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Linearized impulse wave propagating down a vertical column of heavy particles
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A granular column is subjected to a small amplitude impact on its top. For a generalized power-law contact
force between neighboring grains, numerical simulations show that the propagation of the impulse wave is
controlled by dispersion. This leads quantitatively to a power-law decrease of the amplitude of the wave with
depth. We find numerically the dependence of this power-law exponent on the force-law exponent. An analytic
expression for the decrease is then derived from a long-wave approximation.
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I. INTRODUCTION

The propagation of an impulse wave along a horizon
elastic granular chain has received growing attention. F
Nesterenko@1,2# provided a long-wavelength theory for
generalized contact force between the grains,F}da, whered
is the overlap, i.e., the approach of the centers of the parti
in excess of the undeformed contact. This theory has b
compared with experiments by Lazaridi and Nesterenko@3#
and more recently by Coste, Falcon, and Fauve@4#. Numeri-
cal simulations have been performed by Hinch and Sa
Jean@5# and Hascoe¨t and Hermann@6# showing agreemen
with Nesterenko’s theory when the force-law exponenta is
close to unity, the Hertzian casea5 3

2 indicating some dis-
crepancies. Improvements of Nesterenko’s theory for
shape of the solitary waves have been given by Chatte
@7#. The scattering of traveling solitary waves by an impur
mass has also been investigated@6#. The problem of a linear
contact force in compressiona51 has been studied numer
cally @5,8# and a long-wavelength theory provided@5#.

Waves in vertical granular columns, implying effects
gravity, were first studied by Sinkovits and Sen@9,10#, who
considered the propagating signal due to a weak perturba
at the top surface of a granular column. It was then chec
numerically that the phase velocity of the traveling sign
varies withz1/2(121/a), wherez is the depth in the column. A
numerical study of the scattering of the propagating signa
an impurity has also been provided@11# and the detection o
buried objects was then proposed as an application. The
persive nature of the propagating waves in the linear reg
has been investigated more precisely by Hong, Ji, and K
@12#. A theory for the observed power laws for the decrea
of the amplitudes of the displacement and velocity was t
proposed.

In this paper, we propose an alternative derivation of th
power laws consistent with the dispersive nature of wa
propagation in the granular column. The dispersive featur
propagation was not taken into account in the previous w
@12# since the partial differential equation for the grain d
placement obtained at the continuum limit does not con
dispersive terms leading to inconsistencies in the deriva
of the power laws. Our theory is based on a long-wavelen
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approximation that enables one to go further in the spa
derivatives of the displacement, leading to additional four
order derivatives modeling dispersion in the partial differe
tial equation. It is worth saying that this procedure is t
same as the one used for introducing dispersion in the cas
the horizontal granular chain~see@1,2,5#!. We then extract an
approximation for the exponent of the observed power la
from the partial differential equation by analytically inves
gating the evolution of the phase of the wave in the slow
varying medium.

II. EQUATIONS OF MOTION

We consider a column ofN particles of massm with a
particle interaction forceF5kda, wherek is an elastic con-
stant,d the overlap between two balls, anda.1 an expo-
nent determining the kind of contacts between the balls.
instance,a51 for flat planar surfaces,a5 3

2 for the Hertzian
interaction between spherical balls, whereasa52 defines an
interaction with conical asperities. We write the contact for
between the ballsn andn11 as

Fn11/25k~wn2wn11!1
a .

The variablewn corresponds to the displacement of the baln
from its gravity-free equilibrium position. The label plus o
the right bracket means that the force is zero when the b
do not touch, that isFn11/250 if wn2wn11,0.

The equation of motion for the displacement of the gra
numbern, 1,n,N andn increasing with depth, is the fol
lowing:

mẅn5Fn21/22Fn11/21mg. ~1!

The boundary conditions are chosen such that the surfac
free and the bottom fixed, henceF1/250 andwN50. At time
t50, all the particles are at rest in their equilibrium positio
under gravity and then the first particle is given a velocityV.

The equilibrium valuesw̄n are determined by the equilib
rium condition when the column is at rest:

F̄n21/22F̄n11/21mg50.
©2002 The American Physical Society07-1
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Summing from the beginning of the chainn51 gives

F̄n11/25mgn.

Or, equivalently

w̄n2w̄n115S mg

k
nD 1/a

.

Since we focus on small amplitude perturbations about
equilibrium state, the displacement relative to the equi
rium wn85wn2w̄n must satisfy

wn82wn118 !S mg

k
nD 1/a

. ~2!

This allows us to linearize the equations of motion about
basic state. If we developFn11/2 to first order in a Taylor
expansion we have

Fn11/25F̄n11/21akS mg

k D (a21)/a

n(a21)/a~wn82wn118 !.

Substituting this expression into Eq.~1! we obtain the linear-
ized equations of motion. In order to work with nondime
sional quantities we define the velocity scale byV, the im-
pact velocity of the first particle. The corresponding tim
scale is given by the rescaled equation of motion for t
particle. A simple calculation gives us for the time scaleT:

m

T2
5akS mg

k D (a21)/a

.

In terms of the velocity scaleV and the time scaleT, the
linearity condition~2! becomes

VT!S mg

k D 1/a

.

The nondimensional linearized equations are then

ẅn85~n21!(a21)/a~wn218 2wn8!2n(a21)/a~wn82wn118 !

~3!

with wn8~0!50 andẇ18~0!51, ẇn8~0!50 for n.1.

III. NUMERICAL RESULTS

The equations of motion~3! have been integrated numer
cally using a Gear predictor-corrector algorithm of ord
five. We first simulated a column withN5103 particles
obeying the Hertzian interaction law. Figure 1 displays
displacement fields at four equal time intervals. A pertur
tion with speed increasing with depth, and amplitude
creasing, travels down the column. This perturbation is
lowed by small oscillations with increasing appare
wavelength. The corresponding velocity profiles are d
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played in Fig. 2. The velocity perturbation shares the sa
property of decreasing amplitude. Both amplitudes seem
decrease with depth with a power-law dependence. In o
to quantify these decreases, we measured the waves’ am
tudes in taller columns ofN5104 particles. In addition, the
exponent of the interaction force was varied in a range fr
1.5 to 5. The simulations provided two power laws for t
decay of the amplitudes:wmax(z)}z2b1 andvmax(z)}z2b2,
where z is the position of the maximum amplitude in th
column. Due to the discrete nature of the system, those m
mum amplitudes oscillate as they decay, as the maximum
the wave travels from one particle to the next. In order
obtain a better approximation of a maximum amplitude a
its location, we first looked down the column for the partic
with the maximum value of displacement or velocity at
given time. We then measured the corresponding values
the two neighboring particles and made a quadratic inter
lation to give a local expression for the variation of the a
plitudes between the particles. The maximum amplitude w
then extracted by maximizing the quadratic. The values
the exponentsb1 andb2 were then found first by computing

FIG. 1. Displacements of the grains in the column at timet
550.0, 150.0, 250.0, and 350.0, and for the casea5

3
2 .

FIG. 2. Velocities of the grains at the same times as for
displacements in Fig. 1.
7-2
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the logarithm of the ratio of two maxima measured at a ti
interval of ten units divided by the logarithm of the ratio
the corresponding positions. This expression is an estima
of the local decay exponent. These local exponents were
plotted against the inverse of the cube root of the positi
The advantage of such a procedure comes from the fact
the local exponents vary linearly with this argument for lar
enough depth. The reasons for this linear dependence
become clear in the following section where a theory for
impulse propagation is proposed. Figures 3 and 4 give
example of this finite-size extrapolation procedure fora
52.0. In the following table we give the values we measu
for b1 andb2 to an accuracy of three digits.

a b1 b2

1.5 0.101 0.268
2.0 0.136 0.219
3.0 0.167 0.189
4.0 0.187 0.194
5.0 0.200 0.202

The decay exponentb2 is always larger thanb1, i.e., the
velocity decays more rapidly with depth than the displa
ment. Fora,3, b1 increases witha whereasb2 decreases
As a.3, one can notice thatb2 begins to increase. The aim
of the following section will be to find functional expression
for b1 andb2 justifying these numerical results.

IV. SLOWLY VARYING LONG WAVES

The numerical solutions of the propagating impulse wa
show that the wave spreads out slowly. We thus seek to m
a long-wave approximation to Eq.~3!. We move from a dis-
crete description of the displacements of the individual p
ticles wn(t) to a continuum representationw(z,t), identify-

FIG. 3. Determination of the exponentb1 in the casea52. The
local exponent ln(wmax2 /wmax1)/ln(zmax2 /zmax1) is computed until the
pulse reaches the positionn5104. wmax2 and wmax1 are two dis-
placement maxima measured with a time interval of 10. T
asymptotic value of the exponent is extracted at the crossing o
extrapolated line with the vertical axis.
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ing the discreten with the continuousz by z5n, and for
greater clarity we drop the primes in Eq.~3!. Let the nondi-
mensional spring constant be

K~z!5z(a21)/a. ~4!

Then by making a Taylor series expansion of the finite d
ferences in Eq.~3! and retaining just the first two terms, w
obtain the governing equation for the continuum long-wa
approximation,

]2w

]t2
5S ]

]z
1

1

24

]3

]z3D KS ]

]z
1

1

24

]3

]z3D w. ~5!

Thus locally the waves satisfy a dispersion relation,

v5V~k;z!56K1/2~z!kS 12
1

24
k2D ,

with local frequencyv and local wave numberk.
We now consider the evolution of a wave-packet prop

gation according to this dispersion relation through t
slowly varying medium. The wave will propagate at th
group velocity

ż5cg5
]V

]k
5K1/2S 12

1

8
k2D . ~6!

As it propagates, its local frequencyv and local wave num-
ber k change with the corresponding slow changes in
medium,

v̇5
]V

]t
50, ~7!

k̇52
]V

]z
52@K1/2~z!#8kS 12

1

24
k2D . ~8!

At the same time the phaseu of the wave packet evolve
according to

e
he

FIG. 4. Determination of the exponentb2 in the casea52. The
same method is used as forb1. The value obtained is less accura
for the velocity due to the oscillations coming from kinetic an
potential energy redistribution in the pulse.
7-3
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u̇52V1k
]V

]k
52

1

12
K1/2k3.

Since Eq.~5! describes a Lagrangian system, the amplitu
of the wave packet will change conserving wave actionA
5E/v, with local energy densityE, i.e.,

]A

]t
1

]

]z
~cgA!50. ~9!

Because the medium does not change in time, the lo
frequency of a wave packetv will remain constant. Withv
constant, the dispersion gives the variation of the local w
numberk as

kS 12
1

24
k2D5v/K1/2~z!.

This is in effect the integral of Eq.~8! for the change in the
local wave number. As the wave packet propagates down
chain, K increases withz and sok must decrease to zero
Thus we become interested in long waves with small lo
wave number,

k~ t !;v/K1/2~z!. ~10!

We start by tracking the wave packet with zero wa
number,k50, as it propagates with its group velocity~6!,
i.e.,

ż05K1/2~z0!5z0
(a21)/2a ,

with solution

z0~ t !5S a11

2a
t D 2a/(a11)

. ~11!

This wave packet has a constant phaseu0.

FIG. 5. Numerical and analytic results for the displacement
ponentb1. The analytic resultb15(a21)/4a corresponds to the
dashed curve whereas the numerical results are represente
crosses.
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Now consider a nearby wave packet with a small lo
frequencyv, which is constant. Let it be at

z~v,t !5z0~ t !1Dz~v,t ! with uDzu!z0 .

This wave packet propagates according to Eq.~6!, i.e.,

Ḋz5
d

dz
K1/2~z!uz0(t)Dz2

1

8
K1/2~z0!k2.

Substituting the expression forK(z) in Eq. ~4!, and our re-
sults for z0(t) in Eq. ~11! and for k(t) in Eq. ~10!, this
becomes

Ḋz5
a21

a11

Dz

t
2

1

8
v2S 2a

a11D (a21)/(a11)

t2(a21)/(a11).

The nature of the solution of this equation at long tim
depends on the value of the force-law exponenta. For 1
,a,3, the slower group velocity for small nonzerok is
important, and

Dz→2
1

8
v2S 2a

a11D (a21)/(a11) a11

32a
t2/(a11). ~12!

For larger values of the exponent,a.3, the local wave num-
ber decreases so fast that the wave travels at the same s
as thek50 wave and its different positionDz just represents
the accumulation of time delays from early times,

Dz→2c1v2t (a21)/(a11), ~13!

where the constantc1(a) comes from the early time delays
The evolution of the phase of the wave packets is g

erned at small frequency by

-

by

FIG. 6. Numerical and analytic results for the velocity expone
b2. The analytic resultsb25(a13)/12a if 1 ,a,3 and b2

5(a21)/4a if a.3 correspond to the two dashed curves wher
the numerical results are represented by crosses.
7-4
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FIG. 7. Wave shapes for displacement and velocity. From top to bottoma is equal to 1.5, 3.0, and 5.0. The displacement pulses
displayed on the left whereas the velocity pulses are displayed on the right.
t

the
u̇52
1

12

v3

K~z0~ t !!

52
1

12
v3S 2a

a11D 2(a21)/(a11)

t22(a21)/(a11).

Again the nature of the solution depends on the value of
exponenta in the force law. For 1,a,3,
0113
he

u5u02
1

12
v3S 2a

a11D 2(a21)/(a11) a11

32a
t (32a)/(a11),

~14!

while for a.3 the wave number decreases so fast that
phase no longer increases

u→u02c2v3, ~15!
07-5
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with constantc2(a) depending on the details at early tim
when the long-wave continuum approximation is not app
cable.

Substituting our results for the position of the wa
packet with frequency, Eqs.~12! and ~13!, into our expres-
sions for the phase, Eqs.~14! and ~15!, we find how the
phase varies in time and space near to thek50 wave. For
1,a,3,

u5u02
4A2

3 S 32a

2a D 1/2S z0~ t !2z

z0
1/3~ t !

D 3/2

,

while for a.3,

u5u02c3S z0~ t !2z

z0
(a21)/2a~ t !

D 3/2

,

with a constantc3(a) depending on the early times. Fro
these expressions, we see that at a fixed time the p
changes significantly over a distance

L5H z0
1/3~ t ! if 1 ,a,3

z0
(a21)/2a~ t ! if a.3,

while at a fixed positionz, the phase changes significantly
a time

T5L/ ż0 .

Finally we turn to the variation of the amplitude of th
propagating impulse wave. Each component freque
moves with a constant flux of wave action~9!, i.e., for the
displacementsw̃(v),

cgvw̃25const.

Thus the maximum displacement decreases according to

wmax} ż0
21/25z0

2(a21)/4a .

The maximum velocity is this typical displacement divid
for the time T over which the phase changes significant
i.e.,

vmax}H z0
2(a13)/12a if 1 ,a,3

z0
2(a21)/4a if a.3.

We plot in Figs. 5 and 6 the exponentsb1 and b2 ob-
tained numerically and their analytical counterparts. We h
a good qualitative agreement between numerical results
analytical prediction as one can see from the crossove
a53 whereb2 begins to increase with the same rate asb1.
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From the above analysis, the displacement and velo
can be written in a self-similar way. If 1,a,3,

w~z,t !

z0
2(a21)/4a~ t !

5 f aS z2z0~ t !

z0
1/3~ t !

D and

v~z,t !

z0
2(a13)/12a~ t !

5gaS z2z0~ t !

z0
1/3~ t !

D .

If a.3,

w~z,t !

z0
2(a21)/4a~ t !

5 f a8 S z2z0~ t !

z0
(a21)/2a~ t !

D and

v~z,t !

z0
2(a21)/4a~ t !

5ga8 S z2z0~ t !

z0
(a21)/2a~ t !

D ,

wheref a , ga , f a8 , andga8 are universal functions giving the
shape of the pulse. We numerically determined these fu
tions by plotting on the same figure the rescaled pulse
position 1000–9000 with an interval of 1000 between ea
Figure 7 displays the results for values ofa equal to 1.5, 3.0,
and 5.0 confirming a good agreement with the expected s
ing behaviors.

V. CONCLUSION

We have studied the problem of the propagation of a w
perturbation in a granular chain subjected to gravity. We fi
showed numerically that the impulse wave propagating do
the vertical column has different features from those o
served in a horizontal granular chain. In particular, the a
plitude of the waves decrease with depth following pow
laws. Two power laws for displacement and velocity amp
tudes have been found. We proposed a theory that permi
to obtain the functional form of these power-law exponen
Moreover, we found numerically the invariant shape of t
displacement and velocity pulses for different values of
force exponent.

The study of the dynamics of the granular column is at
beginning and many other problems remain to be inve
gated. Concerning the linear regime, one could investig
the case of a perturbation traveling up a column, the sym
try existing for the horizontal chain being broken by gravi
Disorder effects could first be addressed by considering
pure columns. The most interesting challenge is perhaps
understanding of the strong anharmonic regime. Althou
there is a theory for this regime in the case of the horizon
granular chain, this theory does not seem to apply to
granular column.
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