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A linear stability analysis is presented for the Kelvin—Helmholtz instability in a Hele-Shaw cell, an
analysis based on the Navier—Stokes equation to improve on the previous Euler—Darcy study that
Gondret and RabaufPhys. Fluids9, 3267 (1997)] made of their own experiments. @002
American Institute of Physics[DOI: 10.1063/1.1446884

I. INTRODUCTION results are compared to experiments and discussed in Sec.
IV.

Recently Gondret and Rabdudtudied the Kelvin—
Helmholtz instability in a Hele-Shaw cell. Two vertical
sheets of glass 1.2 m long were held with a 0.35 mm gapl. EULER-DARCY ANALYSIS
separating them. The edges were sealed so as to retain in the
lower h_alf a V?SCOU.S silicpn oil and in the upper half nitrogen roportional to the pressure gradient in access of the hydro-
gas, with a viscosity ratio of a few thousand. Two holes a tatic balance
both ends allowed liquid and gas to be injected at one end at '
a pressure 10% above atmospheric and removed at the other
end, so achieving a horizontal gas flow of several thand

in the same direction a liquid flow of several mitsAbove Here (u) is the velocity averaged across the gah, i& the
a critical flow, the flat interface was unstable and waves grev&ap thicknessy. the viscosity,p the pressurep the density
FO a finite amplitude. A sm_qll sinusoidal yariation in the in- andg the gravitational accelération. Some inertia can bé in-
jection pressure gave a critical flow for different wave NUM-"roduced by first rewriting the Darcy-flow equation as a force

bgrs. The reduced Reynold; number for the gas flow, aPP'Galance and then adding the density times the material accel-
priate to the nearly unidirectional flow, was about 7 and Wass ation of the gap-averaged velocity:

very small for the liquid. () 3
In addition to the experiments, Gondret and Rabaud per- (ﬁ u n v ) — _Vp4+ M
— . =— — —(u). 1
formed a simple stability analysis that successfully predicted ot (w-v{w Prrg h? (W @)

the onset of instability. Their analysis adopted the normalye note that this treatment of the inertial forces is a simpli-
description of flow in a Hele-Shaw cell that uses a gap+jcation because some fluid will be moving faster that the gap
averaged velocity. To the Darcy equation governing the flowyyerage and so will have larger accelerations. To take some
they added the inertia term of Euler, again using only theyccount of this, Gondret and Rabaud suggested multiplying
gap-av_eraged yelocny. Recognizing a little difficulty here INthe (u)- V(u) term by & which would be appropriate if the
averaging nonlinear terms, Gondret and Rabaud suggested j|qcity profile across the gap were parabolic. But the profile
an Appendix that a correction factor §hould multiply the s not exactly parabolic when inertia forces act differently
advective derivative, which is appropriate for the average ofcross the gap, so we will not make their suggested modifi-
the product of two velocity fields with parabolic profiles cation.
across the gap. o . In the base state, let the gas bezin0 and the liquid in

Our purpose in this paper is to replace the gap-averagegk0. We use subscriptg and| on quantities to denote gas
description with an asymptotic analysis of the Navier—Stokesind liquid. The base flow is horizontal withgU o= U,
equation, exploiting the thinness of the gap compared to thgecause the two flows are driven by the same pressure gra-
wavelength of the instability, which is of the order of the dient.
capillary length 27y y/Apg=1 cm, with the surface tension Now consider a small-amplitude perturbation of the in-
v, density differencedp, and gravityg. We start in Sec. Il terface fromz=0 to z= £,e'**~ ), with real positive wave
with a quick review of the Gondret and Rabaud Euler—Darcynumberk and complex wave speed We thus start by ex-
stability analysis, before proceeding to our Navier—Stokesamining the temporal stability. The small-amplitude approxi-
analysis in Sec. lll. Both stability analyses are linear. Themation requires a small slop&,<1. The perturbation flow

If inertia is ignored, the flow in a Hele-Shaw cell is

2

h
<u>=—@(Vp—pg).
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is potential, and so has a spatial variat@h*~cV*kZ jn z . T
=0. Satisfying the kinematic boundary condition, we find  Pi=pgUgkéo—p9s0— 4 ¥k

the perturbation flow
The pressure gradieritp, in the Darcy flow of the liquid

(uy=(£1i)(U—c)kgoekxcvrke, induces an upward velocity of the peak&cZ,
The Euler—Darcy momentum equati¢h) gives a perturba- =h?kpi/3u , with the result(4) for the growth rate.
tion pressure, The phase velocity of the wave comes from the viscous

pressure dromv=3ﬂguggo/h2 across a peak in the gas
flow past the stationary perturbed liquid surface. The pres-
sure gradientkp, drives a perturbation Darcy flow
2 _ . . . . . _
When imposing the pressure boundary condition, we need t? kpv/3;L|—U|I§§o in the liquid, .Wh.'Ch prop.aga}tes the inter
. . . ace atU, relative to the base liquid velocity, ; hence the
add to the pressure perturbation the basic hydrostatic pres- :
. . result(4) for the phase velocity.

sure evaluated at the perturbed surfac@g{. The jump in ; .

; , We note that our explanation of the mechanism of the
pressure across the boundary is set equal to the CaIOIIIarIXerin—HeImhoItz instability in a Hele-Shaw cell is not
pressure- (7/4)yk?¢, where we have included the Park and y

Homsy correction factors/4, which takes into account the fraught with the dangers of using Bernoulli suction to ex-

variation of the principal radii of curvature across the gap for.pla.In t_he opgmal K(_aIV|_n—.HeIrr_1hoItz. mstabﬂny_bgtwgen FWO
inviscid fluids. For inviscid fluids, time reversibility implies

a liquid that is perfectly wetting. Gondret and Rabaud did nott ) : .
) : . . : he existence of two modes, one growing and one decaying,
include this#/4 factor. Thus, we obtain the dispersion rela- . ) .
. and a correct argument must explain both. Obviously suction
tion . : .
at the peak explains the unstable mode. Less obviously, it
o .3 explains the stable mode. The suction force produces, in an
~pg(Ug=C)k+i ﬁf“g(ug_c)_’)gg inviscid fluid, an upward acceleration. An upward accelera-
tion of a downward moving peak is a decaying mode.

3 ) _
p=1 p(U_C)Z_iﬁz(U_C) kgoelk(x_cr)+kz.

3 T
_<P|(U|_C)2k_i W/J«I(UI_C)_PIQ) == Z)’kz- 2
Ill. NAVIER-STOKES ANALYSIS
In the experimental conditions of Gondret and Rabaud 01;\ Formulation
small viscosity and density ratiug<u; and pg<p; with :

pg!p1> il uf so thatpgUi>p U, and small reduced Rey- We now move on from the Gondret and Rabaud Euler—
nolds number in the liquid flowp,U,kh?/ <1, the disper- Darcy analysis that used a gap-averaged veldgijy In this
sion relation(2) reduces to section we calculate the variation of the velocity across the
3 gap using the full Navier—Stokes equation. The linearized
ngSk_iFMI(ZUI_C)_PIQI%')’kza (3)  Navier—Stokes equation for the perturbation velocity

u(x,y,zt) and pressur@(x,y,z,t) is

where we have usedq,Uy= U, . From this simplified dis-
persion relation, we extract the phase velodatyand the p
growth ratekc; ,

ou
E+UvVu+u-VU)=—Vp+,uV2u, (5)

where the base flow has a parabolic profile across the gap,

a
— k2 2
k2h2 P|g+ 4 Y - B y_
Cr22U| ) kCi2 3_,lL| ngg_ T (4) u=u 2 1 h2 (11010)
We again use subscripgsandl for the gas ire>0 and liquid

It is useful for later developments to understand the sim—_n <0

lified physics in th i I itions. B h o o
plified physics in the experimental conditions. Because t ¢ From our examination of the simplified physics in the

liquid is more viscous and has a higher inertia, it moves : tal diti f Gondret and Rabaud take th
slowly. The gas thus flows past an effectively stationary ”q_experlmen al conations of *>ondret and Rabaud, we faxe the

uid surface az= Z,e™*. In order to accelerate over the peaksgas to flow over an effectively stationary perturbed liquid

_ s aikx ; it
and to decelerate into the troughs of the perturbed interfac%,urfacez_ {oe™. The wavelength of the instability is much

there must be a low pressure at the peaks and a high pressu?ége,r than the thickness of the gap. As in Igbncaﬂon thgory
in the troughs. The magnitude of this suction pressure at th nd in boundary layer theory, the pressure is asymptotically

peaks is given by Bernoull aﬁgUékzo. This destabilizing constant across the thin gap and the pressure-driven gas flow

suction is to be offset against the stabilizing effects of the> N the plane of the walls. In these circumstances, we find

liquid hydrostatic pressure,glo plus a capillary pressure that ? p%s§|ble S?Imt'p? of the “Pelacljnzed Navier—Stokes
(ml4)vk?¢,. The stabilizing effects win at all wave numbers equation(5) is a potential pressure field,
if the gas velocity is below a critical value: stableg§U p=pgU3kioe 7P,
<Vvpigmy.

Above the critical gas velocity, there is a range of un-
stable wave numbers with a net suction pressure at the pea '
in the liquid, u=(1,0j)Ugk{oe™* 4 (y/h),

with nondimensional pressure amplituggalong with a flow
'Ipsthe direction of the pressure gradient,
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with a variation across the gap given by the nondimensionahumbers, the pressure amplitude varie®as3i/Re. At high
profilef. We define the nondimensional coordinate across thReynolds numbers, the pressure amplitude is Complex and
gap »=y/h. The above ansatz for the pressure and velocityyecreases.

satisfy the linearized Navier—Stokes equati&h if the ve-
locity profile f and pressure amplitude satisfy

1
f n , (6)

3(1— 2)f= _ _
S(1—n)f P+iRe

with reduced Reynolds number RﬁgnghZ/,ug for the gas
flow. The no-slip boundary condition on the sidewalls is

f=0, atgy==1.

C. Low Reynolds numbers

The low Reynolds number behavior can be studied by
making an asymptotic expansion,

f~fo+Refy,
P~Re ! Py+P;.

The governing equatiof6), boundary conditions, and nor-

The kinematic boundary condition on the effectively sta-malization are all expanded. At leading order we find the
tionary liquid surface does not match the velocity profile Poiseuille profile of inertialess Darcy flow,

Realizing that there will be an adjustment zone near the me-
niscus with a height equal to the width of the gap, we need

fo=3(1-7%, Py=3i.

only require the total normal component of the mass-flowsThe inertia-induced correction is
match. Hence we normalize the solution to have net flow of

unity in the nondimensionalization,

1
f fdyp=1.
0

f1=i 555(—5+337°— 359"+ 77%, P,=-%.

The numerical results in Fig. 1 for the velocity profile
f(n) are consistent with these asymptotic results. At Rey-
nolds numbers 1 and 3, the real part is parabolic in shape

The dynamic boundary condition equates the capillarywith a centreline value of 1.5. The imaginary part, with van-

pressure to the jump between the pressure in the Darcy flowhing integral from the normalization constraint, is positive
of the liquid, including a liquid hydrostatic contribution at near the walls and negative in the center, with a centerline
the perturbed surface, and the dynamic gas pressure dgalue of—0.054 Re. Figure 2 for the pressure amplitude also

scribed by the pressure amplituBle
3 m
ng§kP+l V(U|—C)+p|g= - Z’ykz,

corresponding to the simplified dispersion relati@nin the
Euler—Darcy analysis. Solving for the phase velocityand
the growth ratekc;, we find

2h2
c,=U,(1+iReP;)) kci:3_m —,og,ugpr—T ,
(7
whereP= P, +iP; and where we have usgdU,= u4U4 to
simplify the phase velocity.
B. Numerical solution

The velocity profilef was found by integrating Eq6)

exhibits the asymptotic behavior &~ 3/Re andP,~ — 32
=—1.543.

At low Reynolds numbers we have found the pressure
amplitude from the Navier—Stokes equation is

P~3i Re 1- 3 8

The corresponding nondimensional expression from the
Euler—Darcy analysis of Sec. Il, valid for all Reynolds num-
bers, is

P~3i Re 1-1.

Thus, the destabilizing inertial effects, the real parPofre
more than 50% larger than estimated by the Euler—Darcy
approximation. The Gondret and Rabaud correction factor of
2is seen to be insufficient, at least at low Reynolds numbers.
We have already noted that the value of the Reynolds
number in the experiments for the flow of gas was 7. The
numerical results in Fig. 2 show that the low Reynolds num-

numerically with a fourth-order Runge—Kutta scheme. A So,er asymptotics will provide a reasonable estimate for the
lution was first found to the non-normalized problem, settlngpressure amplitude at this less-than-small value, to within

P=1 and shooting fromyp=0 with symmetric condition
f’(0)=0 and a guess for the complex valuef¢d) that was
adjusted by linear extrapolation to gif¢1)=0. The solu-
tion pairf andP were then both divided bﬁé fd# in order
to normalize the solution.

Results for the velocity profildé(») at Reynolds num-

errors of 15%.

D. High Reynolds numbers

At high Reynolds numbers, the gas flow has a different
behavior in the center of the gap and near the walls. In the

bers Re=1, 3, 10, 30, 100 are given in Fig. 1. The real andCenter, the pressure perturbation accelerates the gas as it is
imaginary parts are plotted separately. At low Reynolds num&dvected along by the mean flow,

bers, Re=3, the velocity profile is parabolic and mostly real.
At high Reynolds numbers, Re30, the velocity decreases in

the center of the gap and peaks near the walls.
Results for the pressure amplituBeas a function of the

f~—P/3(1-7?.

Thus, the velocity profile increases away from the centerline;
see Fig. 1 for Re30 and 100, because moving with slower

Reynolds number Re are given in Fig. 2. At low Reynoldsmean flow off the centerline it has longer to be accelerated.
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FIG. 1. The velocity profile$(#) at various Reynolds
numbers, Re-1, 3, 10, 30, and 100. In the real péft,

n the centerline valud,(0) decreases as the Reynolds
number increases. The value of the imaginary part near
the wall »=1 increases as the Reynolds number in-
creases.

0.8 T T T T

Near the walls viscosity becomes important. A balance p__ _ 1/(tInRe+0.402+i0.175. (9)
between viscosity and advection is possible within a bound-
ary layer of thicknesss=Re '®, where to match with the
interior f =0O(P/6). To exhibit this boundary layer behavior, These asymptotic results are plotted in Fig. 2.
we have plotted in Fig. 3f;6/P as a function of (1 At high Reynolds numbers the pressure amplitedge-
— )/, at Re=30, 100, 300, and 1000. We see that with thiScreases slowly with increasing Reynolds number. This de-
rescaling the peaks in the velocity occur at the same positioBrease has its origin in the slow speed of the base flow near
in the boundary layer and with essentially the same amplitg the walls. Taking longer to be advected at this slow speed
tude. o _ _ through a wavelength, a smaller pressure perturbation is re-
_ Thﬁ ?ormallzatlon integral has a leading-order contribu-yyired to achieve the same velocity perturbation. The conse-
tion [3 °P/3(1—n)dn~3PIn & along with O(1) correc-  quences of the smaller pressure amplit@ién dispersion
tions from the boundary layer and the central region. Werglation (7) are a smaller phase velocity and lower growth

have evaluated thes@(1) contributions numerically as rate: it is as if the base flow is moving slower. Thus at high
1 _ Reynolds numbers the instability is controlled not by the
JO fdy~—P(5InRet0.402+i0.175. gap-averaged value of the base velocity nor the average of its

square, giving greater weight to the peaks and leading to the
Equating this to unity gives the asymptotic behavior of theGondret and Rabaud suggested factog, dfut is more influ-
pressure amplitude at large Reynolds numbers, enced by the slower moving parts of the base flow.
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IV. COMPARISON WITH EXPERIMENTS quantities using the natural capillary lendth and the gas
A. Threshold of instability velocity V, whose Bernoulli pressure has the capillary pres-

sure of this length,
In this section we compare our theoretical predictions

with the experimental observations of Gondret and RaBaud. | — | 7Y and V.= [ 7Y
We start with the minimal gas velocity for the appearance of ~ * 4pi9 * 2pgly
the instability, and in the following section look at the phase ) " 1 .
velocity. In the expgr;ments;x=2.06 10 Nfg , p=965kgni >,

In their experiments, Gondret and Rabaud added a smaﬂzg;sgl ms?, and py= 1?? kgm'®, so thatl,=1.31
oscillatory perturbation to the pressure of the liquid as it 10 m andV*:4..4O ms - -
entered the device. Varying the frequency of this excitation, Us!ng these scalings, the predictions of the Eyler—Darcy
they could measure the threshold velocity of the gas for in@nalysis of Sec. Il for the threshold gas velocity may be
stability at different observed wave numbers. A more carefulV'tten as
measurement of the decay length of stable waves suggested (Ug

2 1+(Kl,)?
T2k,

that the true critical velocity might be 2% higher than these
reported threshold velocities. We plot in Fig. 4 their thresh-
old gas velocitiedJ has a function of the observed wave which is also plotted in Fig. 4, along with our results from
number k. We have nondimensionalized these observedhe Navier—Stokes analysis of Sec. I,

(10

*
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-0.05

-0.1

015 FIG. 3. The boundary layer scaling of
1/3 y lay g
fr/P Re / the velocity profile at high Reynolds
numbers. The curves increasing from
02 the bottom are for Reynolds number
Re=30, 100, 300, and 1000.
-0.25
-0.3
-0.35 1 1 L 1 1 1 1 L Il
0 1 2 3 4 5 6 7 8 9 10
(1 —n)Re'/?
Uq 2 1+(kl,)? 1 cosity and the density of the liquid are very much larger than
- = , 11 i oA
A 2k, —P.(Re) (1D the values of the gas, so that the liquid appears to be station

ary as far as the gas flow is concern. It is not difficult to
generalize our approach to the Navier—Stokes problem to the
case of two fluids with arbitrary viscosity and density ratios.
numberk. In the range of interes®, ~ — 1.5. Being larger We find that if the experiments had used air and water then

than unity, the Navier—Stokes analysis predicts a lower critiffere would have been a 5% overestimate by the assumption

cal gas velocity, lower by about {1.5, i.e., about 82% of of infinilty ratio;. The experimepts, howeve-r, used.a much

the Euler—Darcy value. more viscous liquid, and for this larger ratio we find that
Figure 4 shows that the improved Navier—Stokes theorfhere would be no detectable change in Fig. 4.

does not produce improved predictions of the experimental Another simplification of our theory is the assumption

results. In view of these poor predictions, we have considthat the gas flow is incompressible. With gas velocities a few

ered a number of differences between our theory and thpercent the speed of sound, one would anticipate modifica-

experimental conditions. First we have assumed that the vigions of the gasdynamics by the square of that ratio, i.e.,

where P, is the real part of the pressure amplitude. It is a
function of the reduced Reynolds numberﬂégkhzlv, see
Fig. 2, and so varies with the gas velocity, and the wave

14 T T T T T
.
+
13 b .
+
12 k * i FIG. 4. The critical velocity of the gas
) + U, for the appearance of an instability
+ as a function of the wave numbér
Ug/V* N LT nondimensionalized by the capillary
LN NG + ] lengthl, and the associated gas veloc-
T el b . L ity V, . The points are the experimen-
T T tal results of Gondret and Rabaud. The
T - dashed curve is the predictigt0) of
the Euler—Darcy analysis, while the
continuous curve is the predictidgfl)
09 L ] of the Navier—Stokes analysis.
08 L L . : L
0.4 06 0.8 1 12 1.4 16
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totally negligible. There is, however, an effect of the com-B. Phase velocity

pressibility on the base state of the gas, because the inlet The phase velocity was measured by Gondret and
pressure was typically 10% above the atmospheric PressurRanaud to bec, =1 mms 1. We discuss the phase velocity
This means that the density of the gas near the inlet is typiy, 4 nondimensionalized form by scaling with the velocity of

cally 10% higher. This in turn reduces the value of our ve-e liquid when the gas has the velocity , i.e., scaled with
locity scaleV, by 5%. The experimental conditions near to Vie=ugVy lpi. In the experimentsy, =4.4 mst Mg

the inlet are relevant, because it is there that one observes] 75<107° Pas and w;=0.1Pas, so thatV,,
whether the waves are growing or decaying. =0.77 mms?®. Thus, the nondimensional measure of the
The 10% increase in the base pressure near the inlet hapserved velocity i, /V,, =1.30.
a second effect. The gas velocity was measured in the ex- The Euler—Darcy theory of Sec. Il predicts a phase ve-
periments by applying Darcy’s law to the basic pressure gralocity that is a little higher,c,/U;=2.00, i.e., c,/V,,
dient, which was assumed to be linear and given by the dif=2.00. The Navier—Stokes analysis of Sec. Ill predicts at the
ference between the pressure at the inlet and outlet divide@eynolds number Re5.84, corresponding to the marginal
by the distance between them. A linear pressure gradietwaves withU,/V, =0.816 andkl, =0.95, a pressure ampli-
gives a gas velocity that is constant along the channel. Aude P;=0.637, which gives a phase velocity b¥), c, /U,
constant gas velocity does not give a constant mass flux 2-24, i.e.,c,/V|, =1.83. The two theories thus signifi-
when the density varies. In order to have a constant mas@ntly overestimate the phase velocity of the marginally
flux, the square of the pressure must vary linearly down thés:tabl_e waves. The omissior_ls of the theories disc_ussed _in the
channel. This means that the gas velocities are 5% lowdp'€Vious section would obviously lead to some minor adjust-
near the inlet and 5% higher near the outlet. Hence ond'€Nts to these values, but would not give the significant
should reduce the observed gas velotity by 5%. As the correction required.

velocity scaleV, should also be reduced by 5%, there will us %gi;eeﬁg\:\?es;hig\% S;msﬁl'gi?cgsften;;g %fnthti;ne?]';e
be no effect on the plotted ratidy/V, . The fact that the ' ' 9 P

ratio U,/V, does not change value is an unforeseen a dvanYeIOCit.y Withp_ut modifying the gas velocity at the threshlo_ld
9 x . : of the instability. The two theories apply a pressure condition

tage of making 'the nondimensional plot. at the interface with a jump of the capillary pressure

Our 'theoretlc':al study also assumed.that the base flovt!_ 7l4)yk?¢. This takes into account the curvature of the
was horizontal, i.e., we ignored the radial flow out of thejnierface in thexz plane. There is, however, a much larger
source and into the sink at the ends of the channel. Thig,yature 14 in the perpendiculay direction across the gap.
radial flow introduces an extra pressure drop, roughlyrhe |arge capillary pressurg’h associated with this curva-
equivalent to extending the length of the channel for eachyre does not alter the analysis because it is constant, inde-
hole by (H/2m)In(H/27R), whereH is the height of the gas pendent of the displacement of the interface. A problem
flow and R is the radius of of the hole. In the experiments arises, however, from relatively small corrections to this
H=5 cm andR= 3.5 mm, so we find that each hole adds 6.5|arge constant pressure jump, because the corrections can be
mm to the length of the 1.2 m channel, i.e., a correction ofof the same size as the term 67/4)7k2§, and they can also
just over 1%. As the experimental velocities were calculatedsary with the displacement of the interface.
from an assumed Darcy flow, this 1% extra pressure drop The liquid used in the experiments wets the sidewalls
reduced the observed velocities by 1%, which is in the corperfectly, and so to leading order the meniscus adopts a
rect direction but too small in magnitude. We have not ad-semicircular shape across the gap. As the wave crests propa-
justed the experimental data for this small effect. gate along the channel, the meniscus rises and falls. As the

A further assumption in our theory that affects the meniscus falls it leaves a thin film on the sidewalls of thick-
threshold velocity is the assumption that the basic flow has 8ess 1.38(uu,/v)??, whereu, is the normal velocity of
parabolic profile. At the reduced Reynolds number of Rethe interface. The presence of these thin films increases
=7, the base flow only becomes fully established after onslightly the curvature of the interface, contributing to a
wavelength, i.e., about 1 cm. We note, however, that in th&lightly higher jump in the capillary pressure. Viscous dissi-
experiments a splitter plate of 10 cm divides the streams dpat?on in the thin films leads to a similar additional C(_)ntri-
gas and liquid before they meet. Hence, at the separation @ution to the pressure drop. This problem was studied by
the plates and at the velocities used, the base flow should grethertor’” Adopting his results for a tube to our channel,
fully established at the place where the instability was ob€ found the pressure drop across the falling meniscus is
serve_d. _ o o3

Finally, our analysis made a long wave approximation, 7 '“luﬂ)
kh<1. This resulted in the neglect of the slightly different h
flows near the meniscus, modifications of the flow that ex-
tend away from the meniscus a distance of about a gap thicland the pressure drop across a meniscus rising over a film
ness. In the experiments the value of this small parametdgft behind by the meniscus descending at the same speed,

waskh=0.13, which may not be so small. We are currently o3
u
1—0.976( al ”) .
Y

trying to develop a theory for this correction, but at this time
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The difference between these two pressures must be addedttinties in our analysis in this section, for example, our se-
our jump in the capillary pressure-(mr/4) yk¢. lection of the amplitude of the wave, it is clear that the effect
Now for the marginally stable surface displacemént is significant. Some additional experiments could usefully be
= {, cosk(x—ct), the normal velocity of the interface is, made measuring the pressure jump across a meniscus in a
= {okc, sink(x—ct), i.e., out of phase with the displacement. Hele-Shaw cell that oscillates up and down with similar am-
To use in the linear stability analysis the new additional presplitudes to those of the propagating waves.
sure drop, which is nonlinear, we break?trinto its Fourier After their first paper on the subject, Gondret, Ern,
components, in particular, $if=1.0712sirrhigher har- Meignin, and Rabaddwent on to study the transition from
monics. Adding the extra out-of-phase pressure jump to theonvective instability to absolute instability by following the
boundary condition, we find that the expression for the phasevolution of an initial impulse. They found the transition to

velocity (7) becomes absolute instability occurred in their experiments when the
c gas velocity was 15% higher than the threshold for any in-
LI i1Re P stability. A numerical study of the Euler—Darcy dispersion
U, relation, now including ther/4 Park and Homsy factor and a

PSARES h\¥% ¢, |23 factor of & multiplying the nonlinear terms, predicted the
- 1.67( —) (kh)?3 —) (U— transition to absolute instability occurred 7% above the
Y fo ! threshold for any instability. We have repeated their analysis
The expression for the growth rate is unaffected, because for our Navier—Stokes dispersion relation and find that its
uses the component of the pressure in phase with the surfag@ansition occurs at 22% above threshold. We can now note
displacement, or, in more physical terms, the destabilizinghat these calculations of the transitions to absolute instabil-
Bernoulli suction only sees a stationary liquid surface. ity involve the out-of-phase pressure teffn and so would
Applying our new expression for the phase velocity tobe modified significantly by including Bretherton's extra
the experiments, we takd,;=0.63 mms*?, so that the cap- pressure jump. Further, the nonlinear dependence of the extra
illary numbery, U, /y=3.0x10"3. We do not know the am- pressure jump is not the normal quadratic dependence.
plitude of the observed waves, but looking at the figures in
Gondret and Rabaudwe takeZ,=1 mm. The equation for

the phase Ve|ocity then becomes 1p. Gondret and M. Rabaud, “'Shear instability of two-fluid parallel flow in
a Hele-Shaw cell,” Phys. Fluid8, 3267(1997).
C c, |23 2C.-W. Park and G. M. Homsy, “Two-phase displacement in Hele Shaw
—+1.63 —| =2.23, cells: Theory,” J. Fluid Mech139, 291 (1984.
U U 3F. P. Bretherton, “The motion of long bubbles in tubes,” J. Fluid Mech.

; ; _ ; _ ; ; 10, 166 (1961).
with solutionc, /U,=0.82, i.e. ¢, /Vi, =0.67. This value is 4P. Gondret, P. Ern, L. Meignin, and M. Rabaud, “Experimental evidence

much smaller than the Observed value, where_as the originalsf 4 nonlinear transition from convective to absolute instability,” Phys.
theory gave much larger. While there are considerable uncer-Rev. Lett.82, 1442(1999.
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