A coating flow on a rotating vertical disk

John Hinch & Matthew Crowe

CMS-DAMTP, University of Cambridge

November 13, 2014

Andy's speculation is correct, of course.

Lubrication theory for thin film $h(\mathbf{x}, t)$:

$$
\frac{\partial h}{\partial t} + \nabla \cdot (\mathbf{\Omega} \times \mathbf{x} h + \frac{1}{3} \gamma h^3 \mathbf{g}) = -\frac{1}{3} \alpha \nabla \cdot (h^3 \nabla \nabla^2 h),
$$

$$
\int_{r \le 1} h \, dA = \pi,
$$

with small surface tension $\alpha = \sigma h_0^3/\mu \Omega R^4 \ll 1$, and gravity $\gamma = \rho g h_0^2 / \mu \Omega R^2$.

What is the maximum load, γ_{max} , without dripping?

Parmar, Tirumkudulu & Hinch (2009) PoF 21, 103102.

Experiments: $\gamma_{\rm max} \approx 0.30$. Numerics to $\gamma = 0.12$ with $\alpha = 10^{-5}$. Asymptoics small γ , small α to $O(\gamma^3,\alpha\gamma^3)$ works to $\gamma=0.06.$

Acrivos (2010) PoF Comment 22, 059101.

$$
\gamma_{\max}=\left(\frac{8}{15}\right)^2=0.2844.
$$

Zero surface tension, $\alpha = 0$

Steady if

$$
(\mathbf{\Omega}\times\mathbf{x}h+\gamma h^3\mathbf{g})\cdot\nabla h=0,
$$

i.e. $h = \text{const}$ on off-set circle.

$$
|\mathbf{x}-\gamma h^2\mathbf{\Omega}\times\mathbf{g}|=r,
$$

circles of radius r, centred at $\mathbf{x}=(-\gamma h^2,0).$

How does h vary across circles, i.e. $h = H(r)$?

Acrivos: at maximum load, all circles must pass through $x = (-1, 0)$, √

so
$$
H(r) = \frac{1}{\sqrt{\gamma_{\text{max}}}} \sqrt{1-r}
$$

volume normalisation gives $\gamma_{\rm max}=(8/15)^2$.

Study accumulative effect over a long time of small surface tension

$$
h(\mathbf{x},t) \sim H(r,T) + \alpha h_1(\mathbf{x},T) \quad \text{with slow time} \quad T = \alpha t.
$$

Government by

$$
\frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{\Omega} \times \mathbf{x} h_1 + \frac{1}{3} \gamma h^3 \mathbf{g}) = -\frac{1}{3} \nabla \cdot (H^3 \nabla \nabla^2 H).
$$

Integrate around off-set circle to eliminate second term on LHS (GKB 56, LGL EJH 70)

Technical details

The off-set circles give non-orthogonal co-ordinates

 $\mathbf{x} = (r \cos \theta + X(r), r \sin \theta).$

Metrics sorry to repeat symbols h and α

 $h_r = \sqrt{1 + 2X'\cos\theta + X'^2}$, $h_{\theta} = r$, $h_r h_{\theta} \sin \alpha = r(1 + X'\cos\theta)$.

Hence curvature $\kappa = \nabla^2 h$ for $h = H(r)$

$$
= \frac{1}{r(1+X'\cos\theta)}\left[\frac{\partial}{\partial r}\left(\frac{r}{1+X'\cos\theta}\frac{dH}{dr}\right) + \frac{(X'+\cos\theta)X'}{(1+X'\cos\theta)^2}\frac{dH}{dr}\right]
$$

and this is only half potential terms.

And
$$
X(r) = -\gamma H^2(r)
$$
 with unknown H.

. . . technical details

Then slow drift in distribution across circles governed by

$$
\frac{\partial H}{\partial T} = -\frac{1}{6\pi} \int_0^{2\pi} \frac{1}{r} \frac{\partial}{\partial r} \left[rH^3 \nabla \kappa \right]_{\perp r} d\theta,
$$

and first correction given by

$$
h_1 = \frac{1}{3r(1+X'\cos\theta)} \bigg(\sqrt{1+2X'\cos\theta+X'^2} \left[H^3\nabla\kappa\right]_{\perp\theta} + \int_0^\theta \frac{\partial}{\partial r} \left[rH^3\nabla\kappa\right]_{\perp r} d\theta \bigg).
$$

Numerics

Central space differencing, awkward for non-orthogonal cross derivatives.

Explicit time-step, stability if

$$
\delta\, \mathcal{T} < \tfrac{1}{20} \left(\delta r \min_r (1-X') \right)^4
$$

but independent of $\delta\theta$.

Typically, for $\gamma = 0.2$,

$$
\delta r = \delta \theta = 0.05, \quad \delta T = 10^{-10}
$$

but attains equilibrium by $T = 0.005$.

Problem that circles intersect, $X' > 1$, for initial condition $H = 2(1 - r^2)$ when $\gamma > 0.16$. Hence must ramp up γ in time.

Profiles of the coating on $y = 0$ for various γ

Position of maximum h moving to $(-1, 0)$.

Capillary pressure at $\gamma = 0.15$

due to high curvature as maximum h pushed to edge $x = -1$.

 $O(\alpha)$ correction $h_1(r\theta)$ at $\gamma = 0.15$. Extreme values $\pm 9\,10^4$

Thicker below $y = 0$ where gradient of capillary pressure opposes rotation, like gravity (clockwise rotation).

Position of maximum thickness as γ varies

asymptotics 1st order -4γ , 2nd order $-(2-\frac{15}{16}\gamma)^2\gamma$, and Acrivos's speculation $\gamma_{\text{max}} = 0.2844$.

Separation of circles on $y = 0$ is $1 - X'$

If $X' \to 1$ as $\gamma \to \gamma_{\rm max}$ with $X = -\gamma H^2$, then Acrivos

$$
H \to \frac{1}{\sqrt{\gamma_{\text{max}}}} \sqrt{1-r}
$$