VOLUME 74, NUMBER 1

PHYSICAL REVIEW

LETTERS 2 JANUARY 1995

Universal and Nonuniversal First-Passage Properties of Planar Multipole Flows
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The dynamics of passive Brownian tracer particles in steady two-dimensional potential flows between
sources and sinks is investigated. The first-passage probability p(z) exhibits power-law decay with a
velocity-dependent exponent in radial flow and an order-dependent exponent in multipolar flows. For
the latter, there also occur diffusive “echo” shoulders and exponential decays associated with stagnation
points in the flow. For spatially extended dipole sinks, the spatial distribution of the collected tracer is
independent of the overall magnitude of the flow field.

PACS numbers: 47.55.Mh, 05.40.+j

The motion of passive tracer in a flowing fluid is a con-
venient diagnostic tool for monitoring the characteristics
of the flow field, as well as properties of the background
medium. In porous media flows, particularly in ground-
water or hydrocarbon recovery, tracer measurements often
are the only source of internal information about the
system [1]. Considerable effort has focused on one-
dimensional flows where tracer is introduced at one end
of the sample, and the transit time distribution is moni-
tored upon exit at the other end. However, in many situ-
ations, such as fluid pumped into an “injection” well and
extracted from one or more “producing” wells, the flow is
more likely to be radial, or multipolar, rather than linear.
Our goal, in this Letter, is to provide general insights
about the first-passage properties for dynamically neutral
tracer in such flows [2].

We shall focus on steady two-dimensional flows which
are generated by multipolar configurations of sources and
sinks. These appear to encompass many cases of possible
physical relevance, as well as illustrate a rich range
of phenomenology. Previous work in the engineering
literature [3] has provided useful approximations and
exact solutions in certain special cases, but has not
addressed the generic features of multipole flows, which
is the focus here. Mathematically, the first passage
of passive Brownian tracer particles is determined by
their concentration, c(r, t), which satisfies the convection-
diffusion equation (CDE),

dc(r,t)

PP + u(r) - Ve(r,t) = DV3¢(r, 1), (D

with the velocity field wu(r) arising from a two-
dimensional potential. We will elucidate the features of
p(t), the distribution of transit times or the first-passage
probability between source and sink, to characterize the
motion of dynamically neutral tracer in steady flows.
In porous media flows, D should be interpreted as the
(velocity-dependent) hydrodynamic dispersion coefficient
rather than the molecular diffusion coefficient. However,
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as illustrated in our companion paper [2], this refinement
does not affect the asymptotic properties of p(s), and
we shall consider only molecular diffusion as contri-
buting to D.

First, consider radial or monopolar flow, u(r) = uof/r.
Nonuniversal features arise due to the competition be-
tween the flow and the centrifugal term in the Laplacian,
which both vary as 1/r. Consequently, the form of the
CDE in two dimensions (d = 2) with ug finite is the same
as that of a system with no drift but with d # 2. Thus
changing the amplitude u, is equivalent to changing the
spatial dimension, leading to nonuniversal first-passage
properties as a function of the drift.

To illustrate these features, we have solved for p(r)
in a circular geometry with an inner absorbing radius
a, infinite outer radius, and an initial ring of tracer
particles which are released at r = ry. This first pas-
sage probability coincides with the radial flux at r = q,
ie., p(t) = —Dac(r,t)/dr + u(r)c(r,t). Using standard
Green’s function methods, the Laplace transform p(s) =
Jo p(t)e™" d1, is [2]

5 (s) = (g)"&(rm/s/‘u‘) 2
P ro) K,aJs/D)’

where K, is the modified Bessel function of the second
kind, and v = ug/2D = Pe/2, where Pe is the Péclet
number. The long-time behavior is determined from the
small-s expansion of p, which generically has the form,
p(s) ~ p(0) — as® + bs' + ---. By construction, the
leading term p(s = 0) = [, p(t)dt = E(ro) is just the
probability that a tracer particle which starts at r = rg
eventually reaches the absorbing circle. Time-dependent
properties can be inferred from the correction terms in
Eq. (2). When a < 1, then the mean first-passage time to
the absorbing circle, (z), diverges, and the first-passage
probability in real time has a power-law tail which
varies as =@+, However, when a reaches unity, the
coefficient of —s equals ().
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For outward flow, the small-s expansion of p(s) is

2v
sy~ | & PO =)o (S
p(s) (ro) (1 ra+vy) 7o “ )<4D> + )
3

Thus E(r¢) = (a/ro)*” <1 and some tracer escapes to
infinity. This reflects the equivalence to a purely diffusive
system of spatial dimension d > 2, for which the eventual
return probability is less than unity [4]. From the
correction term, we deduce that (rf) — o for 0 = v < 1,
while for v = 1, (¢) is finite. Since E(rg) < 1,{t) in the
case v > 0 is conditional on those particles which actually
hit the absorber. Note that for sufficiently large outflow,
a tracer particle must reach the absorber in a finite time if
it is to be absorbed at all.

For inflow (» < 0), the first passage probability has the
small-s expansion

- ' — w), 2u 2H(s>”
~] - == — - + ...
PO~ 1= ry o — 9N 5p - @
where 4 = —v > 0. Thus tracer hits the absorbing circle

with certainty, while p(z) is nonuniversal and varies as
=0+ Additionally for u < 1,{¢) is infinite, while for
p = 1,(z) is finite. Even though the tracer is guaranteed
to reach the absorber for any inflow (including zero), the
first-passage time is finite only if the drift is sufficiently
strong.

We now discuss tracer motion in a fully two-
dimensional dipole flow field due to a point source and
sink at (+a,0) within a circle of radius R, with total flux
*Q. The velocity field may be written as

ay _%)

dy’  ox )

u=Vep = (
Here the velocity potential ¢ and stream function ¢ are
the real and imaginary parts of the complex potential

_ Q9 (z + a)(z + R*/a)
V=dtiy= I G = RYa)’

where = R?/a are the image locations to impose vanishing
normal velocity on the boundary, and z = x + iy. We
assume that fluid and tracer are emitted uniformly in angle
about the source.

In the limit of pure convection in an infinite plane
(R — ), the tracer motion is determined by the velocity
field, dr/dt = u(r(z)). Since the second equality in
Eq. (5) represents a Hamiltonian system, we have applied
a canonical transformation technique to compute particle
trajectories analytically [2], and thereby determine that the
transit time from source to sink for a particle emitted
at polar angle 6 with respect to the source is #(0) =
2csc?6[1 — 6 cotd], see also [5]. Although the motion
is deterministic, a distribution in transit times results from
the distribution in initial angle. Since all streamlines lead
from source to sink, there is a one-to-one equivalence
between the angular and time dependence of the first-

(6)

passage probability. This leads to
dé 23—
P = p@ |22 —tem=ren )

O—r
due to tracer particles which initially move away from the
sink on distant dipole streamlines. It is this aspect of the
distribution which explores the global structure of the flow
field. Note that the mean transit time, (t) = [, dr tp(1),
diverges.

To incorporate molecular diffusion, we resort to numer-
ical simulation and have employed several complementary
methods. The simplest is grid-free Monte Carlo time step-
ping, using individual random walkers which work best
at high Péclet numbers [6]. In time Az, a walker is dis-
placed by Ar = u(r)Ar + W (4Azr/Pe)'/2, where A is a unit
vector of random orientation. Figure 1(a) gives a typi-
cal result for Pe = 2700 with N = 500000 random walk-
ers. There is an early-time peak, followed by the antici-
pated 1~%/> power-law decay, and then a noisy exponen-
tial region dominated by diffusion. To clarify the latter
domain, we have devised a lattice “probability propaga-
tion” algorithm. A probability element at (i, j) translates
through a distance Ar = u(r)Az in a time Ar to an off-
lattice position (x,y) and is then redistributed among the
five-site nearest lattice neighborhood of the target posi-
tion. The redistribution rule is chosen to ensure that the
average displacement of the five-site group remains equal
to Ar and that diffusion is spatially constant by imposing
a constant fluctuation in the displacement of this group.
While this method has no statistical fluctuation, the simple
form of the redistribution rule restricts the method to low
flow rates.

The probability propagation results are equivalent to
standard finite-difference methods, but programming is
extremely simple. A typical result for p(r) [Fig. 1(b)]
exhibits the following four generic features: an early-
arrival regime, a power-law decay, a “diffusive echo”
shoulder (whose resolution in simulations is dependent
on the absence of statistical fluctuations), and an ultimate
exponential decay. The shoulder stems from particles
which reflect from the boundary before reaching the sink.
Because of the low Péclet number involved, nontrivial
asymptotic exponent estimation and extrapolation [2] are
required to verify the exponent in the power-law region.
Since p(z) ~ 1/t In?t in the diffusive limit [4] and p(¢) ~
t7*3 as Pe — oo, it seems unlikely that a simulation
method which cannot be applied at large Pe will be able
to resolve these two limiting behaviors cleanly.

The decay at the longest times may be correlated with
stagnation points in the flow field which generically lead
to an exponential decay in the transit-time distribution
[7]1. Without loss of generality, consider a stagnation
point at the origin with the local velocity u = dr/dt =
(—=Gx,Gy). If the stagnation point is approached along
the x axis, then trajectories which pass near the origin
and then escape have the form r(z) = (xpe ¢, ype®") with
yo < xo. The time 7 spent near the stagnation point can
be defined by requiring that y ~ Uy, where U, is some

83




VOLUME 74, NUMBER 1

PHYSICAL REVIEW LETTERS

2 JANUARY 1995

10° ———rrrr———rrrr g

T
L

URAALLL S

p (1)
=

(@)
10?
10°
z
5
s 10°
]
[=9
o
&
g 10°
&
10°
107 o :
10 100 1000 10000 100000
time
(b)
FIG. 1. First-passage probability distribution in combined
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dipolar flow and molecular diffusion within a circle of radius
R = 400 with source and sink at x = +20, obtained by (a)
following the motion of individual random walks for Pe =
2700 and (b) probability propagation for Péclet numbers Pe =
1.6,0.8,0.4, and 0.2 (tallest to shortest peak, respectively). The
inset in (a) shows the streamlines. Also in (a), the abscissa is
the dimensionless time t — t(2mwa?/Q).

characteristic O(1) velocity. Since y ~ yoGe®T, this gives
T ~ G 'In(Uy/yoG). Typically, for trajectories which
pass near a stagnation point, the transit time between
source and sink is dominated by this value of 7. The
corresponding distribution of transit times may now be
obtained by accounting for the distribution of initial
positions yo. Consequently,

dyo

p(T) = po(yo) a7

U _ _ _
= Po(ae GT) | — Ue 7| i po(0)e 7. (8)
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Thus the transit time distribution depends on the local
shear rate near the stagnation point but not on details of
the initial spatial distribution of tracer py. In the present
example, applying Egs. (5), (6), and (8) to the stagna-
tion points at (*R,0) gives an exponential decay rate
with G « R73. The decay rate observed in simulations
will typically be the smaller of this value and the dif-
fusive decay rate, which is proportional to R~2 for the
dipole case.

For a source sink of arbitrary multipolarity, the ex-
ponent of the power-law tail in p(s) depends on the
multipole moment. This exponent can be obtained by
the following simple argument. For a 2V pole, the
leading behavior of the complex potential is ¥ ~ z7V,
so that the corresponding streamlines are ¢ = ImW¥ ~
r~V sinN@, for suitable orientation of the axes. In
the convective limit, particle trajectories are defined
by ¢ = const. This constraint implies that ¢(r,0) =
YR, 7/2N) = RV, or r¥ = RY sinN@, where R is the
maximum distance from the origin on the streamline. The
angular velocity on such a streamline is

49 _ 134

dt r or
~ RN 25in"YN(NG). 9

Nr %2 5inN6

The transit time on this trajectory is the time required
for 6 to vary between O and 7/N. Using the above
approximation for the angular velocity, the transit time
scales as t = (’{/N do (de/dt)~' ~ RV*2. To determine
the transit time distribution, we relate the value of R to
the initial angle of emission 6, at the source. Suppose
the source is at the origin and oriented so that the long-
excursion streamlines are associated with 6, — 0. For
r— €, = RN — N sinfy — 67N00, or 6y ~ RV,
Thus the transit time probability distribution is

d, 1 |d6, de

N = p(By) |EX| = — |£0 4k

p@&) = p®o) |~ 27 | dR ar
~ RTIN-2 _ ~CN+/(N+2). (10)

While these predictions have been verified numerically in
the convective limit, there are as-yet unexplained diffusive
features in probability propagation simulations [2]. When
both convection and diffusion are operative, time-reversal
symmetry is broken and the form of p(¢) for a quadrupole
consisting of charges (—Q,20Q,—Q) is quite different
from that of an “inverted” quadrupole (Q,—2Q,0Q). In
the former case, p(t) appears to decay as ¢t~ !? over a
substantial time range, while for the inverted quadrupole,
the exponent of p(r) appears to depend on the Péclet
number. The source of the different properties of p(z)
for the two types of quadrupoles is as yet unexplained.
Another important diagnostic is the distribution of
where on the sink the tracer is collected. In the dipole
case, with passive tracer released in steady potential flow
between a source and a single spatially extended equipo-
tential sink, we demonstrate that the time-integrated tracer
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flux distribution at a given point on the sink is propor-
tional to the incoming fluid velocity at this point. By
linearity, this implies that the spatial distribution of the
collected tracer is independent of the overall magnitude
of the flow. This establishes a useful general equivalence
between tracer distributions for pure diffusion and in com-
bined convection and diffusion.

To prove the theorem, we use the complex potential as
the conformal mapping to transform the flow domain from
(x,y) into (¢, ). In these variables the CDE becomes

2 2
dc 1 ( d“c d“c ) . an

—0c , dc 1 97c
(b I3+ 55 = Pelagz T oy

This transformation to linear flow introduces a spatially
dependent time step which is singular as (0,i7) is
approached. In the (¢, ¢) coordinate system, the source
has coordinate ¢ = ¢¢. For the initial condition of a
delta-function pulse of tracer injected at the source, then
in the equation of motion for &(¢,y) = [, dtc(t, é, ),
the time derivative term integrates to zero, yielding

¢ _ ¢ ¢
o " 90 " (12)

P FYER
with boundary conditions (1 — Pe™'9/d¢)¢é = K, a Pe-
independent constant at ¢ = ¢g, and £ = 0 at ¢ = ;.
The solution of Eq. (12) is ¢ = K[1 — ¢P(¢~#)] and the
time-integrated tracer flux arriving at angular position
on the sink p(y) is

_ *® dc )
) = —pe” [ a2 g = —pe 2 ()
. 0 on on
—Pe_lﬁ % , (13)
ad on gy
where fi is the unit normal to the sink. In the last

expression, the first factor is a constant, and the second
is simply the normal velocity of fluid at the sink. Hence
p(¥) < u,(y) as claimed.

Notice that the theorem also holds in the pure diffusion
limit, as can be seen by taking Pe — O either in the
equation for ¢ or in its solution. In this case, the
appropriate statement is that p(y¥) is constant for a
constant arclength of the sink. Conversely in the limit of
no diffusion the theorem is obvious, because then tracer
particles remain on their initial streamline, and the tracer
flux is simply proportional to the fluid flux. The nontrivial

implication is that the local integrated flux to a simply
connected sink is independent of the Péclet number,
although the transient flux is Péclet number dependent.

In summary, we have investigated the first-passage
probability p(z) of dynamically neutral tracer in ho-
mogeneous two-dimensional potential flows.  The
corresponding behavior in the interesting case of het-
erogeneous media is currently under investigation.
For radial flow, convection, and diffusion are of the
same order, leading to nonuniversal first-passage char-
acteristics. In general multipole flows, the exponent
of p(¢) depends on the multipole order. The effects
of diffusion appear to be subdominant for the dipole
but relevant for the quadrupole, as qualitative features
of p(r) depend on the sense of the quadrupolar flow
when diffusion is present. The influence of stagnation
points on the asymptotic properties of p(r) was de-
termined. Finally, the time-integrated flux to a fixed
arclength of sink is independent of the overall magnitude
of the flow field.
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