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A linear stability analysis is presented for the Kelvin–Helmholtz instability in a Hele-Shaw cell, an
analysis based on the Navier–Stokes equation to improve on the previous Euler–Darcy study that
Gondret and Rabaud@Phys. Fluids9, 3267 ~1997!# made of their own experiments. ©2002
American Institute of Physics.@DOI: 10.1063/1.1446884#
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I. INTRODUCTION

Recently Gondret and Rabaud1 studied the Kelvin–
Helmholtz instability in a Hele-Shaw cell. Two vertica
sheets of glass 1.2 m long were held with a 0.35 mm
separating them. The edges were sealed so as to retain i
lower half a viscous silicon oil and in the upper half nitrog
gas, with a viscosity ratio of a few thousand. Two holes
both ends allowed liquid and gas to be injected at one en
a pressure 10% above atmospheric and removed at the
end, so achieving a horizontal gas flow of several m s21 and
in the same direction a liquid flow of several mm s21. Above
a critical flow, the flat interface was unstable and waves g
to a finite amplitude. A small sinusoidal variation in the i
jection pressure gave a critical flow for different wave nu
bers. The reduced Reynolds number for the gas flow, ap
priate to the nearly unidirectional flow, was about 7 and w
very small for the liquid.

In addition to the experiments, Gondret and Rabaud p
formed a simple stability analysis that successfully predic
the onset of instability. Their analysis adopted the norm
description of flow in a Hele-Shaw cell that uses a ga
averaged velocity. To the Darcy equation governing the fl
they added the inertia term of Euler, again using only
gap-averaged velocity. Recognizing a little difficulty here
averaging nonlinear terms, Gondret and Rabaud suggest
an Appendix that a correction factor of6

5 should multiply the
advective derivative, which is appropriate for the average
the product of two velocity fields with parabolic profile
across the gap.

Our purpose in this paper is to replace the gap-avera
description with an asymptotic analysis of the Navier–Sto
equation, exploiting the thinness of the gap compared to
wavelength of the instability, which is of the order of th
capillary length 2pAg/Drg.1 cm, with the surface tensio
g, density differenceDr, and gravityg. We start in Sec. II
with a quick review of the Gondret and Rabaud Euler–Da
stability analysis, before proceeding to our Navier–Sto
analysis in Sec. III. Both stability analyses are linear. T
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results are compared to experiments and discussed in
IV.

II. EULER–DARCY ANALYSIS

If inertia is ignored, the flow in a Hele-Shaw cell i
proportional to the pressure gradient in access of the hy
static balance,

^u&52
h2

3m
~“p2rg!.

Here ^u& is the velocity averaged across the gap, 2h is the
gap thickness,m the viscosity,p the pressure,r the density,
andg the gravitational acceleration. Some inertia can be
troduced by first rewriting the Darcy-flow equation as a for
balance and then adding the density times the material ac
eration of the gap-averaged velocity:

rS ]^u&
]t

1^u&•“^u& D52¹p1rg2
3m

h2 ^u&. ~1!

We note that this treatment of the inertial forces is a simp
fication because some fluid will be moving faster that the g
average and so will have larger accelerations. To take s
account of this, Gondret and Rabaud suggested multiply
the ^u&•“^u& term by 6

5, which would be appropriate if the
velocity profile across the gap were parabolic. But the pro
is not exactly parabolic when inertia forces act differen
across the gap, so we will not make their suggested mo
cation.

In the base state, let the gas be inz.0 and the liquid in
z,0. We use subscriptsg and l on quantities to denote ga
and liquid. The base flow is horizontal withmgUg5m lUl

because the two flows are driven by the same pressure
dient.

Now consider a small-amplitude perturbation of the
terface fromz50 to z5z0eik(x2ct), with real positive wave
numberk and complex wave speedc. We thus start by ex-
amining the temporal stability. The small-amplitude appro
mation requires a small slopekz0!1. The perturbation flow
© 2002 American Institute of Physics
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923Phys. Fluids, Vol. 14, No. 3, March 2002 Kelvin–Helmholtz instability in a Hele-Shaw cell
is potential, and so has a spatial variationeik(x2ct)7kz in z
:0. Satisfying the kinematic boundary condition, we fi
the perturbation flow

^u&5~61,i !~U2c!kz0eik~x2ct!7kz.

The Euler–Darcy momentum equation~1! gives a perturba-
tion pressure,

p57S r~U2c!22 i
3m

kh2 ~U2c! D kz0eik~x2ct!7kz.

When imposing the pressure boundary condition, we nee
add to the pressure perturbation the basic hydrostatic p
sure evaluated at the perturbed surface,2rgz. The jump in
pressure across the boundary is set equal to the capi
pressure2(p/4)gk2z, where we have included the Park an
Homsy2 correction factorp/4, which takes into account th
variation of the principal radii of curvature across the gap
a liquid that is perfectly wetting. Gondret and Rabaud did
include thisp/4 factor. Thus, we obtain the dispersion re
tion

S 2rg~Ug2c!2k1 i
3

h2 mg~Ug2c!2rggD
2S r l~Ul2c!2k2 i

3

h2 m l~Ul2c!2r lgD52
p

4
gk2. ~2!

In the experimental conditions of Gondret and Rabaud
small viscosity and density ratio,mg!m l and rg!r l with
rg /r l@mg

2/m l
2 so thatrgUg

2@r lUl
2, and small reduced Rey

nolds number in the liquid flow,r lUlkh2/m l!1, the disper-
sion relation~2! reduces to

rgUg
2k2 i

3

h2 m l~2Ul2c!2r lg5
p

4
gk2, ~3!

where we have usedmgUg5m lUl . From this simplified dis-
persion relation, we extract the phase velocitycr and the
growth ratekci ,

cr.2Ul , kci.
k2h2

3m l

S rgUg
22

r lg1
p

4
gk2

k
D . ~4!

It is useful for later developments to understand the s
plified physics in the experimental conditions. Because
liquid is more viscous and has a higher inertia, it mov
slowly. The gas thus flows past an effectively stationary l
uid surface atz5z0eikx. In order to accelerate over the pea
and to decelerate into the troughs of the perturbed interf
there must be a low pressure at the peaks and a high pre
in the troughs. The magnitude of this suction pressure at
peaks is given by Bernoulli asrgUg

2kz0 . This destabilizing
suction is to be offset against the stabilizing effects of
liquid hydrostatic pressurer lgz0 plus a capillary pressure
(p/4)gk2z0 . The stabilizing effects win at all wave numbe
if the gas velocity is below a critical value: stable ifrgUg

2

,Ar lgpg.
Above the critical gas velocity, there is a range of u

stable wave numbers with a net suction pressure at the p
in the liquid,
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The pressure gradientkpl in the Darcy flow of the liquid
induces an upward velocity of the peakskciz0

5h2kpl /3m l , with the result~4! for the growth rate.
The phase velocity of the wave comes from the visco

pressure droppv53mgUgz0 /h2 across a peak in the ga
flow past the stationary perturbed liquid surface. The pr
sure gradient kpv drives a perturbation Darcy flow
h2kpv/3m l5Ulkz0 in the liquid, which propagates the inte
face atUl relative to the base liquid velocityUl ; hence the
result ~4! for the phase velocity.

We note that our explanation of the mechanism of
Kelvin–Helmholtz instability in a Hele-Shaw cell is no
fraught with the dangers of using Bernoulli suction to e
plain the original Kelvin–Helmholtz instability between tw
inviscid fluids. For inviscid fluids, time reversibility implie
the existence of two modes, one growing and one decay
and a correct argument must explain both. Obviously suc
at the peak explains the unstable mode. Less obviousl
explains the stable mode. The suction force produces, in
inviscid fluid, an upward acceleration. An upward accele
tion of a downward moving peak is a decaying mode.

III. NAVIER–STOKES ANALYSIS

A. Formulation

We now move on from the Gondret and Rabaud Eule
Darcy analysis that used a gap-averaged velocity^u&. In this
section we calculate the variation of the velocity across
gap using the full Navier–Stokes equation. The lineariz
Navier–Stokes equation for the perturbation veloc
u(x,y,z,t) and pressurep(x,y,z,t) is

rS ]u

]t
1U"“u1u"“UD52“p1m¹2u, ~5!

where the base flow has a parabolic profile across the g

U5U
3

2 S 12
y2

h2D ~1,0,0!.

We again use subscriptsg andl for the gas inz.0 and liquid
in z,0.

From our examination of the simplified physics in th
experimental conditions of Gondret and Rabaud, we take
gas to flow over an effectively stationary perturbed liqu
surfacez5z0eikx. The wavelength of the instability is muc
larger than the thickness of the gap. As in lubrication the
and in boundary layer theory, the pressure is asymptotic
constant across the thin gap and the pressure-driven gas
is in the plane of the walls. In these circumstances, we fi
that a possible solution of the linearized Navier–Stok
equation~5! is a potential pressure field,

p5rgUg
2kz0eikx2kzP,

with nondimensional pressure amplitudeP, along with a flow
in the direction of the pressure gradient,

u5~1,0,i !Ugkz0eikx2kzf ~y/h!,
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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with a variation across the gap given by the nondimensio
profile f. We define the nondimensional coordinate across
gaph5y/h. The above ansatz for the pressure and velo
satisfy the linearized Navier–Stokes equation~5! if the ve-
locity profile f and pressure amplitudeP satisfy

3
2 ~12h2! f 52P1

1

i Re
f 9, ~6!

with reduced Reynolds number Re5rgUgkh2/mg for the gas
flow. The no-slip boundary condition on the sidewalls is

f 50, at h561.

The kinematic boundary condition on the effectively s
tionary liquid surface does not match the velocity profilef.
Realizing that there will be an adjustment zone near the
niscus with a height equal to the width of the gap, we ne
only require the total normal component of the mass-flo
match. Hence we normalize the solution to have net flow
unity in the nondimensionalization,

E
0

1

f dh51.

The dynamic boundary condition equates the capill
pressure to the jump between the pressure in the Darcy
of the liquid, including a liquid hydrostatic contribution a
the perturbed surface, and the dynamic gas pressure
scribed by the pressure amplitudeP,

rgUg
2kP1 i

3m l

h2 ~Ul2c!1r lg52
p

4
gk2,

corresponding to the simplified dispersion relation~3! in the
Euler–Darcy analysis. Solving for the phase velocitycr and
the growth ratekci , we find

cr5Ul~11 1
3RePi ,! kci5

k2h2

3m l

S 2rgUg
2Pr2

r lg1
p

4
gk2

k
D ,

~7!

whereP5Pr1 iPi and where we have usedm lUl5mgUg to
simplify the phase velocity.

B. Numerical solution

The velocity profilef was found by integrating Eq.~6!
numerically with a fourth-order Runge–Kutta scheme. A s
lution was first found to the non-normalized problem, sett
P51 and shooting fromh50 with symmetric condition
f 8(0)50 and a guess for the complex value off (0) that was
adjusted by linear extrapolation to givef (1)50. The solu-
tion pair f andP were then both divided by*0

1 f dh in order
to normalize the solution.

Results for the velocity profilef (h) at Reynolds num-
bers Re51, 3, 10, 30, 100 are given in Fig. 1. The real a
imaginary parts are plotted separately. At low Reynolds nu
bers, Re<3, the velocity profile is parabolic and mostly rea
At high Reynolds numbers, Re>30, the velocity decreases i
the center of the gap and peaks near the walls.

Results for the pressure amplitudeP as a function of the
Reynolds number Re are given in Fig. 2. At low Reyno
Downloaded 10 Jul 2009 to 131.111.16.227. Redistribution subject to AIP
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numbers, the pressure amplitude varies asP;3i /Re. At high
Reynolds numbers, the pressure amplitude is complex
decreases.

C. Low Reynolds numbers

The low Reynolds number behavior can be studied
making an asymptotic expansion,

f ; f 01Ref 1 ,

P;Re21 P01P1 .

The governing equation~6!, boundary conditions, and nor
malization are all expanded. At leading order we find t
Poiseuille profile of inertialess Darcy flow,

f 05 3
2 ~12h2!, P053i .

The inertia-induced correction is

f 15 i 3
280 ~25133h2235h417h6!, P152 54

35 .

The numerical results in Fig. 1 for the velocity profi
f (h) are consistent with these asymptotic results. At R
nolds numbers 1 and 3, the real part is parabolic in sh
with a centreline value of 1.5. The imaginary part, with va
ishing integral from the normalization constraint, is positi
near the walls and negative in the center, with a center
value of20.054 Re. Figure 2 for the pressure amplitude a
exhibits the asymptotic behavior ofPi;3/Re andPr;2 54

35

521.543.
At low Reynolds numbers we have found the press

amplitude from the Navier–Stokes equation is

P;3i Re212 54
35. ~8!

The corresponding nondimensional expression from
Euler–Darcy analysis of Sec. II, valid for all Reynolds num
bers, is

P;3i Re2121.

Thus, the destabilizing inertial effects, the real part ofP, are
more than 50% larger than estimated by the Euler–Da
approximation. The Gondret and Rabaud correction facto
6
5 is seen to be insufficient, at least at low Reynolds numb

We have already noted that the value of the Reyno
number in the experiments for the flow of gas was 7. T
numerical results in Fig. 2 show that the low Reynolds nu
ber asymptotics will provide a reasonable estimate for
pressure amplitude at this less-than-small value, to wit
errors of 15%.

D. High Reynolds numbers

At high Reynolds numbers, the gas flow has a differe
behavior in the center of the gap and near the walls. In
center, the pressure perturbation accelerates the gas as
advected along by the mean flow,

f ;2P/ 3
2~12h2!.

Thus, the velocity profile increases away from the centerli
see Fig. 1 for Re530 and 100, because moving with slow
mean flow off the centerline it has longer to be accelerat
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 1. The velocity profilesf (h) at various Reynolds
numbers, Re51, 3, 10, 30, and 100. In the real partf r ,
the centerline valuef r(0) decreases as the Reynold
number increases. The value of the imaginary part n
the wall h51 increases as the Reynolds number i
creases.
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Near the walls viscosity becomes important. A balan
between viscosity and advection is possible within a bou
ary layer of thicknessd5Re21/3, where to match with the
interior f 5O(P/d). To exhibit this boundary layer behavio
we have plotted in Fig. 3,f rd/P as a function of (1
2h)/d, at Re530, 100, 300, and 1000. We see that with th
rescaling the peaks in the velocity occur at the same pos
in the boundary layer and with essentially the same am
tude.

The normalization integral has a leading-order contrib
tion *0

12dP/3(12h)dh; 1
3P ln d, along with O(1) correc-

tions from the boundary layer and the central region.
have evaluated theseO(1) contributions numerically as

E
0

1

f dh;2P~ 1
9 ln Re10.4021 i0.175!.

Equating this to unity gives the asymptotic behavior of t
pressure amplitude at large Reynolds numbers,
Downloaded 10 Jul 2009 to 131.111.16.227. Redistribution subject to AIP
e
-

n
i-

-

e

P;21/~ 1
9 ln Re10.4021 i0.175!. ~9!

These asymptotic results are plotted in Fig. 2.
At high Reynolds numbers the pressure amplitudeP de-

creases slowly with increasing Reynolds number. This
crease has its origin in the slow speed of the base flow n
to the walls. Taking longer to be advected at this slow sp
through a wavelength, a smaller pressure perturbation is
quired to achieve the same velocity perturbation. The con
quences of the smaller pressure amplitudeP in dispersion
relation ~7! are a smaller phase velocity and lower grow
rate: it is as if the base flow is moving slower. Thus at hi
Reynolds numbers the instability is controlled not by t
gap-averaged value of the base velocity nor the average o
square, giving greater weight to the peaks and leading to
Gondret and Rabaud suggested factor of6

5, but is more influ-
enced by the slower moving parts of the base flow.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. The pressure amplitudeP as a function of the
Reynolds number Re. The dashed curves are the sm
Reynolds number asymptotic result~8!, while the dot-
ted curves are the high Reynolds number result~9!.
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IV. COMPARISON WITH EXPERIMENTS

A. Threshold of instability

In this section we compare our theoretical predictio
with the experimental observations of Gondret and Raba1

We start with the minimal gas velocity for the appearance
the instability, and in the following section look at the pha
velocity.

In their experiments, Gondret and Rabaud added a s
oscillatory perturbation to the pressure of the liquid as
entered the device. Varying the frequency of this excitati
they could measure the threshold velocity of the gas for
stability at different observed wave numbers. A more care
measurement of the decay length of stable waves sugge
that the true critical velocity might be 2% higher than the
reported threshold velocities. We plot in Fig. 4 their thres
old gas velocitiesUg has a function of the observed wav
number k. We have nondimensionalized these observ
Downloaded 10 Jul 2009 to 131.111.16.227. Redistribution subject to AIP
s
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quantities using the natural capillary lengthl * and the gas
velocity V* whose Bernoulli pressure has the capillary pre
sure of this length,

l * 5A pg

4r lg
and V* 5A pg

2rgl *
.

In the experiments,g52.06 1022 N m21, r l5965 kg m23,
g59.81 m s22, and rg51.28 kg m23, so that l * 51.31
31023 m andV* 54.40 m s21.

Using these scalings, the predictions of the Euler–Da
analysis of Sec. II for the threshold gas velocity may
written as

S Ug

V*
D 2

5
11~kl* !2

2kl*
, ~10!

which is also plotted in Fig. 4, along with our results fro
the Navier–Stokes analysis of Sec. III,
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. The boundary layer scaling o
the velocity profile at high Reynolds
numbers. The curves increasing from
the bottom are for Reynolds numbe
Re530, 100, 300, and 1000.
a

rit

or
nt
id
th
v

an
tion-
to
the
s.

hen
tion
ch
at

n
ew
ca-
.e.,
S Ug

V*
D 2

5
11~kl* !2

2kl*

1

2Pr~Re!
, ~11!

where Pr is the real part of the pressure amplitude. It is
function of the reduced Reynolds number Re5Ugkh2/n, see
Fig. 2, and so varies with the gas velocityUg and the wave
numberk. In the range of interest,Pr'21.5. Being larger
than unity, the Navier–Stokes analysis predicts a lower c
cal gas velocity, lower by about 1/A1.5, i.e., about 82% of
the Euler–Darcy value.

Figure 4 shows that the improved Navier–Stokes the
does not produce improved predictions of the experime
results. In view of these poor predictions, we have cons
ered a number of differences between our theory and
experimental conditions. First we have assumed that the
Downloaded 10 Jul 2009 to 131.111.16.227. Redistribution subject to AIP
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cosity and the density of the liquid are very much larger th
the values of the gas, so that the liquid appears to be sta
ary as far as the gas flow is concern. It is not difficult
generalize our approach to the Navier–Stokes problem to
case of two fluids with arbitrary viscosity and density ratio
We find that if the experiments had used air and water t
there would have been a 5% overestimate by the assump
of infinity ratios. The experiments, however, used a mu
more viscous liquid, and for this larger ratio we find th
there would be no detectable change in Fig. 4.

Another simplification of our theory is the assumptio
that the gas flow is incompressible. With gas velocities a f
percent the speed of sound, one would anticipate modifi
tions of the gasdynamics by the square of that ratio, i
y

-
-
e

FIG. 4. The critical velocity of the gas
Ug for the appearance of an instabilit
as a function of the wave numberk,
nondimensionalized by the capillary
lengthl * and the associated gas veloc
ity V* . The points are the experimen
tal results of Gondret and Rabaud. Th
dashed curve is the prediction~10! of
the Euler–Darcy analysis, while the
continuous curve is the prediction~11!
of the Navier–Stokes analysis.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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totally negligible. There is, however, an effect of the co
pressibility on the base state of the gas, because the
pressure was typically 10% above the atmospheric press
This means that the density of the gas near the inlet is t
cally 10% higher. This in turn reduces the value of our v
locity scaleV* by 5%. The experimental conditions near
the inlet are relevant, because it is there that one obse
whether the waves are growing or decaying.

The 10% increase in the base pressure near the inle
a second effect. The gas velocity was measured in the
periments by applying Darcy’s law to the basic pressure g
dient, which was assumed to be linear and given by the
ference between the pressure at the inlet and outlet div
by the distance between them. A linear pressure grad
gives a gas velocity that is constant along the channe
constant gas velocity does not give a constant mass
when the density varies. In order to have a constant m
flux, the square of the pressure must vary linearly down
channel. This means that the gas velocities are 5% lo
near the inlet and 5% higher near the outlet. Hence
should reduce the observed gas velocityUg by 5%. As the
velocity scaleV* should also be reduced by 5%, there w
be no effect on the plotted ratioUg /V* . The fact that the
ratio Ug /V* does not change value is an unforeseen adv
tage of making the nondimensional plot.

Our theoretical study also assumed that the base
was horizontal, i.e., we ignored the radial flow out of t
source and into the sink at the ends of the channel. T
radial flow introduces an extra pressure drop, roug
equivalent to extending the length of the channel for e
hole by (H/2p)ln(H/2pR), whereH is the height of the gas
flow and R is the radius of of the hole. In the experimen
H55 cm andR53.5 mm, so we find that each hole adds 6
mm to the length of the 1.2 m channel, i.e., a correction
just over 1%. As the experimental velocities were calcula
from an assumed Darcy flow, this 1% extra pressure d
reduced the observed velocities by 1%, which is in the c
rect direction but too small in magnitude. We have not a
justed the experimental data for this small effect.

A further assumption in our theory that affects t
threshold velocity is the assumption that the basic flow ha
parabolic profile. At the reduced Reynolds number of
57, the base flow only becomes fully established after o
wavelength, i.e., about 1 cm. We note, however, that in
experiments a splitter plate of 10 cm divides the stream
gas and liquid before they meet. Hence, at the separatio
the plates and at the velocities used, the base flow shoul
fully established at the place where the instability was
served.

Finally, our analysis made a long wave approximatio
kh!1. This resulted in the neglect of the slightly differe
flows near the meniscus, modifications of the flow that
tend away from the meniscus a distance of about a gap th
ness. In the experiments the value of this small param
waskh50.13, which may not be so small. We are curren
trying to develop a theory for this correction, but at this tim
we have no estimate of the magnitude of the correction.
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B. Phase velocity

The phase velocity was measured by Gondret a
Rabaud1 to becr51 mm s21. We discuss the phase velocit
in a nondimensionalized form by scaling with the velocity
the liquid when the gas has the velocityV* , i.e., scaled with
Vl* 5mgV* /m l . In the experiments,V* 54.4 m s21, mg

51.7531025 Pa s and m l50.1 Pa s, so that Vl*
50.77 mm s21. Thus, the nondimensional measure of t
observed velocity iscr /Vl* 51.30.

The Euler–Darcy theory of Sec. II predicts a phase
locity that is a little higher, cr /Ul52.00, i.e., cr /Vl*
52.00. The Navier–Stokes analysis of Sec. III predicts at
Reynolds number Re55.84, corresponding to the margin
waves withUg /V* 50.816 andkl* 50.95, a pressure ampli
tude Pi50.637, which gives a phase velocity by~7!, cr /Ul

52.24, i.e., cr /Vl* 51.83. The two theories thus signifi
cantly overestimate the phase velocity of the margina
stable waves. The omissions of the theories discussed in
previous section would obviously lead to some minor adju
ments to these values, but would not give the signific
correction required.

One feature of the our simplified treatment of the men
cus does, however, have a significant effect on the ph
velocity without modifying the gas velocity at the thresho
of the instability. The two theories apply a pressure condit
at the interface with a jump of the capillary pressu
(2p/4)gk2z. This takes into account the curvature of th
interface in thexz plane. There is, however, a much larg
curvature 1/h in the perpendiculary direction across the gap
The large capillary pressureg/h associated with this curva
ture does not alter the analysis because it is constant, i
pendent of the displacement of the interface. A probl
arises, however, from relatively small corrections to th
large constant pressure jump, because the corrections ca
of the same size as the term (2p/4)gk2z, and they can also
vary with the displacement of the interface.

The liquid used in the experiments wets the sidewa
perfectly, and so to leading order the meniscus adopt
semicircular shape across the gap. As the wave crests pr
gate along the channel, the meniscus rises and falls. As
meniscus falls it leaves a thin film on the sidewalls of thic
ness 1.34h(m lun /g)2/3, whereun is the normal velocity of
the interface. The presence of these thin films increa
slightly the curvature of the interface, contributing to
slightly higher jump in the capillary pressure. Viscous dis
pation in the thin films leads to a similar additional cont
bution to the pressure drop. This problem was studied
Bretherton.3 Adopting his results for a tube to our channe
he found the pressure drop across the falling meniscus i

g

h F113.723S m lun

g D 2/3G ,
and the pressure drop across a meniscus rising over a
left behind by the meniscus descending at the same spe

g

h F120.976S m lun

g D 2/3G .
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The difference between these two pressures must be add
our jump in the capillary pressure (2p/4)gk2z.

Now for the marginally stable surface displacemenz
5z0 cosk(x2crt), the normal velocity of the interface isun

5z0kcr sink(x2crt), i.e., out of phase with the displacemen
To use in the linear stability analysis the new additional pr
sure drop, which is nonlinear, we break sin2/3 into its Fourier
components, in particular, sin2/351.0712 sin1higher har-
monics. Adding the extra out-of-phase pressure jump to
boundary condition, we find that the expression for the ph
velocity ~7! becomes

cr

Ul
511 1

3 Re Pi

21.67S m lUl

g D 21/3

~kh!2/3S h

z0
D 1/3S cr

Ul
D 2/3

.

The expression for the growth rate is unaffected, becaus
uses the component of the pressure in phase with the su
displacement, or, in more physical terms, the destabiliz
Bernoulli suction only sees a stationary liquid surface.

Applying our new expression for the phase velocity
the experiments, we takeUl50.63 mm s21, so that the cap-
illary numberm lUl /g53.031023. We do not know the am-
plitude of the observed waves, but looking at the figures
Gondret and Rabaud,1 we takez051 mm. The equation for
the phase velocity then becomes

cr

Ul
11.63S cr

Ul
D 2/3

52.23,

with solutioncr /Ul50.82, i.e.,cr /Vl* 50.67. This value is
much smaller than the observed value, whereas the orig
theory gave much larger. While there are considerable un
Downloaded 10 Jul 2009 to 131.111.16.227. Redistribution subject to AIP
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tainties in our analysis in this section, for example, our
lection of the amplitude of the wave, it is clear that the effe
is significant. Some additional experiments could usefully
made measuring the pressure jump across a meniscus
Hele-Shaw cell that oscillates up and down with similar a
plitudes to those of the propagating waves.

After their first paper on the subject, Gondret, Er
Meignin, and Rabaud4 went on to study the transition from
convective instability to absolute instability by following th
evolution of an initial impulse. They found the transition
absolute instability occurred in their experiments when
gas velocity was 15% higher than the threshold for any
stability. A numerical study of the Euler–Darcy dispersio
relation, now including thep/4 Park and Homsy factor and
factor of 6

5 multiplying the nonlinear terms, predicted th
transition to absolute instability occurred 7% above t
threshold for any instability. We have repeated their analy
for our Navier–Stokes dispersion relation and find that
transition occurs at 22% above threshold. We can now n
that these calculations of the transitions to absolute insta
ity involve the out-of-phase pressure termPi and so would
be modified significantly by including Bretherton’s ext
pressure jump. Further, the nonlinear dependence of the e
pressure jump is not the normal quadratic dependence.
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