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The formation and expansion of a toroidal drop moving in a viscous fluid
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The deformation of an initially spherical liquid drop moving under the action of gravity in another
fluid with which it is completely miscible is investigated under conditions of small values of the
drop Reynolds number. It is found experimentally that such a drop evolves into an open torus
which subsequently expands, and this phenomenon is examined theoretically for two limiting
drop geometries: (i) a slightly deformed spherical drop, and (ii) a highly expanded, slender open
torus. Under the assumptions of zero interfacial tension and creeping flow, the theory provides a
qualitative description for the initial stages of the drop evolution [case (i)], but is unable to account
for the observed drop expansion during latter stages of deformation [case (ii)]. On the other hand,
if small inertial effects are retained in the analysis, the theory predicts that a slender open fluid
torus possessing an arbitrary cross-sectional geometry will expand without change of shape to
first order in Reynolds number. Quantitative comparisons of theoretically predicted rates of
expansion with experimental measurements suggest the possible existence of a small, time-

dependent interfacial tension across the drop interface.

I. INTRODUCTION

There exists evidence in the literature that, at low Reyn-
olds numbers, an aggregate of microscopically small parti-
cles suspended in a viscous fluid exhibits a behavior similar
to that of a drop with negligible interfacial tension under
certain restricted conditions. The experimental work of
Powell and Mason,' who studied the breakup of aggregates
in linear shear flows, provides such an example. These auth-
ors formed small spherical aggregates by suspending clusters
of neutrally buoyant polystyrene beads in the ambient vis-
cous liquid. They then observed that, in a simple shear flow,
such an aggregate, with solids’ volume fraction no higher
than 55%, underwent a periodic extension and compression
similar to that found when a liquid having negligible interfa-
cial tension but a viscosity much larger than that of the bulk
medium is sheared under similar flow conditions.>*

It was demonstrated in our laboratory that when an
aggregate, whose structure was as described above and
whose density differed from that of the surrounding liquid,
was allowed to fall freely under the force of gravity at small
Reynolds numbers, it deformed into a ring-like shape which
subsequently expanded before it eventually disintegrated.
Furthermore, when the experiment was repeated with vis-
cous miscible drops, the same pattern was observed. To the
authors’ knowledge, despite extensive studies reported in the
literature on vortex rings in high Reynolds number flows, no
mention has been made to date of a corresponding toroidal
drop formation at low Reynolds numbers. Thus an analyti-
cal examination of the deformation of such viscous drops is
of interest in its own right, and in addition may augment our
present understanding of aggregate breakup.
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In what follows, we shall present a theoretical investiga-
tion of spherical and toroidal drops falling at small Reynolds
numbers which we shall then test by comparing the theoreti-
cal predictions with results of experiments performed with
falling viscous drops that were miscible with the ambient
liquid. We shall first summarize certain experimental obser-
vations in our laboratory pertaining to the deformation of
such drops and defer until Sec. V of this paper a more de-
tailed description of the experiments.

The fluids were prepared from mixtures of light corn
syrup and water having different compositions, and the mix-
ture with a higher viscosity and density was dyed. Colored
drops were formed outside the vessel which contained the
fluid with the lower density, and were released from just
above the free interface. The primary features of the subse-
quent evolution of the drop contour were as follows.

(1) As the drop entered the bulk medium, a tail emanat-
ed from the rear stagnation point which became increasingly
thinner with time as the drop continued to fall (Fig. 1).

(2) The region near the rear stagnation point of the drop
flattened and eventually formed a depression which dee-
pened around the axis of symmetry of the drop (Fig. 2). In
time, the tail was cut off and the drop in turn deformed into a
shape resembling a torus (Fig. 3).

(3) The toroidal drop expanded and became slender as it
continued to fall. Eventually, however, instabilities set in
and the drop broke up (Fig. 4).

Our analysis will deal separately with the initial and
final stages of drop deformation in which the drop shape will
be approximated by, respectively, a slightly deformed sphere
and an open torus. At first inertial effects will be assumed to
be negligible everywhere, but time-dependent kinematics as
well as a finite interfacial tension will be included in the theo-
retical development. It will be shown that, under conditions
of creeping flow and zero interfacial tension, the analysis
predicts the formation and the subsequent deepening of a
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FIG. 1. Sideview photograph of a viscous drop entering the bulk medium.
Drop composition: corn syrup-water mixture of viscosity 3.9 P and density
1.329 g/em’; bulk medium composition: corn syrup-water mixture of vis-
cosity 0.51 P and density 1.264 g/cm”.

FIG. 2. Sideview photograph of a viscous drop with a depression forming at
the rear stagnation point; same fluid compositions as in Fig. 1.
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FIG. 3. Photograph of a newly formed ring; same fluid compositions as in
Fig. 1.

depression near the rear stagnation point of a slightly de-
formed fluid sphere if an appropriate initial drop geometry is
assumed. However, in the case of a highly expanded fluid
ring, the theory leads to the conclusion that even though
drops with certain initial configurations will expand for a
finite time interval, such an expansion must eventually cease
and be followed by a drop contraction. Clearly, a creeping
flow analysis is inadequate to explain the experimental find-
ings, and thus we shall consider next the influence of small
inertia on the drop deformation. It will be shown that the
leading-order Reynolds number correction indeed induces
the expansion of a toroidal drop with arbitrary cross-section-
al geometry without change of shape, but at a rate consis-
tently above that measured experimentally if the interfacial
tension is taken to be negligibly small. We offer, as a possible
explanation of this discrepancy between theory and experi-
ment, the notion that, in any experimental setup such as
ours, there exists a finite transient interfacial tension across
the interface between two miscible liquids which impedes
the expansion of fluid rings.

Il. NEARLY SPHERICAL DROPS

Consider the motion of a nearly spherical, viscous drop
falling freely under the force of gravity in an unbounded,
quiescent fluid at low Reynolds number. We assume that

FIG. 4. Photograph of the breakup of a ring; same fluid compositions as in
Fig. 1.
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both fluids are incompressible and that the flow is axisym-
metric everywhere. We fix the origin at the center of the mass
of the drop, and designate all quantities inside the drop by a
caret. We render the equations and boundary conditions di-
mensionless in the usual manner using a, the radius of the
“equivalent” or undeformed spherical drop, as the charac-
teristic length scale and U, the settling speed of the drop, as
the characteristic velocity; in addition, we nondimensiona-
lize the stresses with respect tou U /a, where  is the viscosity
of the external fluid and define the Reynolds number
Re=apU /u, where p is the density of the ambient fluid. We
seek to solve the equations of motion, which in view of the
axisymmetry of the flow can be expressed in terms of the
stream functions ¥ and ¢, subject to the boundary conditions
of continuity of velocity and shear stress across the drop
surface, and a jump in the normal stress equal to NV *n,
where n is the unit outward vector normal to the surface and
N is the inverse capillary number, N = y/u U, with ¥ being
the interfacial tension. We also require that the velocity be-
come uniform far away from the drop. Owing to the fact that
a torus formation was observed at Reynolds numbers as low
as 7X 1073, we begin our analysis by neglecting inertial ef-
fects everywhere.

A. Steady Stokes solutions

If, in the above formulation, the normal component of
the velocity is set equal to zero at the drop interface, the
resulting and well-known Hadamard-Rybczynski solution®
can be shown to satisfy exactly all the steady-state boundary
conditions on the surface of a fluid sphere for all values of N.
Thus, the sphere represents one possible steady shape for the
drop under creeping flow conditions.

It is interesting to examine, however, whether other
possibilities can exist in the absence of inertial effects. Taylor
and Acrivos* and Matunobu® confined their attention to the
case in which the sphere is slightly deformed and set

r=R(0)=1+g(@) max|g(d)/<],

where 7 is the radial distance from the origin and & is the
polar angle measured from the rear stagnation point. Taylor
and Acrivos* took the interfacial tension to be large such
that NV - n~O(1), and showed that the sphere is the only
possible steady shapeif |g(6 )| € 1. Onthe other hand, Matun-
obu® considered the case NV * n < 1 and, after introducing
the small perturbation parameter to be denoted here by
& < 1, expanded the equation for the surface of the drop in
powers of 8,

RO)=1+6 Z (2n + 1)f, P,(cos8)+ 083, (1)
n=2 .

where P, are the Legendre polynomials of order n. The ab-
sence of the terms P, and P, in Eq. (1) insures that volume is
conserved and that the origin remains at the center of mass of
the drop.

Matunobu® carried out the algebra to O (8) and obtained
a set of equations whose solution left £, arbitrary in that all
the succeeding f,’s could in turn be determined by solving
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his difference equation (4.16). He thus concluded that there
existed a single continuous family of steady configurations
and that the nature of the deviation from the spherical shape,
i.e., the sign of f,, was arbitrary.

The explanation for this seemingly paradoxical nature
of Matunobu’s result, paradoxical especially since & cannot
be related to any physical parameter of the system, becomes
apparent upon a careful examination of his equation (4.16)
which, when modified for a falling drop, has the asymptotic
form, as n — oo,

Joir +2Nf, —f, 1 ~0. (2)

On solving Eq. (2), we obtain for the ratio of two successive
terms,

foii/fu=—N+(N*+ 1)'72,

That the actual equation gives — N — (N2 + 1)'/2 for this
ratio can be seen by noting that, for all n»2, Matunobu’s
equation (4.16) for a falling drop gives

fn+l =

where both 4, and 4 |, are positive functions of » and of the
ratio of the viscosities in the two phases; hence, since f; = 0
and f, is arbitrary, all the succeeding f,’s alternate in sign.
For N #0, the resulting series then clearly divergesat 6 = 7
and possibly for other values of & as well. Furthermore, if
N =0, we first observe that, since the coefficients of all the
odd P,’s are zero, the series reduces to
3*_, (4n 4 1)f,, P,,(cos @), which once again diverges
since, at large n, f, ., ~f, . It therefore follows that all
the steady solutions derived by Matunobu are invalid except,
of course, for f, = 0.

_Nhnfn +h:ran1’

B. Time-dependent kinematics

We shall next consider the evolution in time of a spheri-
cal drop subject to small perturbations. The method of solu-
tion is identical to that employed in the preceding subsection
with the modification that the equation for the drop surface
is now time-dependent. Thus the boundary condition for the
normal component of the velocity is given by

wen=ie-n=@YIOR/t?) (3)
li, — VR |

where ¢ * is dimensional, and i, is a unit outwad vector in the
radial direction. We perturb the spherical shape by setting
one of the f,,’s to a nonzero constant at ¢ * = 0 and follow the
deformation of the drop. Of course, the result is readily gen-
eralized to an arbitrary initial perturbation by means of su-
perposition. We note that, in contrast to the steady-state case
discussed in the previous section, 8, being a measure of the
initial deformation imposed on the drop, is now a well-de-
fined physical parameter for the entire range of N. The im-
plementation of the boundary condition (3) then yields a set
of coupled differential equations for f,, shown here for a
falling drop,
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df,
"iU dr* = —ann+1 —an;- + ann—l’

G - 2A+1en+1)
n(n+ 1)

+ (8n* + 161> + 4n* — 4n + 31
+ (4n* + 81 + 2n* + 4n)],

H, = (4n* + 8n® + 14n> + 10n + 94 2
+ (8n* 4 16n° + 34n® — 40n — 27)A
+ (4n* + 8n® + 20n* + 22n + 18),

Q, =2N (A + 1’20 + 1(n — 1)(n + 2),

W, =24+ 1)n +2)n —2)[(2n* + 4n + 34
+ (2n* + 4n)],

n>2, (4)

[(4n* + 8r° + 20> — 8n — 6)A 7

where A =i/u with [i being the viscosity of the fluid within
the drop. As expected, at steady state, Eq. (4) reduces to
Matunobu’s equation (4.16) for a falling drop. When N » 1,
which corresponds to the high interfacial tension limit, these
equations simplify to

a df,
— 5
n U rt* an‘n’ ( )

from which it is immediately apparent that any deviation
from a spherical shape decays exponentially in time, with
characteristic time qu/y if 4 is O (1).

When Nis of O (1),  * should be rendered dimensionless
withrespecttoa/U,sothat? = ¢ *U /a, and the full system (4)
must be solved. Recast in matrix formulation, Eq. (4) be-
comes

de_nx, (6)
dt
where A is the semiinfinite tridiagonal matrix
- @,/G, —H,/G, 0 .
Wy/Gs  —0y/Gy —Hy/G, 0
A= 0 W./G, -Q/G, - - 1,
0 0

Ws/Gs

and f is a semi-infinite vector whose elements are f,. As be-
fore, for our solution to remain valid, we require that the
series£>_, (2n + 1)f, P,(cos 8 )converge for all time and 6.
We thus truncate f to a finite M vector,

d
£, = Ay s, 7
dtM ‘M ‘M

where A, is an M X M submatrix of A, and then check the
validity of our solution a posteriori by testing the conver-
gence of the series as obtained from the solution of Eq. (7).
We first note that the temporal stability of the spherical drop
is determined by the signs of the real parts of the eigenvalues
of A,,. It can be shown,® however, that all of these are zero if
all the diagonal elements of A,, are zero, and that all are
negative otherwise. But the diagonal elements of A vanish if
and only if N = 0, and consequently, irrespective of the mag-
nitude of M, all the eigenvalues of A,, have negative real
parts for any nonzero N, however small. Before discussing
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the implications of this result in more detail, we shall consid-
er first the case of zero interfacial tension.

Since ¥ was very small in the experiments, let us for a
moment assume that the interfacial tension effects are negli-
gible and set V = 0 so as to simplify the analysis. The asymp-
totic form of Eq. (4) as n — oo then becomes

d,__ 1  nr+] 3 L
dtf" 2(1+,1)(2n+1)[f"" Soar + 0]
(8)

First of all, it is easy to show’ from the form of Eq. (8) that the
“spectrum” of the disturbance would be expected to evolve
towards higher harmonics as ¢ increases and thus that the
series cannot be truncated at a given M for all time. This is
evident from Table I, which shows the values of £, {#) ob-
tained by numerically integrating Eq. (7) with the initial con-
dition, £,(0) = — 1, f,(0) = 0{n2), using a fourth-order
Runge-Kutta scheme.

More importantly, it is instructive to examine Eq. (8)
and, in particular, to compare its solutions with those of Eq.
(7). Let f~22_, 2n + 1) f, P,(cos @) which, according to
Eq. (8), satisfies

I 1 df _ cosé

g 2A1+4) 99 (1+4)

ifthe O {n ~?) terms are omitted. Of course, since the equation
governing fis based on Eq. {8) which applies only as n — o,
solutions to Eq. (9} cannot yield quantitative information
about the deformation of the drop surface. Another limita-
tion of this asymptotic approach is that df,/dt is not zero in
Eq. {9) and hence the requirement that the origin remain
fixed at the center of mass of the drop is not satisfied. Never-
theless, it is illuminating to study Eq. (9} and check whether
its solutions are in qualitative agreement with the numerical
solutions of Eq. (7). From Eq. (9), we find that fis given by

yE (%)

l+cot20(t)/2)2 ( —t )
t)=S10 s 10
Sy =11 )(1+cot26(0)/2 P12 (10)
along the characteristics

[cot 8(0)/2]exp(i £ /1 + A ) = cot 8(t)/2. (10b)

In order to interpret Eq. (10a), we first examine its right-
hand side in the limit as 8 (0) — 0 and €(0) — 7. If we let
8 (0) — 0, we obtain

f(t)—f(Oexp(t /1 + 1),
whereas in the opposite limiting case, 8 (0} — 7,
flt)—fOexp( —t/1+4).

Second, as seen from the characteristic curves drawn in Fig.

TABLE I. The Legendre coefficients obtained from numerically integrating

Egq. (7) truncated at M = 100. A = 0.2, /,{0} = — 1, and £, (0) = 0 (n#2).
Ut*/a £ Sro Jeo
2 —0.52 —3x10~¢ —28x1072%
4 —0.073 —1.6x10~? —53x107%
6 0.0014 —0.13 —32x107°
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FIG. 5. The characteristics given by Eq. {10b) with A = 5.

5, all the characteristics crossing the lines of constant ¢, as
t —» o0, emanate from the region 6 (0) ~ 7, except near 8 = 0.
In other words, f decays exponentially with time and the
drop becomes spherical everywhere except in the neighbor-
hood of its rear stagnation point, 8 = 0, where the initial
disturbance increases without bound. In particular, when
the initial perturbation is a spheroidal distortion, that is,
when

LH0)=c, f,(0)=0 (n#2),

the drop will develop an inward or outward spike depending
on whether ¢ < Oor ¢ > 0. In view of the fact that the former is
consistent with the nature of drop deformation observed in
our laboratory, we next investigate the consequences of this
initial condition.

Figure 6 shows the evolution of the contour of an initial-
ly oblate spheroidal drop, as obtained by numerically inte-
grating Eq. (7) using a fourth-order Runge-Kutta scheme
and successively taking an increasing number of terms to
account for the shift in the spectrum of the disturbance. It is
seen that the distortion decays everywhere except in the vi-
cinity of @ = 0, where the perturbation grows. This behavior
is identical to that given by Egs. (10}, and in turn both results
are in qualitative agreement with the experimental findings
which were summarized in the introduction, provided that
the drop is assumed to be an oblate spheroid at ¢ = 0.

We shall now extend the stability analysis to a drop with
a small but nonzero interfacial tension. We first recall that,
at N =0, the “spectrum” of disturbances was seen to move
away from the initially perturbed mode, and hence a similar
behavior for fwould be expected when N > 0. In particular, if
only a finite number of £, ’s is perturbed at ¢ = 0, the number
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t=45

$-8.0

FIG. 6. Numerically obtained time-dependent deformation of an initially
oblate spheroidal drop; A = 5, N = 0,5 = 0.057, /,{0) = — 1,and f,(0) =0
(n#2).

of terms which are significant at any instant of time will
remain finite, however large. Moreover, since the conclusion
reported earlier regarding the eigenvalues of the matrix A,,
holds for any arbitrarily large value of M, we can conclude
that the amplitude of the spectrum of disturbances will de-
cay exponentially with time provided, of course, that the
sum of the terms does not become so large within the time
interval of O (1/N ) as to violate the assumption that the devi-
ation from a spherical shape is small. In turn, this conclusion
would seem to suggest that the effect of the interfacial ten-
sion should be vanishingly small at this level of approxima-
tion in order for the theory to be in agreement with the ex-
periments. Unfortunately, one obvious shortcoming of this
creeping flow analysis in the absence of interfacial tension is
that the evolution of the drop boundary is completely deter-
mined by and is very sensitive to the assumed initial shape of
the drop; for example, the numerically completed drop con-
tour will generate the depression observed experimentally
only if we specify that g(9, ¢ = 0) <0 near 8 = 0 whereas, in
the experiments, the initial conditions were not carefully
controlled. We shall show later on that the inclusion of iner-
tial effects will partially resolve this deficiency of the theory.

In summary, the foregoing analysis, subject to the as-
sumption of axisymmetry and the restriction that r defining
the surface of the drop is single valued at each 8, has estab-
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lished that, besides the sphere, there cannot exist a slightly
deformed spherical drop shape on which the steady bound-
ary conditions are satisfied exactly under creeping flow con-
ditions. We have seen further that, if the interfacial tension is
nonzero, the coefficient multiplying each harmonic in the
expression for an initially slightly nonspherical drop shape
consists of a sum of exponentially decaying functions of
time. Finally, in the absence of interfacial tension, a numeri-
cal integration of Eq. (7) has shown that, when the initial
configuration of the drop is assumed to be an oblate spher-
oid, the computed evolution of the drop shape is in qualita-
tive agreement with the experimental observations and that
the distortion on the drop boundary imposed at ¢ = O gets
swept to the rear by the external flow.

IIl. SLENDER TOROIDAL DROPS

In the preceding section, we traced the growth of small,
axisymmetric distortions on a spherical drop as a step
towards understanding the experimentally observed forma-
tion of an open fluid torus. We now turn our attention to the
expansion of toroidal drops. A major mathematical diffi-
culty which arises in developing the analysis is our lack of
knowledge concerning the exact cross-sectional geometry of
the drop. However, in the limit of a highly expanded drop,
the problem becomes two-dimensional to first order near the
drop surface, and by analogy to the three-dimensional case
where the spherical shape was found to represent a feasible
steady-state configuration, we may anticipate that, to lead-
ing order, the cross section of a very thin fluid ring will be
circular and steady. This suggests that we examine a slender
toroidal drop whose body centerline radius b is much larger
than the “radius” b of its cross section, where € < 1. Aside
from circumventing the aforementioned mathematical diffi-
culty, such an asymptotic approach also enables us to inves-
tigate the question of whether or not there exists a limiting
cross-sectional geometry such that a drop possessing this
cross section expands asymptotically without change of
shape as b — oo.

As before, we assume that the flow is axisymmetric,
that both fluids are incompressible and inertialess, and that
the external fluid is unbounded at infinity. The analysis
which follows is carried out for the case of a falling drop and
can be readily modified for a rising drop.

It should be noted first of all that, in the absence of
interfacial tension, the linearity of the resulting governing
equations and the boundary conditions gives that if a drop
with a certain specific configuration is found to expand, it
must contract upon reversal of the external flow, or equiv-
alently, of gravity. In particular, owing to the reversibility
property of the solution of such systems, any drop whose
body centerline radius changes with time cannot have a
cross-sectional geometry which is symmetric about the
plane z = O (cf. Fig. 7). Although we shall be concerned at
first primarily with the case N =0, the effects of a finite
interfacial tension will be included in the analysis since we
shall be examining the condition of nonzero N in a later
section.
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FIG. 7. Coordinate systems for the analysis pertaining to the motion of an
open torus.

We shall develop the solution using the method of
matched asymptotic expansions whereby the flow field is
supposed to consist of two regions: the outer region of char-
acteristic length scale b within which the problem reduces to
that of a uniform flow past a line torus to leading order, and
the inner region in the vicinity of the drop where the charac-
teristic length scale is €b and, as a first approximation, the
drop appears as a straight, circular cylinder. As before, the
stream function will be expanded in powers of €, where the
order in € will be designated by superscripts. In addition, the
quantities in the inner region exterior to the drop will be
distinguished from those in the outer region by a tilde.

A. First-order Stokes solution

We begin by seeking the leading-order solution in the
outer region in terms of the cylindrical coordinates (r,4, z)
with the origin fixed at the center of the fluid torus as shown
in Fig. 7. As mentioned above, the characteristic length scale
far away from the drop is ; thus the nondimensionalization
is carried out with respect to U, b, and uU /b, respectively,
for the velocity, the length, and the stresses, and the stream
function ¥ satisfies

(V2— -2-5;)2;/;:0. (11)

r

Following a standard procedure for slender bodies, we
can readily carry out the analysis at this level of approxima-
tion by representing the flow field induced by the presence of
the drop as due to a distribution of Stokeslet singularities
along the body centerline » = 1, z = 0, with, in this case, a
constant Stokeslet strength in the z direction. In other
words, the velocity components are given, for a falling
drop, by
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w1 F (7 P+1+27~2rcosd
z (P + 1422 —2rcos¢)’?

= dé,  (12a)

2
u,=——F— z(r —cos ¢) dé,
87 Jo (P+142°—2rcos¢)’?

(12b)

which satisfy the condition of uniform flow as 7 + z> — .
Performing the integration with respect to ¢ in Egs. (12)
yields

_,_ F(2mK(m) 22*mE (m)

“=l 817-( r'i r1’2[(r—1)2+z2])’ (132
_ _ _F (zmK(m) zmE(m) ?—1-2)

= 877( P2 r? (r—1)2+22)’ (13b)

m=2r'?[(r+ 17 + 2] 7',

where K (m) and E (m) are the complete elliptic integrals of
the first and second kinds, respectively.

We next proceed with the inner expansion in order to
satisfy the boundary conditions on the drop surface. Follow-
ing Johnson and Wu,® we introduce the curvilinear orthogo-
nal coordinate system (7,,6,¢ ) defined by

r=1+mn,co868, z=rmn,sinéb,

which transforms the outer coordinates to those of the inner
expansion. In the neighborhood of the drop the flow field can
be treated in two dimensions since the curvature of the drop
can be neglected to this order of approximation. Thus the
appropriate coordinate system consists of the two-dimen-
sional cylindrical coordinates (7, €) with the origin 7 =0
coinciding with the center of the cross section of the drop (see
Fig. 7), and the surface of the drop is approximated by = 1.
The characteristic length scale for 7 is €b so that en = 7,.
Also ¢'© and ¢ satisfy the biharmonic equation,

v4 'Z(O) =0, V¢ lAﬁ(O) =0,

and the steady-state boundary conditions at the drop inter-
face. That the latter is exactly circular is an assumption
which must be verified a posteriori, since the formulation of
the problem becomes invalid if the steady boundary condi-
tions fail to be satisfied to leading order at = 1.

For the purpose of matching the two expansions, we
must express Egs. (13a) and (13b) in terms of the inner varia-
bles 77 and &; to this end, we let € — 0 with 7 fixed using the
asymptotic forms of K (m)and E (m)as m — 1, and recast the
velocity components in terms of u,, and u,. This yields

u, — sin @ — (F /47)(1 + In 8/en)sin 6

+ (F/16m)en sin 28 + O(€7), (14a)
uy, — cos @ — (F /4r)(In 8/en)cos 6
— (F/8men(l — In 8/en) + O(€), (14b)

so that, on solving for #** and #'® subject to the steady
boundary conditions at 7 = 1 and matching the appropriate
velocity components as 7 — o with the first two terms of
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Egs. (14a) and (14b), we obtain®
P9 = [40n " — )+ By Iny]cos 6,
PO = [4 4Py — m)]cos 6,

—BO= _ L;i)_,‘(‘m___ F

4
_ 144
(14+A)InB/e)+1+41/2

which, for 4 — «, reduces to the result of Johnson and Wu?
contained in their Eq. (23) for a uniform flow past a rigid
torus. Since the matching requirement as well as the steady
boundary conditions on the surface of the drop have been
satisfied exactly, if follows that, to first order, the cross-sec-
tional geometry of the drop can be given by a circle and that
time dependence appears only implicitly via €(¢ ).

B. Curvature effects

We now include the effect of curvature in the inner ex-
pansion and proceed to O (€). To begin with, the requirement
that the volume of the drop be conserved yields

db 2, de_

dt 3 dt

which, together with the fact that b ~! = O (¢*/%)implies that
the rate of change of the radius of the cross section is O (€*/%)
smaller than that of b and hence will not enter into our analy-
sis to this order. We also observe that, since the total drag
exerted on the drop is always balanced by the downward
force due to gravity and is constant, the product
U ()b (¢)B(t) is independent of time. Lastly, the equation
for the cross-sectional radius of the drop is written as

0,

RO, t)=1+¢t) > [T,(t)cos nf +S,(t)sinnd ]
n=2
+0(€),
where the terms with n = 0 and n = 1 have been omitted in
order that the volume of the drop may be conserved and that
the origin remain fixed at the center of mass of the cross
section.

The flow is no longer two-dimensional nor axisymmet-
ric in the inner region owing to the effect of the curvature of
the body centerline; thus at this order, the full curvilinear
coordinate system (7, 6, ¢ ) must be retained. In particular,
expanding the equation of continuity to O (¢) gives

a
377[77(“‘,,” + nul cos 6)] + 5%(14‘9" + nuf) cos 8) =0,

and hence by setting

1) — 37 (1) _ gy 0)
u, =uy" —qu;) cos 6,

)= " —

(15a)
(15b)

we can define the stream functions ¢ and ¢/ correspond-
ing to @’ and i, respectively, since u’ is then divergence-free
in the coordinates 7 and 6.

The equations governing ¢ and " are derived by ex-
panding the creeping flow equations of motion in powers of €
and become®

cos 0,
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Ve = —4BOn 2cos 20, V4V =164 0/A.
In accordance with Egs. (15), — 7u'® cos @ must be added to
the velocity components associated with the above stream
functions, and the combined expressions in turn are subject
to the boundary conditions at 7 = R (¢, 8), with (3) replaced
by

igrn=ilin=—r-—"-"—+ — cos 4, (3')

U li, —VR|
where i, is a unit vector in the % direction, in order to ac-
count for the radial motion of the body centerline. When in
addition the matching requirement as 7 — oo is satisfied,
the following set of coupled differential equations involving
S,, T,,and b is obtained®:

ﬁéz_ii,—m 3+/12S_5—3/2N 1
dt 8 (I+A4) C8(144)
X[4+21n-8—+/1<3+21n—8—>], (16a)
€ €
. i —1/2
dS,. - ——l—nNcbmS,, _____b_______
dr 2 81+ A)n — 1)
x(iw = 3n =T, + 1w +n -2,
3484 )
____6" s
+ 2T+ 4) 2 (16b)
aT . 5, —1/2
L -—inNcb'nT,, + __b_____
dt 2 8(1+A)n* —1)

X[(=n*+3n+2S, , +(—-n*—n+28,,,]

In the above, the nondimensionalization used previously has
been modified such that the characteristic length is given by

1=/, V=20,
the characteristic velocity by

U. =1%g4p/u,
the characteristic time by

1/U, = p/lgdp,
and the new inverse capillary number by

N, =y/1%gdp,
where Ap refers to the difference in the density of the drop
and that of the ambient fluid; in particular, we have
b=bt)/l

Equation (16a) gives the rate of change of the body cen-
terline radius, and the expression on the right-hand side con-
sists of two terms: the first is proportional to S, and is posi-
tive if and only if S, < 0, whereas the second term arises from
the presence of the interfacial tension and is always negative.
In turn, the evolution of .S, with time is governed by Eqgs.
(16b) and (16c) and is seen to be determined by even S, ’s and
odd T,’s. Note, however, that there is an inhomogeneous
term at » = 2 in Eq. (16b) which arises from the effect of the
body centerline curvature and which tends to render S, more

positive. That this effect causes the drop cross section to
stretch along the 45° axis can also be anticipated from the
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limiting form of @’ as 7 — « [see Eq. (14a}] whose % com-

ponent has the maximum rate of extension along the axis
6 = 45° and that of compression at § = 135°,

It is evident that the necessary condition for a toroidal
drop to expand at this order is given by S, <0; that is, the
drop cross section must be elongated along the 135° axis for it
to drift away from the center of mass in a manner similar to
the oblique fall in the gravitational field of a body having an
elliptical cross section. Moreover, since the interfacial ten-
sion serves only to impede the expansion of the ring, we first
assume that the interfacial tension is negligibly small, and
investigate in detail the functional dependence of S, on time
by setting NV, = 0. In this case, we again find it illuminating
to examine Egs. (16b) and (16c]) in the asymptotic limit as
n — oo which become, respectively,

ds,

8(1+A4)p1V2 1
{ ) o

=(n(T"" +Tpia)+ L3+8}"5n2)

- dT.
8144520 = s, +5, |1+ 0(L)].

(17a)

and

(17b)
Denoting

h= i T, cos n + S, sin nb,

n=1
we can easily show that, on neglecting the O (1/n%) terms,
Eqgs. (17) become identical to

Okt cos0 P —psing + 238 Gro6 (1)
ar 36 12 1+4
dr

L7 AVp V21—t
5 = 141+ 406

Asbefore, although the requirement that both S,(¢ jand T'(¢)
remain zero is not satisfied, Eq. (18) nevertheless yields solu-
tions which describe qualitatively the evolution of the drop
contour. On solving Eq. (18) using the method of characteris-
tics, we obtain that

2 exp{r)
{1 —sin @lexp(27)+ 1 +sin 6

i[(3 + 84 )/(1 + A )]cos 8 exp(27)
[(1 — sin @ )exp(27) + 1 + sin 8 }?
1 3484

h(7) = h(0)

- — cos 6, (19a)
12 1+4
along the characteristics
1+ s?n ) exp| — 27) = 1+ s.ln 0(0). (19b)
1—sind 1 —sin 8(0)

Evidently, in the limit as 7 — o, the first two terms on the
right-hand side of Eq. {192a) decay exponentially everywhere
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except in the region
|6 — 1 | <exp( —7),

where they become proportional to 4 (Olexp(r) and
(3 7 — 6 )exp(27), respectively. This behavior accurately
models the solution of Eqs. (16b) and (16¢) which, when inte-
grated numerically using series truncation and a fourth-or-
der Runge-Kutta method, with ¢ replaced by 7, 1 =4,
N, = 0, and with initial conditions S, (0) = T,(0) = 0, yield-
ed a steady drop shape as 7 — oo except in a small region
near 6 = | 7, where the drop was found to develop sharp
peaks that grew steadily in time.

In view of the fact that, according to both the numerical
and the approximate solution of Egs. (16a) and (16c), # ap-
proaches a steady state except near the rear stagnation point
6 = | m, we shall seek the asymptotic value of S, as 7 — oo
by considering the steady-state form of Eq. (18). We recall,
however, that according to this equation, T'(7) does not re-
main zero and moreover appears in the expression governing
S,, as seen from Eqgs. (17a) and (17b):

dT, 1 ds, 1 1 3+84

- 2% gt i '
But since, as mentioned earlier, only odd 7,,’s and even S,,’s
determine S,, we can eliminate this error by merely adding
the term 1 S, cos & to the right-hand side of Eq. (18) thereby
obtaining

ﬂ+ —(2—}10059=L3+8}L sin 26 —+—LSzcosﬁ,
or a0 12 144 2
(18')
which now satisfies the condition
dT, —o.
dr

Hence T, can be set equal to zero in the differential equation
for S, given above. Moreover, by requiring that 4 remain

finite at 6 = — 7/2, we find from Eq. (18’) that, at steady
state,
hcos @ = _13+84 cos 20 +iS2sin9
24 144 2

1 1 3484
* 2(S2 12 1+,1)’
which also satisfies the consistency check .S, = S, when mul-
tiplied through by sin 8 and integrated from & = 0to 8 = 27.
Furthermore,
21

ij cos 6h d9 =T, =0 =5, — 3+ 8%

7 Jo 12 144
which gives S, = {4 (3 + 84 )/(1 + 4). Numerical integra-
tions of Egs. (16b) and (16c) with A = 4 and N, = O for the
three  initial conditions S,0)= —1, S,(0)=0
<t (3+81)/(1+A4), and S,0)=1>L(3+81)/(1+ A1)
indeed showed that, in time, S, approached the same con-
stant value givenby 1.102 X [ 4, (3 + 84)/(1 4+ 4)]. Inother
words, even if we choose 5,(0) <0 and have an expanding
drop for a finite time interval, the toroidal drop will even-
tually begin to contract even in the absence of interfacial
tension if inertial effects are assumed negligible. Moreover, it
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follows immediately from Egs. (16) that if N, is nonzero, the
interfacial tension deters the growth of surface disturbances,
and in addition enhances the tendency of the drop to con-
tract.

It is evident therefore that a creeping flow analysis can-
not explain the experimentally observed expansions of toroi-
dal drops, and that the influence of small but finite inertia
must be included in the theory. It should also be noted that
there is an inconsistency in the zero Reynolds number as-
sumption in the limit as € — 0 because, on equating the
buoyancy force to the drag, we obtain

8mbuU(1 + A) — VApg,
(14+A)n(8/e)+1+1/2

from which it follows that

_pbU _ Vidplg 1 +A)n(8/e)+1+1/2
T 82’ 144 '
Hence R, grows logarithmically as € — 0 and the validity of
the creeping flow assumption becomes questionable in this
limit. Of course, since we are not necessarily interested in
vanishingly small values of € but rather in understanding our
experimental findings where € was only moderately small,
we could always confine our study to the case R, €1 by
choosing 4pV /u* to be arbitrarily small. Nonetheless, in
light of the failure of the above analysis to provide an expla-
nation for experiments, we shall next investigate the effect of
small but nonzero inertia on the drop deformation.

R

IV. INERTIAL EFFECTS
A. Spherical drops

We first turn our attention to the deformatin of spheri-
cal drops in the presence of inertia. Taylor and Acrivos®
obtained steady solutions for the case in which the Reynolds
number Re=palU /i was assumed to be small but nonzero
by the method of singular perturbation expansions and
showed that the drop cannot remain spherical [see their Eq.
(21)]. In fact, only a slight modification of their results is
needed to trace the deformation of a spherical or a nearly
spherical drop, and the evaluation of appropriate time-de-
pendent boundary conditions at the drop interface yields an
inhomogeneous term at # = 2 in Eq. (4) which now becomes

e Hfoo —Quf A WS —bua
n Udt* ntn+1 nJn nSn—1 n2 “0»
(20)
_ 200+6381 +6844°+2434° 5
48(1+ 1) 12

where « is the density ratio, x = p/p. In deriving Eq. (20), we
have assumed, for the sake of simplicity, that the drop is
initially exactly spherical, and have consequently replaced
the small parameter § introduced in Sec. II B by Re. Al-
though the sign of the inhomogeneous term depends on the
value of x, it has been pointed out by Taylor and Acrivos that
in all cases of physical interest , is positive.

If y is set equal to zero, we can extend the asymptotic
analysis of Eq. (4) as n — « by adding an inhomogeneous

0 ’
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term to the right-hand side of Eq. (9) so that
af 1

_ 1 Gng Y _cost 5%
ar 21+ 4)

_ - P’ = H
0 14wty a=g
21

which has the solution
fley=(1+A)a,cos 8 + [ f(0)— (1 + A )a, cos (0)]
2 2
X( 14 cot”8/2 )exp( —t)’ 22)
1+ cot? 6(0)/2 144

along the characteristics given by Eq. (10b). Expanding Eq.
(22) at small time yields

f=10)—t{a, P,—~ [ f(0)/(1 4+ 4)]cos 6} +olt),
while, as t — 0,
F=lf0)— (1 +A)a,lexplr /1 + 2 ),

at@=0and
f= O +(14+A)aJexp( —t/1 + 1),
at 9 = 7.

Clearly, then, the effect of inertia is to render the drop
more like an oblate spheroid, thereby favoring the formation
of the depression at the rear stagnation point. The same ten-
dency, although not as pronounced, also exists even in the
presence of small interfacial tension owing to the term

— a,y 9, in the governing equation {20). On the other hand,
the asymptotic expression for fat @ = 0 in the limit of large ¢
suggests that if the drop resembles a prolate spheroid whose
eccentricity is such that f{0) > {1 4+ A )a, near the rear stagna-
tion point, the depression will not form. Indeed, a numerical
integration of Eq. (20) with A = 4, x =2, N = 0, and initial
conditions £5(0) = 1 = 3(1 + 4 )a,, £, (0) = 0 (n5£2), using se-
ries truncation and a fourth-order Runge-Kutta scheme
confirmed that the protrusion near the rear stagnation point
grows with time and that a depression is not formed. Hence
our analysis has not completely eliminated the dependence
of the drop deformation on its initial configuration, if the
latter deviates only slightly from the spherical shape.

B. Stender toroidal drops

When, in addition to curvature, inertial effects are con-
sidered in the case of slender toroidal drops, the develop-
ment presented in Sec. III gives rise to a double expansion in
the parameters R, and €, where R, =pbU /2. We shall as-
sume R, € 1 and shall seek the leading-order Reynolds
number correction to the rate of drop expansion by examin-
ing the flow field which now consists of three regions exteri-
or to the drop: (1) the Oseen region where the length scale is
#/pU and inertial effects must be retained even to first order,
(2) the Stokes outer region where the length scale is & and
inertial terms based on R, are negligible to leading order,
and finally (3) the Stokes inner region where the length scale
is eb and €R, is set equal to zero to the present level of ap-
proximation.

The analysis in the Oseen region where R, |x| ~O (1) is
readily available in many standard references (cf. Ref. 9)
since, to the present order of interest, the first two terms of
the stream function ¥ are identical to those for the problem
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of flow past a point force along the z axis the magnitude of
which has already been obtained by the creeping flow analy-
sis. When ¥ is expressed in Stokes outer variables and ex-
panded for small R, for the purpose of matching, it reduces
to

1 Fr
= ——Py
2" 47 + 22)'?
1 z
- PR (1= L)
6 e\ )t 23

as R, — 0. The matching as well as the rest of the analysis is
simplified if we define the integral

21
J=f (P +1+422—2rcos¢)''?dg,

0

in terms of which the Stokes outer stream function, corre-
sponding to Egs. (13), can be expressed as

which matches the first two terms in Eq. (23) as
7’ + 22 — . From the form of Eq. (23}, it is apparent that
the leading-order inertial correction term in the Stokes outer
expansion is of O (R,), and thus for our purposes, we seek
particular solutions to the Navier—Stokes equations of mo-
tion written as

+Vu, =R (5 M, — 8 )a”*‘) (24)
— —— .= iy —— u. — o el
X, ' "\ ox, PR 9x;
where 6,5 is a unit vector in the + z direction, and where u,
on the right-hand side is given by the expressions in Egs. (13).

The particular integral corresponding to the first term
on the right-hand side of Eq. (24) can be obtained analytical-
1y and the corresponding expression for the stream function

is given by

b F rz a—J, (25)
27 or
which, incidentally, matches with the term

& FR, r’z(r* + 2%)~ "2 of Eq. (23) as ¥’ + z* — co. The other
term — L FR, 7 in Eq. (23)is matched by a multiple of the
Stokes solution. When the velocity components derived
from Eq. (25) are expressed in Stokes inner variables and
evaluated near the drop by letting # — 1 and z — 0, we find,
to first order, that the resulting velocity makes a nonzero
contribution to #, given by

Rop 1 1+4 R,, (26)

8r 2 (14A)n@B8/e)+1+472
while the correction to u, vanishes identically at O (R,). In
other words, in the matching region, the above contributes a
uniform radial flow in the outward direction.

An alternative derivation of Eq. (26) is to distribute
Oseenlets of constant strength Fon the body centerline of the
ring with their direction along the positive z axis.® We evalu-
ate the contribution of each Oseenlet to the flow fieldatz =0
and rewrite the resulting expressions in terms of Stokes outer
coordinates by taking the limit R, — O while holding r fixed.
Because of axisymmetry, u, is equivalent tou, at¢ = Oin the

Kaojima, Hinch, and Acrivos 28

Downloaded 13 Jul 2009 to 131.111.16.20. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



present problem,; in particular, the Oseenlet placed at ¢ = ¢,
gives rise to a value for 4, evaluated at ¢ =0,

(F /32m)cos[(m — ¢o)/2] R,

which, when integrated along the ring, leads to Eq. {26).
Note that, according to this alternative derivation, Eq. (26) is
valid when R, = O(1), and only requires that eR, € 1. A
positive value for the inertial correction to u, is consistent
with the fact that the Oseenlets generate within the wake
directly behind the drop an inflow towards the drop which
must be compensated by an outward radial flow to assure
that the net volume flux through any surface enclosing the
body be zero.

A particular solution corresponding to the remaining
inhomogeneous term in Eq. (24), if written in a closed form,
involves a volume integral obtained by means of Green’s
functions techniques. Following Happel and Brenner'® (pp.
79-81), we find

R du, (x)
ul(x) = —8—;vak(x~x°)[uj(x) 8] —a’;j—dn,
5 27)
Valy) =~ 4+ 22y —x e,
Iyl vl

where u’ is the velocity arising from the second inhomogen-
eous term in Eq. (24), u within this integral is given by Eqgs.
(13), x° is any specified point outside the drop at which we
seek a solution, and the integration is performed over the
entire volume external to the drop. Since u; — §,; decays as
|x°| ~! away from the drop, the integral in Eq. {27) is clearly
bounded. As before, we set / = 1 in Eq. (27) and simplify the
integral by choosing x° to fall on the body centerline such
that x9 = 1, x3 = 0, and x§ = 0. The integration with re-
spect to ¢ can be readily carried out, but that with respect to r
and z must be performed using analytical as well as numeri-
cal techniques. The computation is tedious but fairly
straightforward® and finally yields «] = 1.73(B ")°R,.

Having obtained the first-order inertial correction to
the creeping flow solution, we turn our attention to the
Stokes inner expansion. To the present level of approxima-
tion, we have € = 0, and hence we need only to modify the
leading term #'®. Matching requires that

#O=[40(—9+77")+ BPnlnn]cos 0
+R,[ —1BY + 1L73(B)Y]ysin 6,
PO =474 (n’ - picos 0
+R,[ —1BY + 1.73(BY)?*] 7 sin 6,
and Eq. (16a) is replaced by

db _pedpl*( 1
dt 1eu®> \  2BD
ii)—s/z 3+47
8 (1+A)P"°

_F —3/2 1

“8(1+4)

><[4+21nﬁ+/1(3+21nﬁ)]. (29)
[3 €

(28a)

(28b)

+ 1.73)13—1
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Note that, in contrast to the case of a nearly spherical drop
where inertia was seen to play a dominant role in determin-
ing the first-order deformation, here inertia does not affect
the cross-sectional geometry and, more specifically, S,,
which enters into the expression for the rate of change of the
drop body centerline radius. This is because inertia gives rise
to a constant outward radial flow in the neighborhood of the
drop causing it to expand irrespective of its cross-sectional
shape even if the assumption that the latter is nearly circular
is removed.

If € € R, <1 so that the first term on the right-hand
side of Eq. (29) is dominant, the rate of change of & depends,
aside from the physical properties of the fluid, solely on
BYP=_—F/dr= —(1+A)/[(1+A)In(8/e)+ 1 + 4 /2].
Integrating Eq. (29) keeping only the first term yields

b 2 3
f dx _ 3 peldpl” + const,
b Inx*+c, 64 u’
e\ =T4+22+A)/31 +4). (30)

It should be noted that according to Eq. (30), plots of b vs
pldp)3t /u? for drops with different physical properties
should collapse on a single curve when € € R, . In fact, Eq.
(30) should provide a good approximation for the rate of
expansion regardless of the drop cross-sectional shape since
under creeping flow conditions the drag on an object is in
general quite insensitive to its geometry; hence we would not
expect the expression for B {” to differ substantially from that
used above even if the drop cross section is noncircular.

On the other hand, if e=b ~*2 and R, are comparable
in magnitude, as is the case in our experiments, the three
terms in Eq. (29) must be considered together. In particular,
if the interfacial tension is negligible, the asymptotic value of
S, should be used in the second term.

The foregoing theoretical investigation has identified
the mechanism for the experimentally observed drop expan-
sion as being due to inertial effects. We have shown that a
slender fluid ring with any arbitrary cross-sectional geome-
try expands in the presence of inertia to first order in Reyn-
olds number, and that the functional dependence of b on ¢ at
this level of approximation is given by Eq. (29). We have also
shown that the effects of both curvature and of interfacial
tension are to retard drop expansion. In what follows, we
shall present experimental data to assess the merits of this
theoretical analysis.

V. EXPERIMENTS
A. Materials and procedure

In order to test the theoretical development described
above, a series of experiments was performed in our labora-
tory in which the rates of expansion of toroidal drops were
measured using a cine camera. The fluid comprising both the
drop and the bulk was Karo light corn syrup diluted with
various proportions of water (see Table II for their physical
properties) such that the density difference and the viscosity
ratio fell in the range 0.031 g/cm’*<4p<0.071 g/cm? and
2.8<A<11.6, respectively. For the purpose of inhibiting bac-
terial growth, sodium azide and ethylene-diaminetetraacetic
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TABLE II. The physical properties of the six systems used in the experi-
ment.

External fluid Internal fluid Ambient
P H 4p temperature
(g/cm?) poises (g/cm?) A (°C)

System 1 1.264 0.51 0.071 11.6 14
System 2 1.264 0.51 0.065 7.7 14
System 3 1.274 0.61 0.057 7.1 21
System 4 1.274 0.61 0.040 4.0 21
System 5 1.287 0.77 0.041 39 24
System 6 1.287 0.77 0.031 2.8 24

acid (EDTA) were added to each mixture so that the final
composition was approximately 0.2% by weight sodium
azide and 6% molar EDTA. Since the temperature of the
experiments varied from system to system, the fluid viscos-
ities and densities were measured immediately after each
run. The ambient fluid was contained in a plexiglass tank of
square cross section (22.7 X 22.7 cm) and height 91.4 cm, and
the liquid depth was 82 cm.

The drops were colored using red vegetable dye to pro-
vide the necessary contrast. In order to facilitate the forma-
tion of the ring, each drop was allowed to fall from a distance
of approximately 5 cm above the free surface at the center of
the tank, since this had the effect of flattening the drop. Un-
fortunately, under the experimental conditions presented in
this section, each drop left a thin tail emanating from the rear
stagnation point and this resulting loss of fluid eliminated
the possibility of determining the volume of each drop by
measuring its original weight. But since the best visual esti-
mation from an enlargement of the film indicated that it was
reasonable to approximate the drop cross section by a circle,
a first estimate of the volume was obtained by measuring the
thickness of the ring, correspnding to 2eb, and its outer di-
ameter, equivalent to 2b (1 4 ¢). These measurements were
taken by placing a ruler at the center of the tank and using
the film of the ruler as a calibration for the distances in each
run. As a check, the settling speed of the ring was calculated
using the value of the volume as obtained above by employ-
ing an expression for the drag which includes the leading-
order Reynolds number correction'":

D/Dy= 1+ (Dy/16mubU)R,,

where D is the actual drag on the body and D, is that given by
the creeping flow analysis, D,=87*bulU(l1+A1)/
[(1 +A)In(8/€) + 1 + A /2}. Because of its small magnitude
and because the boundary between the drop and the sur-
rounding fluid could not be easily distinguished on the film,
the thickness of the ring was much more difficult to deter-
mine than the drop outer diameter, and hence the value of
2¢b was adjusted, with 2b (1 + €) kept fixed at its measured
value, until this computed speed was within 10% of the mea-
sured speed. This took into consideration the fact that the
theory for the drag applies only for a domain of infinite ex-
tent and in the limit as € — 0, and consequently it overesti-
mates the settling speed of the drop by approximately 10%
for our experimental conditions. We therefore allowed the
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computed and the measured speeds to differ in order to ac-
count for the side wall effects'? and for the errors arising
from using the asymptotic form for D. In all the cases dis-
cussed below, the two volumes thus obtained were within
20% of each other, the averaged difference being 10%.

We mention parenthetically that at Reynolds numbers
somewhat larger than those reported here, a drop hitting the
free surface developed a depression at the rear stagnation
point immediately upon entering the bulk medium without
forming a tail. However, in view of the fact that our analysis
was carried out under the assumption of small inertial effects
and since comparisons with the theory would be difficult if
the experiments were conducted for Reynolds numbers larg-
er than unity, such systems were not investigated further.

The transient expansions were recorded using a cine
camera (Bolex) with the optical axis perpendicular to the axis
of symmetry of the ring, and the drop motion was filmed
from the time € was about | to the onset of instability. The
Reynolds numbers were in the range 0.15<R, <0.7, and for
half the cases that were examined, € > R,. During filming,
the drops were no closer than 30 cm from the bottom of the
tank, and hence the wall effects could be assumed to be very
small.'? Finally, the rate of change of b was obtained from
the frame speed and the measurement of 5.

B. Results

Six to eight data points were taken in each run, and
representative data points from eight different runs are tabu-
lated in Table II1. The measured speeds are given in the first
column, the values of b and € obtained in the manner de-
scribed in the preceding subsection are shown in the second
and third columns, respectively, the computed speeds and
the corresponding Reynolds numbers are given in the fourth
and fifth columns, respectively, and the time-averaged mea-
sured rate of expansion is indicated in the sixth column.

The last three columns represent the three terms resulit-
ing from the effects of inertia, drop curvature, and the tran-
sient interfacial tension, respectively, which appear in the
expression for the theoretically predicted rate of change of b,
calculated from an alternative form of Eq. (29):

db 1
& _ UR,,(7|B‘1°’| +1.73|B (3’12)
2
_eU|BO| T4 s,
21 +4)
—el’——l—[4+2lnﬁ+,1(3+21ni)].
u 8(1+41) € €

(29')

It is evident from the tables that if only the first term on

the right-hand side of Eq. (29') is retained, the rate of expan-
sion is overestimated nearly by an order of magnitude. Of
course, some disagreement is to be expected if the experi-
mental measurements are compared to the theoretical pre-
dictions arising from the inertial contribution alone, since
none of the above systems satisfy the condition € € R,,.
However, it is important to note that the minimum discrep-
ancy is found not in the system for which €/R, is the small-
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TABLE III. Experimentally measured rates of expansion and the corresponding theoretical predictions.

Measured Computed
speed b speed db /dt* Interfacial
(cm/sec) (cm) € (cm/sec) R, (cm/sec) Inertia Curvature tension
System + 5% + 10% + 15% + 10% +20% + 30% (cm/sec) (cm/sec) {cm/sec)®

1 0.93 0.27 0.37 0.95 0.65 0.018 0.17 —0.042 8, —0.84 y
2 0.90 0.26 0.42 1.00 0.65 0.015 0.19 —0.050 5, —093y
3* 0.95 0.31 0.41 1.02 0.66 0.017 0.19 —0.049 5, —0.76
3 0.75 0.28 0.39 0.81 0.47 0.011 0.11 —0.036 5, —-073y
4¢ 0.82 0.31 0.44 0.88 0.57 0.013 0.14 —0.042 5, - 0.81y
4° 0.42 0.19 0.49 0.47 0.19 0.005 0.026 —0.026 5, — 088y
5 0.36 0.27 0.35 0.41 0.19 0.004 0.019 - 00155, - 0.54y
6 0.32 0.25 0.40 0.34 0.14 0.003 0.013 —-0.014 S, —0.60y

* ¥ has units mN/m.
® < Drop sizes were varied.

est, but in system 6 which has the largest e to R, ratio. Clear-
ly, the O (€) terms must be retained in the theory and hence
we shall next examine the effect of the curvature of the ring
which impedes the expansion of the drop when S, > 0. It was
shown in Sec. I11I B that, if the interfacial tension is assumed
to be negligible, .S, approaches in time a positive constant
which lies within the range 0.275 (1 = 0) t0 0.735 (1 = ).
Although assigning these asymptotic values to.S, in Eq. (29')
reduces the differences between the measured and the theo-
retical rates of expansion, significant discrepancies still re-
main which cannot be attributed solely to experimental error
or to the asymptotic nature of the analysis. Moreover, if S,
were as large as 1, then since € varied from 0.3 to 0.6, the
magnitude of €5, would have been in the range of 0.13-0.3
which should have led to an observable surface distortion.
As mentioned previously, however, a careful examination of
the film appeared to indicate that the drop cross section pos-
sessed fore-and-aft symmetry, and no deviation from a circu-
lar cross section could be detected.

In light of the above findings, we shall examine there-
fore the possibility that a finite interfacial tension existed in
all the systems which had a measurable effect on the rate of
drop expansion.

C. Transient interfacial tension

In theory, a transient interfacial tension can exist across
the boundary of any two fluids with unequal chemical poten-
tials even if these fluids are completely miscible, and a simple
Fickean model gives that this interfacial tension should de-
cay as ¢ ~'/2 owing to interdiffusion across the interface. Re-
cently, Smith, van de Ven, and Mason'® measured the inter-
facial tension between two mutually miscible silicone oils
and showed that it indeed decayed with time, although these
investigators could not document the predicted t —!/2 depen-
dence.

Let us suppose that the effect of the interfacial tension
may not be negligible in our experiments. At first, this as-
sumption seems to contradict the results presented in Sec.
II B where a depression forming at the rear stagnation point
of an oblate spheroid was found to grow without bound only
if the interfacial tension was negligibly small. However, re-
call that in the theoretical development we did not take into
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account the tail emanating from the rear stagnation point,
and it may be argued that the presence of the tail leads to a
focal convexity of the surface as seen from within the drop
which, if the interfacial tension is nonzero, creates a positive
external capillary pressure, thereby causing the external flu-
id to cave in. It is then plausible that even in the presence of a
finite interfacial tension, a depression still forms and grows
near the rear stagnation point of the drop.

Returning to the case of toroidal drops, we propose to
back-calculate the values of ¥ which will remove the discrep-
ancy between theory and experiments; in the computation
we set S, = 0, since the drop cross section on the film does
not appear to be distorted along the 45° axis, and consider
only the first and the third terms on the right-hand side of
Eq. (29'). The resulting values of ¥ are listed in Table IV in
order of decreasing settling speed of the drop. We note im-
mediately that the maximum value of ¥ is found in the run
with the highest drop settling speed and correspondingly,
that the minimum value of y is associated with the slowest
settling drop. This pattern is entirely consistent with the
work of Smith ef al.'? and in fact the magnitudes of y report-
ed above are comparable to those in their paper.

It would be desirable to have an independent check to
test whether or not the aforementioned discrepancy is due to
the presence of the transient interfacial tension by, say, con-
ducting the experiments in a system which would be expect-
ed to have a vanishingly small interfacial tension; in other
words, we wish to minimize y/u U. However, since ¥ decays

TABLE IV. Computed values of the interfacial tension.

Measured speed range Interfacial tension
cm/sec System mN/m
0.90-1.07 3° 0.23
0.86-1.02 2 0.18
0.88-0.98 1 0.18
0.81-0.91 4° 0.16
0.74-0.84 3 0.12
0.40-0.45 4° 0.02
0.34-0.41 5 0.03
0.26-0.34 6 0.02
=" Different size drops used.
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with time in a system consisting of two distinct miscible
fluids, small values of ¢ are achieved only at low U, and thus
it does not seem possible to reduce y/u U significantly.

We avoided this difficulty by using the same fluid for
the drop as that of the bulk medium but at a sufficiently low
temperature such that the resulting density difference was
large enough for the drop to fall in the continuum under the
force of gravity. Under these conditions, the effect of the
interfacial tension should be negligible, since the authors are
unaware of reports in the literature which suggest that a
time-dependent interfacial tension exists between two identi-
cal fluids having different temperatures. The drops, initially
at their freezing point, were formed just above the free sur-
face and were allowed to enter the bulk fluid which was at
21°C. A typical transient deformation of such a drop is
shown in Fig. 8. As before, the drop entering the bulk medi-
um left behind a tail emanating from the rear stagnation
point where a depression formed. This depression deepened,
but here the manner of growth was distinct from the case in
which the fluid comprising the drop had a composition that
differed from that of the ambient fluid. Instead of deepening
primarily along the axis of symmetry, the depression spread
so that the drop eventually deformed into a hollow spherical
cap (Fig. 8), by which time significant heat transfer seemed to
have occurred, thereby reducing the density difference, so
that the drop became stagnant. In our laboratory, the drop
under these conditions was seen to deform into a ring rather
than a spherical cap only once. In contrast, when the above
procedure was repeated with two fluids of different composi-
tions, a torus formation was always observed. To be sure, the
rate of heat transfer from a ring should be considerably lower
than that from a thin film shaped in the form of a hollow
spherical cap, and the difference in the nature of drop defor-
mation is due not only to the varying magnitudes of the inter-
facial tension but also to the effect of heat transfer. Neverthe-
less, in the initial stages of deformation where the drop is
approximately spherical, it is reasonable to postulate that
the rates of heat transfer are comparable in the two cases,
and it appears that the formation of a hollow spherical cap is
possible only if the interfacial tension is negligibly small.

FIG. 8. Sideview photograph of a hollow spherical cap at 21 °C. Initial drop
temperature is approximately — 7 °C.
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D. Ring instability

Before concluding, it would be appropriate to give a
brief and qualitative description of drop breakup as observed
in our systems, and also to comment on the similarities
between the instabilities of laminar vortex rings and of vis-
cous rings at low Reynolds numbers. It was found that as a
viscous ring expanded, the instability developed in the form
of an azimuthal asymmetry whereby two crests and corre-
sponding troughs formed out of the plane of the ring (see Fig.
4). As in the case of vortex rings,'* the crests did not travel
around the ring, and in addition the number of crests seemed
to increase with increasing Reynolds number; for example,
three crests appeared at R, ~ 1. Following the first breakup
of the ring, two additional “rings,” although not closed,
formed from the troughs, and they in turn underwent further
instabilities. In contrast, such a repeating instability of a la-
minar vortex ring has rarely been observed because the azi-
muthal velocity induced by the instability appears to have a
stabilizing effect on the resulting turbulent ring.

Finally, the behavior of two viscous rings with their
axes of symmetry close to each other and at some vertical
distance apart was identical to the leapfrogging of coaxial
circular vortex filaments in that the rear ring approached the
front ring with increasing speed, and eventually passed
through it. In our laboratory, this process was observed to
repeat itself up to three times before the rings disintegrated.
Furthermore, leapfrogging occurred even when the axes of
the viscous rings were at an angle to each other, in contrast to
the case of vortex rings where this phenomenon is observed
only if they are exactly coaxial.
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