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In strong flows, such as turbulence, it is suggested that randomly coiled macromolecules might become
nearly fully extended. To investigate this extended state, four models are considered which show the
importance of the inextensibility of the polymer chain and the variation of the friction coefficient with the
extension. The rheological consequences of these processes are then explored in an appropriately modified
dumb-bell model. A dilute polymer solution is predicted to have a high extensional viscosity but a low
shear viscosity, a stress hysteresis, and a slow stress relaxation. The action of the novel rheology is shown
in two simple flows. Finally, speculations are made on the possible way dilute polymer solutions can

modify turbulence.

{. STRESS LEVEL

Before attempting to explain the reduction of turbu-
lent drag by very dilute polymer solutions, it is neces-
sary to understand a little about both turbulent drag and
dilute polymer solutions., This paper is concerned sole-
ly with the polymer side. Those features of the rheology
of polymer solutions which I consider important in drag
reduction will be reviewed. A complete historical re-
view of the development of the subject has not been at-
tempted.

For me the most amazing feature of drag reduction is
that dramatic effects on the drag can be achieved with
exceedingly small quantities of polymer additive, just
a few parts per million by weight., How so little can be
so effective is one question we can answer. Let me
start by producing some estimates of the change in the
levels of stress caused by suspending some small par-
ticles in a solvent,

A suspension of small particles can be treated as an
effective continuum, albeit non-Newtonian and different
from the solvent, as long as the particles are smaller
than the smallest length scale of the flow. Often the
length scale of the flow is simply the dimension of the
apparatus, but in a turbulent boundary layer the re-
quired scale is the thickness of the viscous sublayer,

A randomly coiled polymer is sufficiently small, typical-
ly being one hundredth the size of the smallest eddy. I
should perhaps note here that this is not the situation in
drag reduction by dusty gases and fiber suspensions.
Inthese casesthe relevant particle size, the stopping
distance of the dust particles and the fiber length, usu-
ally exceeds the smallest eddy size by a large factor.
Hence, dusty gases and fiber suspensions cannot be re-
garded as continua when studying turbulent drag reduc-
tion.

An immediate consequence of the ratio of the flow
scale and the polymer size being large is that this non-
dimensional group has no dynamical significance. By
measuring the properties of a continuum, it is not pos-
sible to determine the size of its microstructure. Thus
the “length hypothesis” for the onset of drag reduction,
however good it might appear as an experimental corre-
lation, can have no physical basis.

’
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When a suspension of particles acts as an effective
continuum, the typical stress levels can often be esti-
mated by applying Einstein’s effective viscosity calcula-
tion. Einstein' showed that, for a dilute suspension of
rigid inert spheres, the fractional change in the viscos-
ity was two and a half times the volume fraction of the
spheres. Before applying this result one needs to know
that in low-Reynolds-number flows (the flow around the
small polymers has a Reynolds number less than 10™)
the effective hydrodynamic size of a particle is its larg-
est linear dimension, e.g., the drag on a falling rod is
crudely given by Stokes’ law based on the half-length of
the rod, with a very weak logarithmic dependence on the
shape and thickness of the rod. Thus, to estimate the
viscosity of dilute polymer solutions we use the volume
fraction of those spheres which just enclose the separate
polymer molecules.

Three things can go wrong with this procedure for
estimating the stress levels in the suspension, First
the particles can deform and thus not carry the same
stress as a rigid particle which fully resists the strain-
ing. When polymers deform, however, they can avoid
only a fraction of the rigid particle stress. Second,
rod-like particles can sometimes align in a direction in
which there is no component of strain, and this leads to a
reduction in the apparent viscosity. This directionality
effect occurs, however, only in simple shear flow which
is not typical of turbulent motions. Finally, the effec-
tive hydrodynamic volume fraction can be large and thus
break the diluteness restriction used in the Einstein cal-
culation, In fact, this occurs in our application, even
though the true volume fraction of the particles is mi-
nute, Fortunately, we are saved here by a recent the-
ory of Batchelor? verified in some experiments by Mewis
and Metzner®: in the case of fibrous particles the dilute
formula still holds with very weak modifications,

As an illustration which will be continued through the
paper, I will take a 100 ppm solution in water of Polyox
of molecular weight 10°, The relevant dimensions are
then 0.3 pm for the separation of the polymers in solu-
tion, 0.03 um for the rms size of the coiled (equilibrium)
polymer in which each monomer is joined to the preced-
ing one at a random angle and the chain thus executes
a random walk (in a 6 solvent), and 7 um for the length
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FIG. 1. The elastic dumb-bell model of a distorting polymer
in the linear velocity field u{x, ¢) =x+ vU(p).

of the chain when it is stretched straight. If the poly-
mers are coiled, the viscosity is estimated to change by
a few percent, which is consistent with observation,
while if the polymers are fully stretched the procedure
suggests the viscosity increases by a factor of ten thou-
sand.

The preceding illustration shows that if the polymers
were all fully stretched then large changes in the rheol-
ogy of a dilute solution can be expected, changes suffi-
cient to effect turbulent drag. Clearly, the polymers
need not be fully extended; significant rheological
changes occur when the polymer coil is extended by a
factor of ten (a hundred being fully stretched). If one
believes that turbulence is moderately robust and can
only be modified by major dynamical changes, then one
must conclude that in drag reduction the randomly coiled
polymers are stretched substantially, How the polymers
can become stretched is tackled in the next section,

Why drag reduction can be achieved with only a little
polymer has now been answered. Weight is simply an
inappropriate measure of the added polymer, A better
measure is the effective hydrodynamic volume fraction,
i.e,, the volume fraction of spheres just enclosing the
separate polymers, and this measure shows a large con-
centration if the polymers are highly stretched.

Finally, I would like to criticize the agglomeration
theories of drag reduction for not producing estimates
of the effectiveness of aggregates, In order to produce
a large rheological effect in turbulence but a negligible
effect in a viscometric flow, the effective size of the ag-
gregates must be ten times larger in turbulence, I fear
that the implied levels of stress within an extended ag-
gregate far exceeds the weak binding forces.

li. STRONG FLOWS

About the simplest representation of a distorted poly-
mer is the elastic dumb-bell, introduced by Kuhn and
Kuhn,* While, this limited model cannot answer many
questions about macromolecular behavior, it does ex-
pose most clearly the key issues which determine how
much distortion can be expected when the polymer is
placed in a particular flow,

The gross distortion of the random walk of the chain,
e.g., the separation of the monomers at the end of the
chain, is represented by a single vector r which be-
comes the extension of a spring separating two beads,
see Fig., 1. Now Brownian fluctuations in the chain con-
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figuration produce a relaxation of the distortion. This
entropic desire to return to the most probable, spheri-
cally symmetric, randomly coiled state is modeled by
the elasticity of the spring, The linearized spring con-
stant « is usually taken to be 3#T/Nb®, in which #7 is
the Boltzmann temperature, N is the number of mono-
mers, and b is their length, This spring law corre-
sponds to the force which must be applied at the oppo-
site ends of a single independent bond in order to pro-
duce an expected alignment of r/N, the calculation
closely following the theory of magnetic susceptibility.
When »/N <« b the (inverse Langevin) spring law can be
linearized.

The polymer chain is distorted by a flow with a veloc-
ity gradient because there is a velocity difference be-
tween the two sides of the random walk, In the elastic
dumb-bell model this stretching is represented by the
hydrodynamic drag on the spherical beads, with friction
constants 67 . a, according to Stokes’ law, As I noted
in the preceding section, the effective hydrodynamic size
of the polymer chain is its linear dimension and so in
this gross model one should take a =5(N/6)!/? (known as
the impermeable case).

To derive the evolution equation of the dumb-bell, a
force balance is made on each bead, resulting in

) (1)

where X=«/6mua. Also, one concludes that the polymer
is advected by the local bulk flow, so that the velocity
gradient tensor should be evaluated as a function of time
in a Lagrangian frame, The two terms on the right-hand
side of (1) express, as any simple model of the micro-
structure of a fluid inevitably must, the flow-induced
distortion and its relaxation, with only the relaxation
rate depending on the details of the model. For the con-
tinuing illustration of the Polyox solution referred to
earlier, the relaxation time is estimated to be a little
shorter than a millisecond, which is consistent with ob-
servations of the dynamic viscosity.

r=r.vUu{f)-xrr

The question of how much distortion can be expected
when the polymer is placed in a particular flow can now
be answered by solving (1), For simplicity, we consider
flows with constant histories, i.e., the VU seen by the
polymer advected by the bulk flow is independent of
time. Under such circumstances the solution of the lin-
ear evolution equation (1) is the sum of three exponential
functions of time, Denoting |VU/| as the largest real
part of an eigenvalue of the tensor VU, the behavior of
the polymer can be divided into two classes. If {VU| <A
(a weak flow), the restoring force wins and the distor-
tion decays. If |VUI=A (a strong flow), the stretching
flow wins, and within this crude model, the distortion
increases in time without bound. The next section will
examine the development of the very large distortions
more carefully. For the present we only need the sug-
gestion that large distortions exist in strong flows. The
first indication of the existence of strong flows was
Takserman-Krozer’s® study of the related Rouse-Zimm
model in uni-axial straining motion,

From the discussion of the preceding section relating
the levels of stress to the distortion of the polymers,
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dramatic rheological effects are to be expected in strong
flows. The condition that the flow is strong leads® to the
“time hypothesis” for the onset of drag reduction: that
the turbulent wall strain rate uz*/u, should exceed the
principal polymer relaxation time 0,4 2T/uN3/2p%, Ex-
perimentally, the two time scales are found to be of the
same order of magnitude, but there is wide scatter in
the data. I think the reason for the poor practical cor-
relation is that both time scales need some refinement,
It is becoming increasingly clear that the polymers re-
spond more to the peak strain rate rather than the rms
level represented by #%/v. The peak levels will have a
weak Reynolds number dependence because of the inter-
mittency within the turbulence. The molecular time
scale employed can be faulted as depending too much on
a poor theory, even when expressed in the less sensitive
form [n) w M/RT. Direct observation of the relaxation
time, e.g., from the dynamic viscosity, would be pre-
ferable. The influence of polydispersivity also needs

to be understood,

Using the classification of flows into weak and strong,
an unsatisfactory feature of viscometric testing is ex-
posed. Simple shear flow has the property that VU]
vanishes whatever the magnitude of the flow. Viscomet-
ric measurements may thus not be relevant to strong
flows such as those found in turbulence,

The strange property of simple shear, that it is weak
whatever the magnitude of the flow, is very rare in the
class of all possible types of flow; in fact, those flows
with this property have the zero measure of a point on
a plane. Lumley’s” study of two-dimensional flows is
misleading on this matter because two-dimensional flows
are weak if the vorticity exceeds the strain rate. The
trouble stems from his special orthogonality of the vor-
ticity vector to the only two principal axes of strain,

If the vorticity is sufficiently large, the polymer mole-
cule spins roughly with the vorticity and this spinning
averages out the oscillating strain-rate that it sees in
the plane orthogonal to the vorticity. Thus, in two-di-
mensional flows the spinning molecule sees an average
strain rate of zero once the vorticity is large enough.

In three-dimensional flows, however, it is most unusual
for the component of the straining in the direction of the
vorticity to vanish, i,e,, for the average strain rate in
the orthogonal plane to vanish.

Before passing on to some models of polymers at
large distortions, I should briefly mention some classi-
cal improvements in the crude elastic dumb-bell model.
By adding Brownian motion to the beads, the undesirable
feature of the distortion vanishing althogether in weak
flows can be avoided; instead the distortion tends to a
small nonzero equilibrium, With the polymer state now
described by the expected second moment of the distor-
tion (rr) the evolution equation becomes '

.2
L ery=er) ULV G- 2 (<rr>— & 1), (22)
in which »; is the equilibrium radius of gyration. The
constitutive equations for the dilute polymer solution

are completed (in this extension of the elastic dumb-
bell) by an expression for the bulk stress,
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o== pl+p (VU+VUD) +uk (21}, (2b)

in which » is the number density of the polymers. Add-
ing the Brownian motions of the beads does not change
the classification of strong and weak flows, for diffusion
cannot produce very large distortions in weak flows or
limit the growing distortions in strong flows,

A second standard modification of the elastic dumb-
bell is the model Rouse® and Zimm?® in which the polymer
chain is represented by a necklace of beads and springs,
with some form of hydrodynamic interaction between
the beads. The necklace allows some internal distribu-
tion of the distortion to be represented in addition to the
gross distortion. This internal distribution shows itself
in the dynamic viscosity, but only modifies the strong
and weak flow classification by changing the critical flow
strength, A, to the relaxation rate of the slowest mode,

Finally, there are a number of complicated effects
which make the radius of gyration of the equilibrium
random walk differ from the ideal result i =bh(N/8)72,
These effects are the hindered rotation of the bond angle
between monomers, the finite volume of the monomers
and adjacent solvent molecules, and short and long range
electrostatic interactions between subgroups. All these
effects are usually lumped into a modified value of »,
sometimes ten times the ideal value, Changes in these
effects with distortion are not normally considered.

ll. LARGE DISTORTIONS

So far we have seen that large distortions of the poly-
mer molecules are needed for dilute solutions to have
dramatic flow properties and that the crude elastic
dumb-bell model suggests such large distortions can be
expected in strong flows. In this section the dynamics
of polymers with large distortions are explored. Four
models are presented which exhibit in a simple way dif-
ferent aspects of the dynamics. I think a full model in~
corporating all conceivable effects would not necessari-
ly be an improvement because it would be intractable
and cloud our understanding of the mechanics underlying
the phenomena,

Two important effects enter when the distortion be-
comes large. As soon as the distortion becomes com-
parable with the radius of gyration, the hydrodynamic
shielding of parts of the chain by other parts is altered.
At very much larger distortions the finite extensibility
of the polymer chain becomes relevant, I am going to
concentrate on these two effects, even though in practice
excluded volume, ionic charges and knotting of the chain
may not be negligible. These other effects are, how-
ever, auxiliary factors in the essential competition be-
tween the bulk flow creating the distortion and the en-
tropic restoring mechanism,.

A. Elastic ellipsoid

The first nonlinear effect to be considered then is the
dependence of the stretching by the bulk flow on the dis-
tortion. A suitable model to exemplify this effect is the
elastic ellipsoid model, introduced by Cerf' before the
necklace generalization of the bead-and-springs and ex-
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plored later by Roscoe. 1 1n the model the deformed
polymer is represented by an ellipsoidal shaped particle
of constant volume, The solvent flow around the particle
exerts distorting surface tractions., For the entropic
restoring forces the particle is given a simple Hookean
elasticity. Resistance to changes in shape due to the
chain moving in a viscous solvent and also due to the
chain entangling with itself is represented by an inter-
nal viscosity of the particle which exceeds the solvent
value,

It should be noted that the elastic ellipsoid is again a
gross distortion model; the internal distribution of the
chain distortion is not represented. The model further
suffers the use of an ad hoc relation between its elastic
modulus and the molecular origin of the restoring force,
The beauty of the model, however, is that if the particle
starts as a homogeneously stressed ellipsoid, e.g., a
sphere at rest, then it always remains an ellipsoid.

The development of the distortion can therefore be
tracked into the nonlinear regime using just five vari-

ables., Even so the mathematics is too complex to be
presented here. From the details two new effects
emerge,

The first and more important conclusion from the
elastic ellipsoid model is that the frictional grip of the
flow increases with the distortion. As pointed out in
the first section of the paper, the effective hydrodynam-
ic size of a particle is its maximum linear dimension.
The detailed mathematics musti therefore reflect this
basic fact with a friction coefficient for the stretching
motion increasing roughly in proportion to the distor-
tion. A consequence of this increasing frictional grip
is that large distortions can be maintained by some
weak flows so long as the initial distortion is large
enough. Because the nonlinear hydrodynamics only
widens the difference between the stretching and restor-
ing forces in strong flows, the growing distortion can
only be limited by the finite extensibility of the polymer
chain (or the finite duration of the strong flow). Finite
extensibility will be taken up in the next model,

The second conclusion from the model, which is less
important in dilute solutions, is that the particle spins
with a sum of the full vorticity but only part of the
straining motion., The inefficiency of the straining mo-
tion in spinning the particle is due to the “rigidity” of
the particle provided by the internal viscosity. It ap-
pears that this internal rigidity leads to several rheo-
logical phenomena absent in the elastic dumb-bell,
namely, a shear thinning viscosity, second normal
stress differences, and, in flows starting from rest, a
nonzero initial stress and oscillatory overshoots., None
of these effects would have a large magnitude in a dilute
solution,

B. Inextensible flexible thread

The preceding model has shown that in strong flows
(of sufficient duration) the distortion will grow until it
is limited by the finite extensibility of the polymer
chain. To examine the combined effects of hydrodynamic
stretching and the inextensibility, I have investigated a
new flexible thread model.'® For slender bodies such as
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FIG. 2. The straightening of a flexible inextensible thread in
a shear flow, starting from the S shape. The configuration
%x(s,# is plotted as a function of s aty£=0, 1, 2, 3, 4.

a thread, there is an asymptotic theory for the flow of
the solvent around a thread. With the thread described
by a vector function of arc length s and time /, X(s, {),
and with T (s, #) the tension in the thread, the governing
equations can be found as

1

%=%-VU+=22 (T'x'+1Tx") (3a)
2T

T/ - 4(x")?T == (27 /log)x’. VU. X', (80)

where the primes denote differentiation with respect to
arc length and the argument of the logarithm is the ratio
of the length to the breadth of the thread. These equa-
tions can be solved by perturbation methods for nearly
straight threads, and more generally on a computer,
Figure 2 is an example of a numerical solution for sim-
ple shear flow starting from an initial S shape.

The main conclusion of the study of the flexible thread
is that nearly always the thread rapidly straightens as
shown in Fig. 2, First, the thread tends to an orienta-
tion in which it is in tension. This tension then snaps
the thread straight, An exceptional flow is simple shear
in which the tension vanishes in the eventual orientation,
but here the bends of the thread are found to decay more
rapidly than the approach to the final orientation, so
that a straight thread still results.

From this model something can be said about the pos-
sibility of mechanical degradation of polymers in drag
reduction, If one accepts the premise that some poly-
mers may be fully stretched in the turbulence, then
(3b) enables the tension at the center of the chain to be
estimated as 27 | VUIN?p%/logN. If our standard illus-
tration of Polyox is placed in a flow with (VU| =10° sec'l,
corresponding to a friction velocity of 0,3 m/sec this
tension is 10°8 N, To estimate the binding force of the
carbon atoms along the backbone, I have taken the bind-
ing energy of § =120 keal/mol and divided this by the
atomic separation of 3 A, The resulting estimate of the
binding force is 10°® N. Thus, one would expect the
polymer to break into two in a flow with a strain rate
as strong as 10° sec™. This prediction is consistent
with general experience of degradation. It is interest~
ing to note the variation with molecular weight of the
onset point for drag reduction |VUIZ T/ N%/20%, and
the onset point for mechanical degradation |VU |2 §/u
u N%p®, Making the degree of polymerization, N, larger
may insure an earlier onset of drag reduction, but my
modeling suggests that it may be more effective at low-
ering the start of degradation, Crudely speaking, I
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would expect degradation to occur with drag reduction
whenever N >10°, Perhaps the best way to improve
drag reduction is not to look to very high molecular
weights but to consider improving the solvation,

C. Transversely diffusing thread

The preceding model examined the interplay of hydro-
dynamic stretching and finite extensibility. When these
two effects dominate, I concluded that the polymer chain
would be stretched out almost straight. A question now
naturally arises as to how strong the flow need be for
these two effects to dominate. To answer this question
the Brownian motion of the chain must be reintroduced,
so that the conditions under which the Brownian coiling
of the stretched chain is ineffective can be found.

In a second thread model, ** I have included some
weak Brownian motions, Weak Brownian motions acting
on a straight thread cause small transverse distortions
which can be described by a diffusion process in the de-
formation space. So that the continuum thread repre-
sents the small but finite bonds of the polymer backbone,
the degrees of freedom of the transverse distortions
must be truncated, This truncation also avoids an “ul-
traviolet catastrophe,”

Some straightforward analysis yields the probability
distribution of the distortions. There is less transverse
displacement at the center tompared with the ends of
the thread, because there the tension is largest and
it is the tension which snaps out the Brownian distor-
tions, The rms transverse displacement is 0.2 (¢7'log
(PTlogN/uNDIVU[)/2  a result insensitive to the trun-
cation, Associated with the transverse distortions is a
small coiling effect; the ends of an inextensible thread
must come closer when the thread is not straight, This
shortening is found to have a magnitude %7 logN/
KWNB®|VU|, with a precise value which depends critically
on the truncation, In some sense each degree of free-
dom of the transverse distortions brings 3 %7 potential
energy; energy stored as the tension multiplied by the
shortening. Thus, the shortening is roughly proportion-
al to the number of degrees of freedom, i.e., dependent
on the truncation, Also note that the shortening varies
as the small strength of the weak Brownian motion mul-
tiplied by the large number of degrees of fireedom, a re-
sult exploited in the following model,

For the Brownian motions to have a small effect, it
is necessary that the transverse distortions and the as-
sociated shortening should both be small compared with
the length of the thread, N». The second condition is the
more stringent, |VU|Z kT logN/uN®b®. Note that the
flow strength needed to maintain the stretched polymer
is N"V/2 times weaker than the flow required to produce
the initial large distortion of the random coil. This re-
sult simply reflects the increased frictional grip on the
polymer,

D. Elastic rod

In the transversely diffusing thread model we saw
that, except in extremely strong flows, the shortening
is an order of magnitude larger than the transverse dis-
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placements, although both were restricted to be small
in the analysis. This result opens the possibility of a
further regime for less strong flows, in which it is en-
visaged that the thread executes a noticeable random
walk contained within a long slender envelope. To ex-
amine this regime, I present my final model of an elas-
tic rod. The distorting forces of the bulk flow are still
calculated using the slender-body theory for Stokes’
flow, but are now applied to the envelope rather than
directly to the thread. The Brownian motions of the
polymer chain are included by treating the envelope as
an elastic rod with an entropic longitudinal elasticity
related to the local coiling of the thread.

To describe the coiling of the polymer chain in the
elastic rod, the position » along the straight rod is
specified as a function of the arc length s along the
thread, i.e., »(s,#). The local stretching of the ran-
dom walk is thus 3r/8s. Using similar arguments as
for the elastic dumb-bell, the longitudinal tension T in
the elastic rod is related to this local stretching by the
Langevin spring law,

T=07/0) L (6r/05)
The drag of the bulk flow on the stretching rod yields

2 -y vy 4 o8 2T
al 2mp 9s/ 8s
Careful consideration must be given to the moving ends
of the rod where the tension vanishes., There are many
similarities between my elastic rod model and the fully
nonlinear Rouse—Zimm model.

Steady equilibria are found if the flow is strong
enough, |VU|2kTlog?N/47u N%°®, In such an equilibri-
um the chain is at least half fully stretched. The model
shows that in the central region the chain is more fully
stretched., An asymptotic concentration of the coiling
in regions near the ends never dominates in practice
because of its mere logarithmic dependence.

The elastic rod model shows two effects in time de-
pendent flows: Depending on the circumstances, the
polymer can respond much slower or much faster than
the relaxation time of the randomly coiled polymer. If
the flow is strong, say strong enough to create the large
distortions of the random coil, then in equilibrium the
polymer is virtually fully extended, hard against the
stops of the nonlinear spring. The polymer then re-
sponds very quickly and often almost as a rigid rod. If
little of the polymer is fully stretched, then its response
time is much longer, N1/21/log?N, which is longer
than that of random coil. Here, the nonlinearity of the
spring is unimportant and it is the second effect of the
V'N enhanced friction which is significant. At large dis-
tortions the polymer relaxes slowly against the large
frictional resistance,

IV. RHEOLOGICAL FUNCTIONS

Large distortions were examined in the preceding sec-
tion. In strong flows of sufficient duration the polymer
was found to become virtually fully extended. The sim-
ple models also revealed two basic physical processes;
a frictional grip increasing with the distortion and a
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rate of coiling rapidly increasing as the distortion is
limited by the finite extensibility of the chain. These
basic results now need more careful study by refined
models. Experimental testing of some of the associ-
ated predictions is also necessary.

Instead of considering more refined models here, we
now turn to the other direction for development, name-
ly, the rheological response of a dilute solution of poly-
mers with large distortions. If complex flows, such as
those thought to be present in turbulence are to be ana-
lyzed using a rheology representing polymer solutions,
then the rheological constitutive equations employed
must be simple. The constitutive equations describing
any of the partial models of the preceding section are
far too complicated for such purposes, A realistic ap-
proach to interesting flows, I think, must involve highly
simplified constitutive equations which symbolically
represent, rather than accurately describe, the micro-
structural dynamics, I therefore propose to modify the
simple elastic dumb-bell constitutive equations (2) so as
to incorporate, at least at some crude level, the two
basic physical processes revealed in Sec, III. In this
section the modification will be made and the standard
rheological functions evaluated, In the following section
we will see how the rheology affects some flows. As
first suggested by Peterlin, ** the finite extensibility can
be incorporated into the elastic dumb-bell model by
changing the spring constant « of the linear spring to
«/(1 - v/Nb), where the length of the spring » is ex-
tracted from {rr) by »2=Tr(rr).  While some arguments
can be put forward for using the inverse Langevin spring,
I prefer the above nonlinear elastic law for its simplic-
ity. Inaddition, the bonds are not inreality fully indepen-
dent as required for the Langevinlaw, My elastic law
shares with the correct one, whatever itis, three general
features; alinear region vanishing at zerodeformation, an
infinite force restricting extensions to » < Nb, and vari-
ations on a length scale of Nb rather than N'/2p, If the
ignored effects of excluded volume and charge repulsion
were taken into account, then there might be variations
inlt/he details of the elastic law on the length scale of
N'/Zp,

The improved frictional grip at large distortions can
be included by making the bead size, a, change with »,
Perhaps the most appropriate dependence for the bead
size, and certainly the simplest, is just to replace a by
¥ 50 that the friction coefficient was the largest linear
dimension., This modification of the elastic dumb-bell
was introduced by de Gennes!® and independently by
Hinch.!® Slender-body theory for Stokes’ flow suggests
that the linear increase with » should be reduced by a
weak logarithmic factor, log(r/N'/2p), but we shall
ignore this possible refinement,

In addition to the two basic physical processes in
large distortions, I wish to include further the rigidity
effect found in the elastic ellipsoid model. This third
effect has little influence on genuinely large distortions,
but apparently it is essential in insuring an acceptable
behavior in simple shear flow, which probably stretches
the random coil at most by a factor of three, The ri-
gidity effect modifies the constitutive equations in two
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places. In the evolution equation for (rr), the velocity
gradient V'U is first split into the antisymmetric part,

Q2 the vorticity tensor, and the symmetric part, E the
strain rate tensor. Then, the symmetric part is multi-
plied by an “inefficiency factor” +?/{3v%+»?). Note at
large distortions the efficiency increases to unity. The
second part of the rigidity modification is to include an
additional term in the bulk stress 10un¥3E »2/(3r%+r?),
Without an adequate study of polymer behavior in simple
shear flow, there is necessarily an arbitrariness in my
modification and this is unsatisfactory. Thus, the de-
tailed predictions for simple shear should not be trusted.

The constitutive equations for the elastic dumb-bell
with the modifications noted herein are

D -
Dt r)=(rr)- Q- Q- (rr))

1,2
+ 7573 ((rr) - E+E - (rr))

Jrg+v
aNb
el G )

a=_p1+2u(l +5n7‘0-3(rr—+r'>E+nK (rr>
0

with »=Tr{rr))*’%.{ Note that these constitutive equa-
tions are not in the familiar form in which stress is
given as a functional of the strain rate; instead stress
depends on the strain rate and the microstructural dy-
namics. To display the rheological response of this
pair of constitutive equations, in this section I will take
N=10% a=7vy=N''%p and nr3=10"%, values correspond-
ing very roughly to the 10° Polyox at 100 ppm.

Most rheological tests are performed with simple
shear flow. As discussed earlier, the constitutive equa~-
tions were not carefully designed for this weak flow
which probably does not produce large distortions. Only
the most qualitative features of the response in shear
flows are therefore worth noting. The viscosity of the
dilute solution differs little from that of the solvent;
there is an undetectable shear thinning between a zero
shear rate viscosity 0.2% above the solvent value and a
high shear rate limit 0,13% above the solvent value,
half the thinning occurring by y =2x. The second nor-
mal stress difference is negative and about half the
magnitude of the primary difference, although both are
léss than one thousandth of the shear stress. At low
shear rates the normal stress differences vary quadrat-
ically in the shear rate, while at high shear rates they
level off to constant values as the polymer tends to a
small finite distortion aligned with the flow.

The prototype strong flow is axisymmetric straining
motion, Plotted in Fig. 3 as a function of strain rate is
the polymer contribution to the viscosity for this flow
in steady state conditions, Most striking is the high
value, 6x10°u, of the extensional viscosity in the
stronger flows which stretch out the polymer; a good
illustration of the discussion of the levels of stress in
Sec. 1. Inthe simplified constitutive equations this high
value of the extensional viscosity is 27unN 6%, Refine-
ments from a slender-body analysis would reduce this
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FIG. 3. The polymer contribution to the viscosity as a function

of the axisymmetric strain rate,

by 18 log(zN?b®). The solution viscosity does not differ
significantly from that of the solvent until » > 6.

The extensional viscosity exhibits a hystersis in the

range 0,02) < E < 0,84 A, the dotted part of the curve
corresponding to unstable equilibria. At £=0,84 X the
polymer extension jumps from »=1,2%, up to »=0.99Nb,
if E is increased, while at E =0,02 A the extension drops
from »=0.5XNb down to »=1,00003%, if F is decreased.
The hysteresis occurs because the frictional grip in-
creases with the distortion and thus a weaker flow,
2\ /2 is required to maintain a large distortion once
it has been created, Tanner'” noted that most phenom-
enological theories of constitutive equations are unable
to represent a hysteresis.

Steady state conditions in axisymmetric straining mo-
tions are difficult to achieve experimentally. It is
therefore pertinent to consider the transient problem.
This also reveals some further rheological properties,
Plotted in Fig. 4 is the polymer contribution to the time
dependent stress in an axisymmetric straining motion
which is suddenly applied and later removed. A flow
strength of E=2X was used, and this exceeds the critical
value of 0. 84X necessary to create large extensions,
Initially, the stretching is retarded by the restoring
force, an extension of only =2, 7r, being produced by
At=1.5, Then follows a phase of duration log N/4E in
which the polymer is stretched like a fluid element with
virtually no elastic resistance. During this phase, at
X =2.,1, the polymer contribution to the stress becomes
comparable with, and then very quickly dominates, the
solvent stress. Finally, the nonlinear elasticity abrupt-
ly arrests the stretching #,£/8 short of the full exten-
sion on a time scale of A/N'/2E%, When the flow is re-
moved, there is a very fast initial decay on the time
scale A/N'/2E2 in which the nonlinear elasticity factor
1/(1 = »/Nb) drops from N'/2E/x to O(1), thus reducing
the stress by a similar amount., There then follows a
long relaxation of duration N'/2/X which is made slow
by the high friction associated with the large distortions,

The transient response illustrates several important
rheological features. Time is needed for the polymers
to become sufficiently stretched for them to contribute
to bulk stress. Before this happens the solution differs
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imperceptibly from the pure solvent, but once the poly-
mers begin to contribute they soon overwhelm the sol-
vent (assuming that the straining niotion can be main-
taihed in the presence of the very large stresses), The
transients also exhibit a fast relaxation process accel-
erated by the highly nonlinear elasticity, and also a slow
relaxation process retarded by the enhanced friction,

V. TWO FLOW STUDIES

The high extensional viscosity must clearly be rele~
vant to drag reduction, especially when potentially as-
sisted in intermittent conditions by the hysteresis. Be-
fore continuing to more detailed comments on drag re-
duction, I wish to present two flow phenomena associated
with the rheology of the preceding section, The first
phenomenon is an anisotropy involving only polymers
which are fully extended, and the second is the inhibition
of a stretching flow by the large stresses which would
occur if the flow were not checked,

In the first study we suppose the flow is strong every-
where and remains so. Therefore, after a short time
the polymers are virtually fully extended and in a regime
where the nonlinear elasticity produces a fast response
to changes. Under these conditions the polymer solution
behaves much the same as a suspension of rigid rods,
with some useful simplification of the constitutive equa-
tions. Evans'® has studied the flow of a dilute suspen-
sion of rigid rods in several simple geometries, solv-
ing the constitutive equations and the momentum equation
together. (Note the constitutive equations include one
for the reorientation of the rods, an effect omitted from
papers about similar problems presented at this Sympo-
sium on Structure of Turbulence and Drag Reduction).

The principal rheological property of a suspension of
rigid rods is a high viscous resistance to any extensional
motion in the direction of the rods, and a low resistance
to other motions, i.e., a high extensional viscosity with
a low shear viscosity. This anisotropy of the suspension
influences the structure of flows which are combinations
of straining and shear. Such a combination occurs in
flow in a tapered channel or flow through an orifice.
Simple similarity solutions show that the material an-
isotropy reduces the transverse length scale of the
flow relative to the scale in the stream direction

104}
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FIG. 4. The build up and relaxation of the polymer contribution
to the stress.
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(the direction of the rods), the ratio of the length
scales becoming the square root of the ratio of the
extensional and shear viscosities, The compression

of the transverse scale in the two converging flows has
the effect of introducing backflow regions at smaller an-
gles of convergence than occur in the isotropic Newtonian
case. Evans has taken these simple ideas generated
from the similarity solution and looked at the more real-
istic flow in the contraction between two channels, Fig-
ure 5 shows that the suspension has larger recirculating
eddies and a convergence with a slightly greater stream-
wise extent,

While considering the rheological functions in Sec,
IV and also in the first flow study, I have implicitly as-
sumed that the strong flow can be maintained when the
polymers have been greatly extended and thus are pro-
ducing large stresses, The second flow study examines
the conflict between these large stresses resisting the
very flow which creates them, A flow with a limited
stretching effort, and which can easily be analyzed, is
the time dependent stretching of a column of the poly-
mer solution under a constant tension and neglecting
inertia. This is an oversimplification of the nylon spin-
ning problem, Figure 6 shows typically how the thick-
ness of the column changes in time. Initially, the poly-
mers contribute little to the bulk stress and the thick-
ness follows the Newtonian curve, Just before the mo-
ment when the Newtonian column would have zero thick-
ness the polymers become sufficiently stretched for
their contribution to the bulk stress to be important., A
new dynamical regime is then entered, with the unsup-
portably large stresses being avoided by a sudden drop
in the strain rate. This drop in the strain rate leaves

E—

FIG. 5. The converging flow from a channel to one a third of
the width, upper for a Newtonian fluid and lower for a suspen-
sion of rigid rods with an extensional viscosity fifty times the
shear viscosity,
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t

FIG. 6. The thickness as a function of time of a column of
polymer solution under constant tension.

the bulk stress dominated by the polymer contribution,
To stop the polymers collapsing some stretching is re-
quired, but the necessary strain rate is just the poly-
mer relaxation rate for large distortions A/N'/%, Thus,
the new regime lasts a long time, and the “saturation”
dynamics are independent of the magnitude of the ten-
sion, This latter feature may be relevant to the well-
known persistence of polymer threads and the good sta~
bility in spinning. The regime eventually ends, with the
polymers fully extended and the column thickness simul-
taneously vanishing, For the related nylon spinning
problem, Petrie'® found that several phenomenological
constitutive equations show a similar limitation of the
strain rate,

VI. DRAG REDUCTION

I wish to conclude the paper with a few speculative
comments on drag reduction. There is no doubt in my
mind that the high extensional viscosity in strong flows
is the principal instrument in reducing the drag, but I
do not find such a plain statement a satisfactory level of
explanation, The phenomenological theories of turbu-
lence, which can sometimes predict drag reduction by
tampering with a length scale or with the turbulence in-
tensities (in conflict with observed intensity changes?),
may not, I fear, be able to provide a satisfactory link
between the change in rheology and the change in drag.
Fortunately, the improving picture of the detailed struc-
tures in shear flow turbulence reported at the Symposium
does offer an opportunity to contemplate the mechanisms
of drag reduction, although certainly more understanding
of the turbulence is required before a complete explana-
tion can be presented, With the present picture of tur-
bulence there appear to me to be four different ways the
polymers might affect the turbulence, each an aspect of
the high extensional viscosity,

A simple mechanism for drag reduction, suggested
several years ago, supposes that turbulent shear flows
are comprised of many flow structures. The high ex-
tensional viscosity then selectively dissipates some of
these structures, and it happens that the eliminated
structures are more efficient than average at transport-
ing momentum (producing drag). While many different
features have been observed in turbulence, evidence is
emerging, particularly at this Symposium, that perhaps
the different features are organized as parts of a single
grand structure. There seems to be little support for
the availability of several unrelated transport processes
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especially within the buffer region. A salient idea in
this first mechanism, however, is the selective action
of the polymers: a general increase in the viscosity
must just increase the drag.

It is a small move from the first mechanism to the
second and third which invoke the high extensional vis-
cosity to stabilize the viscous sublayer, The low shear
viscosity leaves unaffected the quiet shear-like parts of
the sublayer, but selectively dissipates perturbations
which must have an extensional component. Using the
constitutive equations for a suspension of rigid rods,
Bark? found that inflectional velocity profiles could be
strongly stabilized, and at the Symposium, Tiederman’s
films convincingly show signs of a stabilized sublayer,
There are two ways of completing the mechanism and
relating the stabilization to drag reduction. For the
second mechanism one argues that larger perturbations
would be needed for the sublayer to break down, and this
might just mean waiting longer before a burst which can
transport momentum (assuming the transport by a single
burst changes little). Less frequent bursting is usually
observed in drag reduction, For the third mechanism
one argues that the scales of the successful instability
might adjust, with adjustments possible both in the over-
all scale and in the interal ratio of the scales such as
shown in the first flow study, and these changes lead to
less efficient transport. Observations of drag reduc-
tion always show increases in length scales, while it is
not yet clear whether the ratio of the spanwise, stream-
wise and perpendicular lengths change, A variation on
the third mechanism omits the stabilization of the sub-
layer and just changes the length scales of the bursts.
The violence of the bursts may, however, mean that
they are inertially controlled and thus beyond the in-
fluence of the rheology.

The fourth way the polymer could affect the turbulence
is to limit the strain rate,? as in the second flow study
of Sec. V. If this were the only mechanism, I would ex-
pect it to be found in the later stages of the bursts after
the polymers had been stretched in the earlier stages.
Strain rate limitations within the bursts would reduce
the rate they transport momentum, Unfortunately, there
are no observations of the effect of polymers on the
strain rate within bursts. The only relevant observation
is that the duration of the bursts appears to be unchanged
in drag reduction, This would contradict the fourth
mechanism if one supposed that the strain rate limita-
tion terminated the bursts early,

My discussion of possible drag reduction mechanisms
raises many questions for further consideration, both
experimental and theoretical. Two other questions are
worth listing, Almost all rheologists share the view put
forward in this paper that the polymers are highly
stretched in drag reduction, Yet no direction observa-
tion has been made of the extension of the polymers in
turbulence. Light scattering measurements in some
laminar flows have shown polymers extending, although
the extensions found are small because laminar flows
cannot maintain high strain rates for longinthe Lagrang-
jan frame, Despite the severe technical difficulties of
light scattering in a turbulent boundary layer, the ab-
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sence of such an observation can only become increas-
ingly embarrassing. Once a suitable experimental tech-
nique is available many points could be examined: Are
the distortions just moderately large or are the poly-
mers virtually fully extended, do the stretched polymers
exist everywhere or just in the buffer region, is it the
bursts which stretch the polymers, does the hystersis
and slow relaxation help to maintain the large distor-
tions? While waliting for this experimental break-
through, theoreticians can contribute by assessing the
important flow variables in the polymer stretching pro-
cesses, thereby avoiding the need to measure all nine
components of the velocity gradient as functions of (La-
grangian) time,

The second outstanding problem concerns the onset
of drag reduction. Verification of the “time hypothesis”
would be improved with better monodisperse polymers
and a direct measurement of the polymer relaxation
time, e.g., by the dynamic viscosity. In view of prac-
tical applications a systematic study of polydispersity
would also be useful. We should now, however, be
turning to the challenging regime just beyond onset.
Theoreticians can contemplate how the stretching of the
polymers varies with the distance from the onset: Are
the polymers stretched more, do the stretched polymers
exist in a larger part of the flow, and does the flow
adapt so the strain rate is limited by the value at onset?
Experiments which find the appropriate molecular vari-
ables beyond onset can provide useful insights: Is the
polymer concentration best nondimensionalized as [nle
or nN3p® (based on the coiled and stretched sizes, re-
spectively), is the ratio of the coiled to stretched size
important in addition to the concentration and the relax-
ation rate, and do all the changes in the turbulence de-
pend on the same variables and thus sale with the drag
reduction?
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