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Power-laws uncertain in experiments.
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Governing equation

Resistive force - two parts e.g. Pacheco-Vázquez et. al. (2011) PRL

◮ fluid-like inertial part (form drag)

◮ dry-solid friction part (proportional to pressure)

mz̈ = mg−CDρbD
2ż2−µD2ρbgz
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Governing equation

Resistive force - two parts e.g. Pacheco-Vázquez et. al. (2011) PRL

◮ fluid-like inertial part (form drag)

◮ dry-solid friction part (proportional to pressure)

mz̈ = mg−CDρbD
2ż2−µD2ρbgz

Mathematical study of this equation

Non-dimensionalize
z̈ = k − ż2 − z

k ≈ 0.2.

Initial conditions

z(0) = 0 and ż(0) = V0

V0 ≈1–10.
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Direct integration

z̈ = k − ż2 − z

Introduce (Riccati transformation)

z = ln x , so ż =
ẋ

x
and z̈ =

ẍ

x
−

ẋ2

x2
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Direct integration

z̈ = k − ż2 − z

Introduce (Riccati transformation)

z = ln x , so ż =
ẋ

x
and z̈ =

ẍ

x
−

ẋ2

x2

Thence governing equation becomes

ẍ = x(k − ln x)

Thence first integral, and second.
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Penetration depth
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Stopping time
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– not decreasing to a limit value.
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Matched asymptotic analysis V0 ≫ 1
– to find out how it happens
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Matched asymptotic analysis V0 ≫ 1
– to find out how it happens

Fast initial phase

ż = O(V0) and z = O(1),

so t = O(1/V0),

slow time τ = V0t

Expand

z(t,V0) ∼ ζ1(τ) +
1

V 2
0

ζ2(τ)
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Initial Fast phase

First approximation

ζ1ττ = −ζ21τ , ζ1(0) = 0, ζ1τ = 1
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Initial Fast phase

First approximation

ζ1ττ = −ζ21τ , ζ1(0) = 0, ζ1τ = 1

solution

ζ1τ =
1

1 + τ
, ζ1 = ln(1 + τ).

Correction

ζ2 =
1
6
(1+ τ)2

(

− ln(1 + τ) + k + 5
6

)

+ 1
3
(k + 1

3
)/(1+ τ)− 1

2
k − 1

4
.
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Asymptoticity broken

When decreasing ż2 friction equals increasing z friction,

1

t2
= ln(1 + V0t),
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Asymptoticity broken

When decreasing ż2 friction equals increasing z friction,

1

t2
= ln(1 + V0t),

i.e.

t = O

(

1
√
lnV0

)

, z = O(lnV0), ż = O(
√

lnV0).

Expand final stopping phase

z(t) = lnV0 + Z1(T ) +
1

lnV0
Z2(T )

with T =
√
lnV0t
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Final Stopping phase

First approximation

Z1TT = −Z 2
1T − 1 with matching
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First approximation
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Z1 = − ln
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Final Stopping phase

First approximation

Z1TT = −Z 2
1T − 1 with matching

Solution
Z1 = − ln

√

lnV0 + ln(sinT )

Correction

Z2 =

∫

T

0

(cot s − cotT ) sin2 s
(

ln
√

lnV0 + k − ln(sin s)
)

ds
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Stopping time & Penetration depth

Stopping time: ż(t∞) = 0.
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The reasons why

Early times, ż2 drag term dominates

z̈ ∼ −ż2,

solution

ż =
V0

1 + V0t
and z ∼ ln(1 + V0t).
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solution
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NB: just −ż2 alone – never stops.

13



The reasons why
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– not decreasing to a limit value,
and penetration depth not a power-law.
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