper part of the channel and away from the crests in the lower part, except very near
the bed where it is oriented again towards the crests.

Since the fluid thickness was smaller than the thickness of any oscillating boundary
layer, and that the amplitude of the oscillations was not small, none of the available
calculations was relevant and new calculations were needed. The sense of the Eulerian
drift was found to be opposite to that of the filament; however Lagrangian calculations
allowed the right sense to be recovered. The small-amplitude Lagrangian drift, which
is the sum of the Eulerian mean flow (3.1) and the Stokes drift (4.1), overpredicts the
measured drift of the filament. Large-amplitude calculations (5.1) provide much better,
quantitative, agreement. It was found that the Stokes drift dominates the Eulerian mean
except very near the bottom boundary, where the Stokes drift vanishes quadratically and
the Eulerian mean vanishes linearly. Thus the Lagrangian mean flow is towards the crests
in a thin region next to the bottom boundary, of thickness 0.12 times that of the fluid
layer. In the experiments, this thickness was about one millimetre which is larger than
the particle diameter; however larger particles would be sensitive to reverse Lagrangian
mean flow, down to troughs.
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