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We numerically investigated liquid droplet impact behavior onto a dry and flat surface. The
numerical method consists of a coupled level set and volume-of-fluid framework, volume/surface
integrated average based multimoment method, and a continuum surface force model. The
numerical simulation reproduces the experimentally observed droplet behavior quantitatively, in
both the spreading and receding phases, only when we use a dynamic contact angle model based on
experimental observations. If we use a sensible simplified dynamic contact angle model, the
predicted time dependence of droplet behavior is poorly reproduced. The result shows that precise
dynamic contact angle modeling plays an important role in the modeling of droplet impact
behavior. © 2009 American Institute of Physics. �DOI: 10.1063/1.3158468�

I. INTRODUCTION

Droplet impacts onto dry and flat surfaces have been
studied by many researchers from both theoretical and prac-
tical aspects.1–19 Droplet impact has many practical applica-
tions, for example, in ink-jet printing, fuel injection, and the
agrochemical field. Ink-jet technology is now being used not
only for printing onto paper but also in the manufacturing
process for displays, such as polymer organic light emitting
diodes. A recent overview of droplet impact can be found in
Ref. 20.

Numerical simulations of droplet impact onto dry sur-
faces have been conducted by many
researchers.1–9,11,12,15,16,18,19 The numerical methods used in
previous work can be categorized into two groups. One is
based on fixed grids such as a Cartesian
grid.1–3,6,8,9,11,12,15,16,18,19 The other uses a finite element
method �FEM� with moving grid.5,7 In the fixed grid formu-
lation, the front tracking method,1,12,21,22 the volume-of-fluid
�VOF� method,23–26 or level set method27–31 is used to de-
scribe liquid interface motion and a finite difference �vol-
ume� method is used as fluid solver. The front tracking type
method uses Lagrangian objects such as particles to track the
liquid interface. The VOF method traces the interface based
on the VOF function �volume fraction in each cell� with a
geometrical interface reconstruction. The level set method
represents the liquid interface by using a contour line of the
level set function. An approach using the VOF method as
well as the level set method has been widely used for droplet
impact simulation. These formulations are relatively easy to
implement compared to front tracking approaches. The VOF
method and the level set method can easily treat large defor-
mation including topology change in the liquid interface be-

cause a fixed grid is used. If a moving mesh is used, the
mesh may be twisted depending on the situation and then a
special treatment is required. However the interface expres-
sion using a moving grid is better than that using a fixed grid.
Both approaches have advantages and disadvantages.

In this paper, we employ an approach using a fixed grid
and use the coupled level set and volume-of-fluid �CLSVOF�
formulation,32 which uses both the level set method and the
VOF method. In this formulation, the VOF method deals
with interface motion and the level set method is used for
surface tension and wettability computations. In this paper,
the tangent of hyperbola for interface capturing/weighed line
interface calculation �THINC/WLIC� method33,34 is used in-
stead of the VOF/piecewise linear interface calculation
�PLIC� method.24–26 Although the THINC/WLIC method is a
type of VOF method and satisfies volume conservation, it is
easy to implement and the numerical results from the
THINC/WLIC method appear to be similar to the results
from the VOF/PLIC method. For the flow calculation, we
employ a finite volume framework. The constrained interpo-
lation profile-conservative semi-Lagrangian �CIP-CSL�
method35–37 is used as the conservation equation solver. Al-
though finite volume methods usually deal with only the cell
average as the variable, the CIP-CSL method uses both the
cell average and the boundary value as variables. By using
both values �moments�, a parabolic interpolation function is
constructed in a cell, and the boundary value and the cell
average are updated based on the parabolic function. For
multidimensional cases, dimensional splitting is used.38 The
volume/surface integrated average based multimoment
method �VSIAM3� �Refs. 38 and 39� is a fluid solver which
can be combined with the CIP-CSL methods. For the surface
tension force, we use the CSF model.40

In this paper, we focus on dynamic contact angle. The
dynamic contact angle is not well understood and is also
difficult to measure. The dynamic contact angle plays an
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important role in not only droplet impact behavior but also
various scientific and industrial applications such as
splashing,20,41 biolocomotion,42–44 and coating. It is known
that the surface roughness of the substrate can influence the
splash considerably,20,41 and that the splash can be three di-
mensional �3D�.

There have been several numerical studies of dynamic
contact angles. The dynamic contact angle has been consid-
ered a function of the triple line velocity. Some simple mod-
els are based on a step function using advancing and reced-
ing angles5,16 and some representations use a smoothed step
function.8,11,13 Those models work well for inertia-dominated
situations because the velocity dependence of the dynamic
contact angle does not appear to be strong.45 An empirical
model46 for the dynamic contact angle was used in the nu-
merical work by Spelt.47 This model works for capillary-
dominated flows. Another model48,49 was used in a numerical
study by Šikalo et al.15 This model is based on Hoffman’s
experiments in glass capillary tubes for a wide range of cap-
illary numbers. We have developed a dynamic contact angle
model based on droplet impact experiments. Tanner’s
law50–54 is used for capillary-dominated situations and ex-
perimentally observed constant angles for inertia-dominated
situations. Although the same model was used for both
spreading and receding in Ref. 15, we use an asymmetric
model for spreading and receding. The proposed dynamic
contact angle model can quantitatively reproduce droplet im-
pact behavior from impact to steady state, including spread-
ing and recoiling.

In formulations using the VOF method or the level set
method, two methodologies have mainly been used to apply
the boundary condition of the contact angle. One of those
applies the contact angle boundary condition to the normal
vectors to the liquid interface at the contact line.8,15,40 The
normal vectors are used for the curvature calculation. The
other method extrapolates level set and VOF functions into
the solid at the contact line.9,16,47,55 In this paper, a method
by Sussman55 is used because of its simplicity. In this for-
mulation, we are not even required to find the position of the
contact line.

We numerically investigate droplet impact onto a dry
and flat surface, for experimental conditions56 involving a
millimeter size droplet of water impacting on a chemically
treated silicon wafer. In this experiment, the transient contact
angle as well as the contact diameter was measured with high
time and spatial resolution by using a high speed camera
�resolution 0.1 ms for time and 7 �m for distance�. Our
numerical simulations used a dynamic contact angle model
based on the experiments. The numerical simulations can
reproduce the receding phase as well as the spreading phase.
We also varied the parameters in the contact angle model.
The numerical results show that very precise dynamic con-
tact angle modeling is required to reproduce the droplet be-
havior quantitatively.

In Sec. II, we briefly describe the experiment. The nu-
merical method and the dynamic contact angle models are
described in Secs. III and IV. The numerical results of drop-
let impact are given in Sec. V.

II. BRIEF REVIEW OF EXPERIMENT

We briefly describe the experimental method used to
measure the contact diameter of the droplet on the substrate
and the contact angle.56 Figure 1 shows a schematic of the
experiment. The experimental configuration consists of two
parts: the drop generation device and the image recording
system. Droplets of several millimeters in diameters are gen-
erated with a syringe pump connected to a hypodermic
needle 150 �m in diameter. Droplets were formed using the
pendant drop method. The method generates a droplet by
slowly pushing the liquid through the needle until the drop
detaches when its weight overcomes the surface tension.
This ensures the repeatability of the droplet size as well as of
the impact speed which is acquired under gravity. The dis-
tance h between the needle and the surface determines the
droplet impact speed. The experimental setup is completed
by an optical acquisition system which is combined with
adequate drop illumination. It is based on a high speed cam-
era �Nac Memremcam� equipped with a binning option and a
50 W continuous light source. Pictures of 448�338 pixels
at a framing rate of 10 000 pictures/s were recorded with a
shutter time at 2 �s. In order to increase picture quality and
improve edge detection, specifically on the contact line, the
camera was combined with a light intensifier which allowed
the shutter time to be reduced down to 10 ns. A 200 ns
shutter duration was found to give the best compromise be-
tween image brightness and edge sharpness. In the experi-
ment, only the right hand side of the droplet was captured to
increase the resolution around the triple line.

The recorded surface shape is very sharp and can be
easily analyzed using image processing software. As a con-
sequence of the high framing rate, the displacement of the
contact line during image acquisition was less than 1 pixel �1
pixel corresponded to 7 �m and the fastest measured veloc-
ity of the contact line was 10 m/s�. Contact diameter and
dynamic contact angle measurements were made by auto-
matic image analysis to ensure accuracy �error �2% for the
diameter and �3° for the contact angle� and avoid human
error.

III. NUMERICAL METHOD

A. Interface capturing based on CLSVOF method

In our numerical framework, the interface is tracked by a
VOF function evolved by the THINC/WLIC method, and the
level set function is constructed based on the interface indi-
cated by the VOF function. Here we should note that VOF
methods guarantee conservation when the divergence-free

High speed camera

Substrate Light source

Needle

h

Syringe pump

Light intensifier

Droplet

FIG. 1. Schematic figure of the experiment.
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condition �� ·u=0� is precisely satisfied on staggered grids.
If the velocity field does not satisfy the divergence-free con-
dition, conservation is not satisfied even though a VOF type
method is used.

1. The THINC/WLIC method

The THINC/WLIC method is a type of VOF method.
The VOF function is advected by

��

�t
+ � · �u�� − � � · u = 0. �1�

Here u is the velocity and � is the characteristic function.
The cell average of � is the VOF function Ci,j �axisymmetric
case�

Ci,j =
1

��i,j�
�

�i,j

�rdrdz . �2�

The Ci,j is evolved by an approximation using a dimensional
splitting algorithm as follows:

Ci,j
� = Ci,j

n −
ri+1/2,jFr,i+1/2,j

n − ri−1/2,jFr,i−1/2,j
n

ri,j�r

+ Ci,j
n ri+1/2,jur,i+1/2,j − ri−1/2,jur,i−1/2,j

ri,j�r
�t , �3�

Ci,j
n+1 = Ci,j

� −
Fz,i,j+1/2

� − Fz,i,j−1/2
�

�z

+ Ci,j
n uz,i,j+1/2 − uz,i,j−1/2

�z
�t , �4�

with

Fr,i+1/2,j = − �
zi,j−1/2

zi,j+1/2 �
ri+1/2,j

rr,i+1/2,j−ur,i+1/2,j�t

�is,j�r,z�drdz , �5�

Fz,i,j+1/2 = − �
zi,j+1/2

zi,j+1/2−uz,i,j+1/2�t �
ri−1/2,j

ri+1/2,j

�i,js�r,z�drdz . �6�

Here Fr,i+1/2,j and Fz,i,j+1/2 are the advection fluxes for the r
and z directions, respectively. The is and js are

is = �i if ur,i+1/2,j � 0,

i + 1 if ur,i+1/2,j 	 0,
� �7�

and

js = � j if uz,i,j+1/2 � 0,

j + 1 if uz,i,j+1/2 	 0.
� �8�

The fluxes can be computed by the THINC/WLIC method or
the VOF/PLIC method. The details of the THINC/WLIC
method used in this paper are given in Refs. 33, 34, and 57.
We use the THINC/WLIC method because its implementa-
tion is easier than that of the VOF/PLIC method and the
results are almost the same.

2. The level set method „CLSVOF…

The level set function 
 �signed distance function� is
constructed from the interface indicated by the VOF function
by a method58 which uses the fast marching method29,59 and
an iterative reinitialization scheme proposed by Sussman et
al.28 �referred to hereafter as Sussman’s method�. The level
set function 
 within �h �where �h is the grid spacing� from
the interface indicated by the VOF function is computed by
the fast marching method, solving the Eikonal equation

��
� = 1. �9�

Other 
 further from the interface are calculated by Suss-
man’s method, while 
 computed by the fast marching
method is fixed. Sussman’s method solves the following
problem to a steady state:

�


��1
= S�
��1 − ��
�� , �10�

where �1 is artificial time and S�
� is a smoothed sign func-
tion

S�
� =



	
2 + �2
. �11�

To reduce the iteration number of Eq. �10�, we also solve the
level set equation

�


�t
+ u · �
 = 0, �12�

before the calculation of Eq. �10�. We just use a first order
upwind method for Eq. �12�. This is a kind of preconditioner
to make 
n approach 
n+1.

The density �color� function d which is used to define
the physical properties for different materials, such as den-
sity and viscosity, can be generated as a smoothed Heaviside
function

d = H��
� , �13�

with

H��
� = 

0 if 
 	 − � ,

1

2
�1 +




�
+

1

�
sin��


�
� if �
� � � ,

1 if 
 � � ,
� �14�

where 2� represents the thickness of the transition region
between the liquid phase and the gas phase. In this paper,
�=�x was used. The density function is set as d=1 for the
liquid and d=0 for the gas. The density � and the viscosity
coefficient � are calculated by

� = �liquidd + �air�1 − d� , �15�

� = �liquidd + �air�1 − d� , �16�

where �liquid and �air are the densities of liquid and air, and
�liquid and �air are the viscosities of liquid and air.
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B. Governing equations of fluid

We use a finite volume formulation so that we use the
following governing equation of an integral form:

�
�

u · ndS = 0, �17�

�

�t
�

�

udV + �
�

u�u · n�dS

= −
1

�
�

�

pndS +
1

�
�

�

�2�D� · ndS +
Fsf

�
+ g , �18�

where u is the velocity, n the outgoing normal vector for the
control volume � with its surface denoted by � �see Fig. 2�,
� is the density, p is the pressure, D is the deformation tensor
�D=0.5��u+ ��u�T��, Fsf is the surface tension force, and g
is the acceleration due to the gravity. Our formulation is fully
conservative for cells not containing the interface, and is
only approximately conservative in cells containing the in-
terface. Equations �17� and �18� are solved by a multimo-
ment method based on the CIP-CSL method and VSIAM3.

We use a fractional step approach.60 Equation �18� is
split into three parts as follows:

ut+�t = fNA2�fNA1�fA�ut��� , �19�

�1� advection part �fA�,

�

�t
�

�

udV + �
�

u�u · n�dS = 0, �20�

�2� nonadvection part 1 �fNA1�,

�

�t
�

�

udV =
1

�
�

�

�2�D� · ndS +
Fsf

�
+ g , �21�

�3� nonadvection part 2 �fNA2�,

�
�

u · ndS = 0, �22�

�

�t
�

�

udV = −
1

�
�

�

pndS . �23�

The advection part and nonadvection parts are solved by the
CIP-CSL method and VSIAM3, respectively.

C. Grid

We use the grid as shown in Fig. 2. This grid is for a
multimoment method �CIP-CSL and VSIAM3� which uses
both values of cell averages �or volume integrated average�
as well as boundary averages �or surface integrated
average�.61 The cell averages ui,j ,vi,j , pi,j are defined at the
cell center and the boundary averages ui−1/2,j, ui,j−1/2, vi−1/2,j,
and vi,j−1/2 are defined on the center of the cell boundary. A
cell average and a boundary average are both used as vari-
ables and these definitions are

ui,j =
1

�r�z
�

ri−1/2

ri+1/2 �
zj−1/2

zj+1/2

u�r,z�drdz , �24�

ui−1/2,j =
1

�z
�

zj−1/2

zj+1/2

u�ri−1/2,z�dz , �25�

ui,j−1/2 =
1

�r
�

rj−1/2

rj+1/2

u�r,zj−1/2�dr . �26�

D. CIP-CSL method „convection term…

The CIP-CSL method is a solver of the conservation
equation

�

�t
�

�

dV + �
�

�u · n�dS = 0, �27�

where  is a scalar value. The CIP-CSL methods have sev-
eral variations. Here the simplest one, CIP-CSL2 method,35

is explained. To avoid numerical oscillation, the CIP-CSLR0
method37 should be used. First we explain the one dimen-
sional case. In the one dimensional case, there are three val-
ues �one cell average i and two point values i−1/2 and
i+1/2� between xi−1/2 and xi+1/2. Therefore we can interpolate
between xi−1/2 and xi+1/2 by a quadratic function �i�x�, as
shown in Fig. 3,

�i�x� = ai�x − xi−1/2�2 + bi�x − xi−1/2� + i−1/2, �28�

with

ai =
1

�x2 �− 6i + 3i−1/2 + 3i+1/2� , �29�

u ,v ,p
u,v

Ω

Γ

i,j

u,v

u,v

u,v

i, j+1/2

i+1/2, j

i, j-1/2

i-1/2, j

FIG. 2. Grid used in two dimensional case. ui,j is the cell average and
ui−1/2,j, ui+1/2,j, vi,j−1/2, and vi,j+1/2 are the boundary averages.

FIG. 3. Schematic of the CIP-CSL method.
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bi =
1

�x
�6i − 4i−1/2 − 2i+1/2� . �30�

By using the interpolation function �i�x�, the boundary value
i−1/2 is updated by the conservation equation of a differen-
tial form

�

�t
+ u

�

�x
= − 

�u

�x
. �31�

A semi-Lagrangian approach is used for Eq. �31�,

i−1/2
� = ��i−1�xi−1/2 − ui−1/2�t� if ui−1/2 � 0,

�i�xi−1/2 − ui−1/2�t� if ui−1/2 	 0,
� �32�

�

�t
= − �

�u

�x
. �33�

The cell average i is updated by a finite volume formulation

�

�t
�

xi−1.2

xi+1/2

dx = −
1

�x
�Fi+1/2 − Fi−1/2� , �34�

where Fi−1/2 is the flux

Fi−1/2 = 
− �
xi−1/2

xi−1/2−ui−1/2�t

�i−1�x�dx if ui−1/2 � 0,

− �
xi−1/2

xi−1/2−ui−1/2�t

�i�x�dx if ui−1/2 	 0. �
�35�

For multidimensional cases, a dimensional splitting
method38 is used. In the x-direction computation, i,j

� and
i−1/2,j

� are updated based on i,j,k
n and i−1/2,j,k

n by the one
dimensional CIP-CSL method. The rest of the values, such as
i,j−1/2

n , are updated by time evolution converting �TEC� as
follows:

i,j−1/2
� = i,j−1/2

n + 1
2 �i,j

� − i,j
n + i,j−1

� − i,j−1
n � . �36�

In axisymmetric geometry, this formulation is little modified.
Although we can use the same approach for the z-direction,
for the r-directions �31� and �34� must be modified as

�

�t
+ u

�

�r
= −



r

��ru�
�r

, �37�

�

�t
�

ri−1.2

ri+1/2

dr = −
1

ri�x
�ri+1/2Fi+1/2 − ri−1/2Fi−1/2� . �38�

E. Viscous stress term

The viscous stress term �39� is discretized by a standard
finite volume discretization,32

�

�t
�

�

udV =
1

�
�

�

�2�D� · ndS . �39�

First ui,j �cell average� is updated. The boundary values such
as ui−1/2,j are updated by TEC as explained in the section on
the CIP-CSL method �Sec III D�.

F. Projection step „pressure gradient term
and continuity equation…

By using the divergence of Eq. �23� and ��un+1 ·ndS
=0, the Poisson equation

− �
�

r

�
� pn+1 · ndS =

1

�t
�

�

ru� · ndS �40�

is obtained, where u� is the velocity after nonadvection step
1. Equation �40� is discretized

� r

�n+1�rp
n+1

i+1/2,j
− � r

�n+1�rp
n+1

i−1/2,j

�r

+
� r

�n+1�zp
n+1

i,j+1/2
− � r

�n+1�zp
n+1

i,j−1/2

�z

=
1

�t
� ri+1/2,jui+1/2,j

� − ri−1/2,jui−1/2,j
�

�r

+
ri,j+1/2vi,j+1/2

� − ri,j−1/2vi,j−1/2
�

�z
 , �41�

where

� r

�n+1�rp
n+1

i−1/2,j
�

2ri−1/2,j

�i,j
n+1 + �i−1,j

n+1

pi,j
n+1 − pi−1,j

n+1

�r
. �42�

A preconditioned BiConjugate Gradient Stabilized �BiCG-
STAB� method62 is used for the pressure Poisson equation.
The convergence tolerance of the pressure Poisson equation
�p=10−10 is used. This means that the divergence-free con-
dition is precisely satisfied. By using pn+1, the velocity of
boundary values �ui−1/2,j, vi,j−1/2� are updated,

ui−1/2,j
n+1 = ui−1/2,j

� − � 1

�n+1�rp
n+1

i−1/2,j
. �43�

Other velocities �ui,j, vi,j, ui,j−1/2, vi−1/2,j� are updated by the
TEC formula.

G. Model of surface tension force

The surface tension force appears as the surface force

Fsf = ��ns, �44�

where � is the fluid surface tension coefficient, � is the local
mean curvature, and ns is the unit vector normal to the inter-
face. In this calculation, the surface tension force is modeled
as a body force Fsf associated with the gradient of the den-
sity function

Fsf = �� � d. �45�

� can be computed from

� = − � · nls. �46�

nls is evaluated from the level set function

nls =
�


��
�
. �47�
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H. Contact angle implementation

1. Implementation

To impose the contact angle, we used a method devel-
oped by Sussman.55 An important advantage of this method
is that we do not need to locate the position of the triple point
in the subgrid explicitly. Contact angle is taken into account
by extrapolating the liquid interface represented by the level
set function as well as the VOF function into the solid, as
shown in Fig. 4.

The liquid interface is extrapolated by solving the exten-
sion equation

�


��2
+ uextend · �
 = 0, �48�

where �2 is the artificial time. In this work, ��2=0.5�x is
chosen. uextend is the extension velocity and is computed as
follows:

uextend =

nwall − cot�� − ��n2

�nwall − cot�� − ��n2�
if c 	 0,

�nwall + cot�� − ���n2

��nwall + cot�� − ���n2�
if c � 0,

nwall if c = 0,
� �49�

where

nwall = �0,− 1� , �50�

n1 = −
nls � nwall

�nls � nwall�
, �51�

n2 = −
n1 � nwall

�n1 � nwall�
, �52�

c = nls · n2. �53�

Here � is the contact angle. The extension equation is simply
solved by using a bilinear interpolation.

2. Singularity at the triple line

In theory, there is a singularity problem at the triple line.
If a no-slip condition is imposed on the solid interface the
triple line cannot move. However in reality, the triple line
does move. In formulations using staggered grids, the singu-
larity problem is avoided. The VOF function which repre-
sents the liquid interface is advected by the r-component of

velocity indicated by the black circles in Fig. 5 and the
z-component of velocity indicated by the black squares.

Therefore if the r-component of velocity has a finite
value, the triple line can numerically move. In this formula-
tion, the no-slip condition is imposed by extrapolating the
fluid velocity into the solid as the no-slip condition is satis-
fied,

ui−1/2,1 = − ui−1/2,2, �54�

as shown in Fig. 5�a�.63 This formulation avoids the singu-
larity problem because the r-component of velocity is not
defined on the solid surface. Additionally the r-component of
velocity has been defined as the boundary average �ui+1/2,j

=1 /�z�zi+1/2,j−1/2
zi+1/2,j+1/2udz�. Therefore the r-component of velocity

can have a finite value and the triple line can numerically
move along the solid surface as taking into account the no-
slip condition.

In this formula, it is easy to introduce the slip length Ls

as

ui−1/2,1 =
ui−1/2,2

Ls +
�z

2

�Ls −
�z

2
 , �55�

as shown in Fig. 5�b�. The slip length is used to avoid the
singularity problem in formulations which define the velocity
on the solid surface such as FEM. In fact a slip length exists
in the real world, and has been studied by using molecular
dynamics. However, we do not use the concept of slip length
because our formulation does not have a singularity problem

Liquid interface

θ
Solid interface

u
nwall

n2

extend
ns

FIG. 4. Contact angle implementation. The dashed line represents the imagi-
nary liquid interface in the solid. The contact angle is taken into account by
the imaginary liquid interface represented by the level set function.

Fluid

Solid(i,1)

(i,2)
(i-1,2)

(i-1,1)

Fluid

Solid

Ls

(a) (b)

FIG. 5. Schematics no-slip boundary condition �a� and slip length �b�. Black
circles and squares represent where r- and z-components of velocity are
defined, respectively. The arrow in the fluid represents the velocity of the
fluid. The arrow in the solid represents a fictitious velocity to impose the
no-slip condition. Ls is the slip length.
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and we believe that the slip length is much smaller than the
mesh size.

IV. DYNAMIC CONTACT ANGLE MODEL

Figure 6 shows the experimental values of contact angle
measured during the impact of a 2.28 mm diameter drop
arriving at 1 m/s.56 Here we would like to explain the detail
of advancing �receding� contact angles. Two types of advanc-
ing �receding� contact angles are experimentally defined:
“dynamic” advancing �receding� contact angle and “static”
advancing �receding� contact angle. In the droplet impact
experiment, the dynamic advancing �receding� contact angle
�da ��dr� is the angle which is measured during droplet
spreading �recoiling�. A complex interaction between the
fluid viscosity, the surface tension, the inertia, and the sub-
strate results in the dynamic advancing �receding� contact
angle being a function of the velocity of the contact line UCL.
In the measurements, the dynamic advancing �receding� con-

tact angle tends to a limit as UCL increases �decreases�, as
shown in Fig. 6. We name these limits the maximum dy-
namic advancing angle ��mda� and the minimum dynamic
receding angle ��mdr�.

In contrast, the static advancing �receding� contact angle
�sa ��sr� is defined as the maximum �minimum� angle ob-
served when the triple line speed is zero or nearly zero �i.e.,
quasistatic�.45

We propose a dynamic contact angle model. The model
is based on Tanner’s law50–54

Ca = k��d − �e�3, �56�

for capillary-dominated situation �low Ca number�, where Ca
is the Capillary number �Ca��UCL /�� and k is a material-
related constant which is empirically determined. The angles
�d and �e are the dynamic contact angle and the equilibrium
contact angle, respectively. Another approximation is used
for the inertia-dominated situation. When inertia is dominant
�high Ca number�, the constant angles, �mda and �mdr, are
used

�d�UCL� = ��mda if UCL � 0,

�mdr if UCL 	 0,
� �57�

as shown in Fig. 6. The proposed model is based on Eqs.
�56� and �57�.

The dynamic contact angle model simply consists of
Eqs. �56� and �57� as

��UCL� = 
min��e + �Ca

ka
1/3

,�mda� if UCL � 0,

max��e + �Ca

kr
1/3

,�mdr� if UCL 	 0,� �58�

where ka and kr are material-related parameters for advanc-
ing and receding, respectively. These parameters ka and kr

are determined as the best fit parameters to the measurement
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FIG. 7. An approximation to the experimental data �Fig. 6� by Eq. �58�. As
parameters for the contact angle model, �mda=114°, �e=90°, �mdr=52°, ka

=9.0�10−9, and kr=9.0�10−8 are used. The contact angle model is referred
as model I.
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�Fig. 6�. We assumed that if �mdr	�d	�mda, the system is in
the capillary phase, and Tanner’s law �56� is used. If the
contact angle reached �mda or �mdr, we considered that it was
no longer in the capillary phase and applying the other law
�57�. Figure 7 compares a result of Eq. �58� to the experi-
mental data.

V. NUMERICAL RESULTS

We performed axisymmetric simulations of droplet im-
pact onto a dry surface. We used the densities �liquid

=1000 kg /m3, �air=1.25 kg /m3, viscosities �liquid=1.0
�10−3 Pa s, �air=1.82�10−5 Pa s, surface tension �=7.2
�10−2 N /m, gravity 9.8 m /s2, initial droplet diameter D
=2.28 mm, and impact speed 1 m/s. The liquid was distilled
water. The substrate was a silicon wafer onto which hydro-
phobic silane has been grafted using standard microelec-
tronic procedures. The surface roughness is less than 50 nm.
The equilibrium contact angle of the substrate with distilled
water is 90°. The static advancing and receding contact
angles are 107° and 77°, respectively. The static angles were
measured with a goniometer.

Figure 8 shows snapshots of comparisons between the
numerical results from the dynamic contact angle model of
Fig. 7 �hereafter referred to as model I� and the experiment.

Only the right hand side from the center of the droplet is
computed. The grid size is 100�100. Figure 9 shows the
numerical result for time evolution of the contact patch di-
ameter on the substrate. The numerical result using model I
shows good agreement with the experiment. The Appendix
shows numerical results using different grid sizes.

To study the importance of using appropriate contact
angles, we conducted a numerical simulation using only the
equilibrium contact angle �hereafter referred to as model II�.
instead of the dynamic contact angle model. Figures 10 and
11 show snapshots of the numerical results and the time evo-
lution of the diameter, respectively. This result shows that
numerical simulation using the equilibrium contact angle
�model II� is not suitable. Even partial rebound is observed.
This simulation overestimates the maximum diameter be-
cause the dynamic advancing contact angle is underestimated
during spreading �i.e., the dissipation of the inertia is under-
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estimated�. For retreating, the receding contact angle is over-
estimated. If the contact angle is overestimated during recoil,
the contact angle cannot reduce the speed of the contact line
sufficiently. As a result, the triple line retreats too far. The
dynamic contact angle usually reduces the speed of the triple
line. However if only 90° equilibrium angle is used, the con-
tact angle does not reduce the triple line speed, and therefore
the diameter does not stabilize even after 100 ms.

We conducted a numerical simulation using the static
advancing and receding contact angles �model III�, instead of
the maximum dynamic advancing contact angle and the
minimum dynamic receding contact angle, as shown in Fig.
12. Figures 13 and 14 show snapshots of the numerical re-
sults and time evolution of the diameter, respectively. The
numerical results show that the behavior is different from the
experiment �shown in Fig. 8�. However the numerical results
may be better than those using the equilibrium angle �model
II�. During impact and spreading, the deviation is not so
great because the substrate is hydrophobic, and therefore
�mda and �sa are close. The maximum diameter is slightly
overshot because the static advancing contact angle is little
lower than the actual dynamic advancing contact angle.
However, retreating gives a large error in terms of appear-
ance as well as in the diameter prediction. This is because the
receding contact angle is considerably overestimated, as in
the simulation using the equilibrium angle �model II�. This
result shows that numerical simulation using static angles
�model III� is also not suitable.

To study the importance of using appropriate �mda and
�mdr, we conducted a numerical simulation using 175° and 5°
instead of the measured maximum dynamic advancing and
minimum receding contact angles, respectively. Figure 15
shows this dynamic contact angle model �model IV� and Fig.
16 shows the numerical result. The maximum diameter is
underestimated because the dynamic advancing contact
angle is overestimated, as shown in Fig. 15. This numerical
result shows that using appropriate �mda and �mdr is impor-
tant.

To study the influences of smoothing in the dynamic
contact angle model, we conducted numerical simulations

using a sharp dynamic contact angle model �model V� using
ka=9�10−9 and kr=9�10−9, as shown in Fig. 17. Figure 18
shows the numerical result from model V. During impact and
spreading, including the maximum diameter prediction, the
numerical result shows good agreement. This is because the
sharp contact angle model �model V� for advancing �UCL

�0� is the same as that of model I. However the result for
the recoil phase does not agree quantitatively with experi-
ment because the contact angle is underestimated in −0.2
	UCL	0. The underestimated contact angle reduces recoil.
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As a result, the numerical simulation did not achieve a meta-
stable diameter in the time period of 13–18 ms �Fig. 18�.

VI. CONCLUSIONS

We conducted axisymmetric simulations for droplet im-
pact onto a dry plane surface. Our numerical formulation can
robustly simulate droplet impact behavior. We introduced a
dynamic contact angle model based on the experimental
measurement. To approximate the measured values of dy-
namic contact angle, we used Tanner’s law for low Ca num-
ber, the maximum dynamic advancing angle and the mini-
mum dynamic receding angle for high Ca number, and the
equilibrium contact angle for Ca=0.

Our numerical results show that using appropriate maxi-
mum and minimum angles, and smoothing of the dynamic
contact angle model are important. Numerical results of
model II �using equilibrium angle� and model III �using
static angles� showed totally different behavior from the ex-
periment. Numerical results using different maximum/
minimum dynamic angles �model IV� and smoothing �model
V� did not show good agreement with the experiment, either.

The contact angle model is asymmetric in terms of am-
plitudes as well as smoothing, such as the experimental mea-
surement. The asymmetric dynamic contact angle model is
important in predicting precisely not only the advancing
phase but also the receding phase of drop impact.
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APPENDIX: RESOLUTION STUDY

Figure 19 shows the numerical results obtained with
three different grid sizes �50�50, 100�100, and 200
�200, respectively� with the parameters of the model held
fixed. The results are close. In particular the final diameter
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and the time of the first rebound are insensitive to the reso-
lution. We are therefore confident that the 100�100 grid
used in this article is sufficiently accurate, while costing 1

16th
that of the 200�200 grid.
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