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Linearized impulse wave propagating down a vertical column of heavy particles
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A granular column is subjected to a small amplitude impact on its top. For a generalized power-law contact
force between neighboring grains, numerical simulations show that the propagation of the impulse wave is
controlled by dispersion. This leads quantitatively to a power-law decrease of the amplitude of the wave with
depth. We find numerically the dependence of this power-law exponent on the force-law exponent. An analytic
expression for the decrease is then derived from a long-wave approximation.
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[. INTRODUCTION approximation that enables one to go further in the spatial
derivatives of the displacement, leading to additional fourth-
The propagation of an impulse wave along a horizontabrder derivatives modeling dispersion in the partial differen-
elastic granular chain has received growing attention. Firstial equation. It is worth saying that this procedure is the
Nesterenkd[1,2] provided a long-wavelength theory for a same as the one used for introducing dispersion in the case of
generalized contact force between the graliits 5%, wheres  the horizontal granular chaisee[1,2,5]). We then extract an
is the overlap, i.e., the approach of the centers of the particlegpproximation for the exponent of the observed power laws
in excess of the undeformed contact. This theory has beeffiom the partial differential equation by analytically investi-
compared with experiments by Lazaridi and Nesteref#{o gating the evolution of the phase of the wave in the slowly
and more recently by Coste, Falcon, and Fa#leNumeri- ~ varying medium.
cal simulations have been performed by Hinch and Saint-

Jean[5] and Hascoeand Hermanr6] showing agreement Il. EQUATIONS OF MOTION
with Nesterenko’s theory when the force-law exponernis ) , )
close to unity, the Hertzian cage=2 indicating some dis- We consider a column o particles of massn with a

crepancies. Improvements of Nesterenko's theory for th@article interaction forcé& =ks“, wherek is an elastic con-

shape of the solitary waves have been given by Chatterjedfant; d the overlap between two balls, amd>1 an expo-

[7]. The scattering of traveling solitary waves by an impurity _nent determining the kind of contacts bgtween the ba_lls. For

mass has also been investigafé#l The problem of a linear instancea=1 for flat planar surfacesy= 3 for the Hertzian

contact force in compressian=1 has been studied numeri- Intéraction between spherical balls, whereas? defines an

cally [5,8] and a long-wavelength theory providgsl. interaction with conical asperities. We write the contact force
Waves in vertical granular columns, implying effects of Petween the balls andn+1 as

gravity, were first studied by Sinkovits and Sgnh10], who N

considered the propagating signal due to a weak perturbation Fo12=K(Wn=Wp1)% .

at the top surface of a granular column. It was then checkec?,h bl ds to the displ t of the ball
numerically that the phase velocity of the traveling signal € variablewy, corresponas 1o the displacement of the ba
from its gravity-free equilibrium position. The label plus on

varies withz?2(1= %) ‘wherez is the depth in the column. A I .
numerical study of the scattering of the propagating signal b . :
an impurity has also been providgtil] and the detection of do not tOUCh'_ that %0 12=0 i Wn—Wp1<0. .
buried objects was then proposed as an application. The dis- The equation of motlon for ”“? dlsplacement .Of the grain
persive nature of the propagating waves in the linear regim “”.‘be_m 1<n<N andn increasing with depth, is the fol-
has been investigated more precisely by Hong, Ji, and Kin®WN9:

[12]. A theory for the observed power laws for the decrease .

of the amplitudes of the displacement and velocity was then MW =Fn-12=Fns+12+ Mg @)

proposed. . .
In this paper, we propose an alternative derivation of thes he boundary conditions are chosen such that the surface is
ree and the bottom fixed, hen&g,,=0 andwy=0. At time

power laws consistent with the dispersive nature of wav i / - Y -
propagation in the granular column. The dispersive feature of= 0. &ll the particles are at rest in their equilibrium position
propagation was not taken into account in the previous workinder gravity and then the first particle is given a velodity
[12] since the partial differential equation for the grain dis- The equilibrium valuesv, are determined by the equilib-
placement obtained at the continuum limit does not contairfium condition when the column is at rest:

dispersive terms leading to inconsistencies in the derivation o o

of the power laws. Our theory is based on a long-wavelength Fn_1o—Fpni1potmg=0.
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Summing from the beginning of the chair=1 gives 0.9 - - - - - - - - -
08 1
Fn+12=mgn 0.7 .
Or, equivalently 0.6 T
__ mg 1/ a1: 0.5 1
wn—wn+1=(7n) . 04 F L
03 | L
Since we focus on small amplitude perturbations about the ., | ‘ [
equilibrium state, the displacement relative to the equilib- ’
rium w,,=w,—w, must satisfy 0.1 r b
0 " N Ly N N L N N 15
mg \Y* 0 100 200 300 400 500 600 700 800 900 1000
W, =W, < " ) n

) ] ] ) ) FIG. 1. Displacements of the grains in the column at tirhes
This allows us to linearize the equations of motion about the-50 0, 150.0, 250.0, and 350.0, and for the case?.

basic state. If we develop, 1, to first order in a Taylor

expansion we have played in Fig. 2. The velocity perturbation shares the same
(a—1)la property of decreasing amplitude. Both amplitudes seem to

— mg B . .
Frt12=Fns1t ak(—) nle=Dleaqw! —w/! ;). decrease with depth with a power-law dependence. In order
k to quantify these decreases, we measured the waves’ ampli-

tudes in taller columns dil=10" particles. In addition, the
exponent of the interaction force was varied in a range from
1.5 to 5. The simulations provided two power laws for the

Substituting this expression into Ed.) we obtain the linear-
ized equations of motion. In order to work with nondimen-

sional quantities we define the velocity scale \4ythe im- decay of the amplitudesv,, . (2)oz A andv . (2) =2 P2,

pact velocity of the first particle. The corresponding time, nerez is the position of the maximum amplitude in the

scal_e IS given by the res_cale(_i equation of motion for thlscolumn. Due to the discrete nature of the system, those maxi-
particle. A simple calculation gives us for the time scéle

mum amplitudes oscillate as they decay, as the maximum of

m ma (a-1a the wave travels from one particle to the next. In order to
R ak<_g) obtain a better approximation of a maximum amplitude and
T2 k its location, we first looked down the column for the particle

. ) with the maximum value of displacement or velocity at a
In terms of the velocity scal®/ and the time scald, the  gjven time. We then measured the corresponding values for

linearity condition(2) becomes the two neighboring particles and made a quadratic interpo-
Y lation to give a local expression for the variation of the am-
mg litudes bet the particles. Th i litud
VT<|—| plitudes between the particles. The maximum amplitude was
then extracted by maximizing the quadratic. The values of

_ ) ) ) ) the exponentg, and 3, were then found first by computing
The nondimensional linearized equations are then

\',i,rg:(n_1)(a—1)/a(wr'171_wr'])_n(a—l)/a(wrr]_wrg+l) 0.3 T T T T T T T T r
025 | .
3

02} _
with w/,(0)=0 andw;}(0)=1, w/(0)=0 for n>1. 0.15 1
01} _
ll. NUMERICAL RESULTS F 005 1

0
The equations of motio(B8) have been integrated numeri- 005 | i
cally using a Gear predictor-corrector algorithm of order o1 )

five. We first simulated a column wittN=10> particles )
obeying the Hertzian interaction law. Figure 1 displays the -0.15 i

displacement fields at four equal time intervals. A perturba- 0.2
tion with speed increasing with depth, and amplitude de-
creasing, travels down the column. This perturbation is fol-

lowed by small oscillations with increasing apparent FIG. 2. Velocities of the grains at the same times as for the
wavelength. The corresponding velocity profiles are disdisplacements in Fig. 1.

0 100 200 300 400 500 600 700 800 900 1000
n

011307-2



LINEARIZED IMPULSE WAVE PROPAGATING DOWNA .. .. PHYSICAL REVIEW BE56, 011307 (2002

0.11 T T T T -0.204 T T T T
-0.206 | -
=~ 0115 | . -~
2 & 0208 | :
) &
E -0.12 | E B ! )
5 £ -0.
= )
= oa2st} 1 S oot 1
g E
g
E 0214 | i
\‘é ol | £ 0214
5 \E 0.216 .
g 0a35 | 1 S
g 0218 .~ .
0.14 : . L . 022 . . . .
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
13 13
Znax Zmax
FIG. 3. Determination of the exponeft in the casex=2. The FIG. 4. Determination of the expone@} in the casex=2. The

local exponent INfimae /Winax)/IN(Zmae /Zmax) 1S computed until the  same method is used as 8f. The value obtained is less accurate

pulse reaches the position=10*. Wy, andwpm,q are two dis-  for the velocity due to the oscillations coming from kinetic and

placement maxima measured with a time interval of 10. Thepotential energy redistribution in the pulse.

asymptotic value of the exponent is extracted at the crossing of the

extrapolated line with the vertical axis. ing the discreten with the continuousz by z=n, and for
greater clarity we drop the primes in E®). Let the nondi-

the logarithm of the ratio of two maxima measured at a timemensional spring constant be

interval of ten gnits di\_/iQed by tlhe Iogarithm pf the ra’Fio of K(z)= za~Dla @

the corresponding positions. This expression is an estimation '

of the local decay exponent. These local exponents were thefhen by making a Taylor series expansion of the finite dif-
plotted against the inverse of the cube root of the positionserences in Eq(3) and retaining just the first two terms, we

The advantage of such a procedure comes from the fact th@htain the governing equation for the continuum long-wave
the local exponents vary linearly with this argument for largeg nnroximation,

enough depth. The reasons for this linear dependence will

become clear in the following section where a theory for the J*w g 1 & g 1 &

impulse propagation is proposed. Figures 3 and 4 give an —2=( )K(EWL ﬂ_s)w' 5
example of this finite-size extrapolation procedure tor at 0z

=2.0. In the following table we give the ya_1|ues we measuredry ;s locally the waves satisfy a dispersion relation,
for B, and B, to an accuracy of three digits.

4+ —
0z 24 323

_ C— 112 1 2

o B1 B w=0Q(k;z)==K"q(z)k 1—2—4k ,
15 0.101 0.268  \yith local frequencyw and local wave numbek.
2.0 0.136 0.219 We now consider the evolution of a wave-packet propa-
3.0 0.167 0.189 gation according to this dispersion relation through the
4.0 0.187 0.194 slowly varying medium. The wave will propagate at the
5.0 0.200 0.202 group velocity

H H - i 1/2] 1 2
The decay exponens, is always larger thars,, i.e., the z=cg=W=K 1- §k ) (6)

velocity decays more rapidly with depth than the displace-

ment. Fora<<3, B, increases withv whereas, decreases. ag it propagates, its local frequenayand local wave num-

As a>3, one can notice thaé, begins to increase. The aim per k change with the corresponding slow changes in the
of the following section will be to find functional expressions medium,

for B4 and B, justifying these numerical results.

Q)
o=—=0, ()
IV. SLOWLY VARYING LONG WAVES at
The numerical solutions of the propagating impulse wave Yo 1,
show that the wave spreads out slowly. We thus seek to make k=— oz [K™2)]'k| 1 ﬂk . ®)

a long-wave approximation to E¢3). We move from a dis-

crete description of the displacements of the individual parAt the same time the phasg of the wave packet evolves
ticles w,(t) to a continuum representation(z,t), identify-  according to
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FIG. 5. Numerical and analytic results for the displacement ex- FIG. 6. Numerical and analytic results for the velocity exponent
ponentB;. The analytic resuliB;=(a—1)/4a corresponds to the B,. The analytic resultsB,=(a+3)/12z if 1<a<3 and B,
dashed curve whereas the numerical results are represented by(a—1)/4a if >3 correspond to the two dashed curves whereas

crosses. the numerical results are represented by crosses.
. 1 155 Now consider a nearby wave packet with a small local
o= _QH‘W: 3K i frequencyw, which is constant. Let it be at
Since Eq.(5) describes a Lagrangian system, the amplitude Z(w,t)=25(t) +AZ(w,t)  with |Az|<z,.
of the wave packet will change conserving wave actfon
=E/w, with local energy densitf, i.e., This wave packet propagates according to @&, i.e.,
A L (=0 (9) d 1
—+ —=(cy,A)=0. .
ot gz 9 Az= d_zK1/2(2)|Zo(t)AZ_ §K1’2(zo)k2.

Because the medium does not change in time, the local
frequency of a wave packet will remain constant. Witho Substituting the expression f&(z) in Eq. (4), and our re-
constant, the dispersion gives the variation of the local wavsults for z5(t) in Eqg. (11) and for k(t) in Eqg. (10), this

numberk as becomes
1 . (a—1)/(a+1)
k( 1- Zlkz =wlKY(z). Az= & 14z sz 2 {—(a=D)l(a+1)
at+l t 8 a+1

This is in effect the integral of E(8) for the change in the ) ] ) )
local wave number. As the wave packet propagates down thEhe nature of the solution of this equation at long times
chain, K increases wittz and sok must decrease to zero. depends on the value of the force-law exponentFor 1
Thus we become interested in long waves with small local~@<3, the slower group velocity for small nonzekois

wave number, important, and
~ 172 (a—1)/(a+1)
(el (o Az L2 22 AL ey, (19
8 a-l—l 3—a

We start by tracking the wave packet with zero wave

number,k=0, as it propagates with its group velocit§),
propag group ) For larger values of the exponeant;> 3, the local wave num-

ie.,
ber decreases so fast that the wave travels at the same speed
w12\ (a—1)I2a as thek=0 wave and its different positioAz just represents
zo=K"qzy) =123 , X . ;
the accumulation of time delays from early times,
with solution
AZ_}_Clet(afl)/(aJrl)’ (13)
a+1 2al(a+1)
Zo(t)=|——t (11) :
2 where the constartt;(«) comes from the early time delays.
The evolution of the phase of the wave packets is gov-
This wave packet has a constant phége erned at small frequency by
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FIG. 7. Wave shapes for displacement and velocity. From top to botdmequal to 1.5, 3.0, and 5.0. The displacement pulses are
displayed on the left whereas the velocity pulses are displayed on the right.

3 / 2(a—1)/(a+1)
l‘):—iwi o= go_iaﬁ Zia a+1t(37(1)/(a+1)
12 K(z(1)) 129 | at1 3—a ’
1 2a 2(a—1)/(a+1) (14)
I t—2(a—1)/(a+1)
12 a+1

while for >3 the wave number decreases so fast that the
phase no longer increases

Again the nature of the solution depends on the value of the
exponentx in the force law. For ¥ a<3, 6— 0y— Crw®, (15
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with constantc,(a) depending on the details at early times  From the above analysis, the displacement and velocity
when the long-wave continuum approximation is not appli-can be written in a self-similar way. If€a<3,
cable.

Substituting our results for the position of the wave w(z,t) Z—27Zy(1)
packet with frequency, Eq$12) and (13), into our expres- fa 223(1) and
sions for the phase, Eg$14) and (15), we find how the 0
phase varies in time and space near to kkeD wave. For

Za(a—l)ma(t)

1<a<3' U(Z,t) —g (Z_Zo(t)
—(a+3)12a 4y @ 1/3 :
z (t) zy (1)
b 4\/5(3—a)1’2 zo(H)—z\*? ° °
0 3 2ua ch)/s(t) ' If >3,
while for a>3, w(z,t) [ Z=zp(t)
“(a-1)l4a =fa (a—1)/2a and
312 Zy (t) z; (t)
e ( Zo(t) ~ 2 )
=00 C3| T e |
Z6 () o(zt) ( 2—70(t) )
with a constantc;(a) depending on the early times. From Za(ail)ma(t) ‘ Zgafl)lza(t)
these expressions, we see that at a fixed time the phase , , ) ) .
changes significantly over a distance wheref,, g, f,, andg,, are universal functions giving the
shape of the pulse. We numerically determined these func-
ze(t) if 1<a<3 tions by plotting on the same figure the rescaled pulses at
= Ao D2y i 453 position 1000—9000 with an interval of 1000 between each.
0 1

Figure 7 displays the results for valuesmtqual to 1.5, 3.0,

while at a fixed positiorz, the phase changes significantly in @nd 5.0 confirming a good agreement with the expected scal-
a time ing behaviors.

T=L/z,. V. CONCLUSION

Finally we turn to the variation of the amplitude of the ~ We have studied the problem of the propagation of a weak
propagating impulse wave. Each Component frequencperturbation ina granular chain SubjeCted to graVity. We first
moves with a constant flux of wave actig®), i.e., for the Showed numerically that the impulse wave propagating down
displ o the vertical column has different features from those ob-

placementsv(w), . ) ) .

served in a horizontal granular chain. In particular, the am-
C..oW2= const. plitude of the waves decrease with depth following power
9 laws. Two power laws for displacement and velocity ampli-
Thus the maximum displacement decreases according to tudes have been found. We proposed a theory that permits us
to obtain the functional form of these power-law exponents.
Moreover, we found numerically the invariant shape of the
displacement and velocity pulses for different values of the
The maximum velocity is this typical displacement divided force exponent.
for the time T over which the phase changes significantly, The study of the dynamics of the granular column is at its
ie., beginning and many other problems remain to be investi-
. gated. Concerning the linear regime, one could investigate
if 1<a<3 the case of a perturbation traveling up a column, the symme-
Umax* 7, (Ve if 0>3, try existing for the horizontal chain being broken by gravity.
Disorder effects could first be addressed by considering im-

We plot in Figs. 5 and 6 the exponengg and 8, ob-  pure columns. The most interesting challenge is perhaps the
tained numerically and their analytical counterparts. We haveinderstanding of the strong anharmonic regime. Although
a good qualitative agreement between numerical results arttiere is a theory for this regime in the case of the horizontal
analytical prediction as one can see from the crossover granular chain, this theory does not seem to apply to the
a=3 wheref, begins to increase with the same rateBas  granular column.

~o=12_ —(a—1)/4a
Wmax*Zg =7 .

Za(a+3)/12a
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