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Maximilian Schür, Steffen Hardt & Tobias Baier in Darmstadt

1



Experiments on an air table

Grooves on the floating body, on the table

Accelerates to the left, to the right.

Why different direction?
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Left or right?

porous air−table

pressure

drag

floating body

end

plate

End plate attached to base (grooved table)
−→ body dragged by flow to right

End plate attached to top (grooved body)
−→ pressure pushes to left

Pressure also levitates floating body.
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Study 2D flow down groove

Boundary layer equations with p = p(x):

ux + vy = 0

Re(ut + uux + vuy ) = −Kpx + uyy

BC on porous plate y = 0: u = 0, v = 1− p

K =
∆p across porous plate

∆p down groove

Forces:

Propulsion FH = p(0) +

∫ 1

0
uy |y=1 dx , Levitation FV =

∫ 1

0
p dx

NB: different non-dimensionalisation, FH smaller by area ratio H/L
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Numerical solution

Method: integrate vy = −ux from y = 1 to y = 0 to find
v(x , y = 0),
then porous plate BC for p(x) = 1− v(x , 0) for momentum
equation.
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NB: two forces (in different non-dimensionalisations) within a
factor of two
NB: small change with Re, but decrease at large K (short groove)
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Asymptotics

I Short groove, K � 1, pressure drop mostly across porous

plate

I Re � 1

I Re � 1

I Long groove, K � 1, p = 1 in groove except very near outlet
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Short groove, K � 1

Most pressure drop across porous plate, so p ∼ 0 in groove,
so v(x , y = 0) = 1, hence similarity solution

u(x , y) = −xg ′(y), v(x , y) = g(y), p =
B

K
(1− x2)

Momentum equation then

Re(g ′2 − gg ′′) = 2B − g ′′′
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7



Low Reynolds number

Lubrication theory

q =

∫ 1

0
u(x , y) dy = −K

12
px , qx = v(x , 0) = 1− p

so

FH = 1
2(1− sech

√
12/K ), FV = 1−

√
K/12 tanh

√
12/K
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High Reynolds number

Inviscid separable solution

u = −f (x)g ′(y), v = f ′(x)g(y), with g(y) = cos π
2 y

Bernoulli integral

β2f 2 = p0 − p, with β2 = π2Re/8K

Porous plate f ′ = 1− p, so

f (x) =

√
1− p0
β

tan
(
βx
√

1− p0
)

p0 = p(0) is determined by p(1) = 0:

tan2
(
β
√

1− p0
)

=
p0

1− p0
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High Reynolds number, inviscid

Finally forces
FH = −p0, FV = 1−√p0/β
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Need to add boundary layer on top
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Long groove, K � 1

Pressure drop and flow only near exit of groove, so tough numerics.
Most of the groove is at p = 1, the pressure under the air-table.
Hence pressure part of Propulsion and Levitation ∼ 1.
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But frictional drag halves the Propulsion at low Re.
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Double limits

Propulsion FH Levitation FV

K ,Re � 1 0.5 1−
√
K/12

K � 1� Re 1 1−
√

8K/π2Re

Re � 1� K 3/K 4/K

1� Re � K π2Re/8K π2Re/12K

1� K � Re 1− 2K/Re 1−
√

8K/π2Re

At Re � 1 and K � 1, uniform levitation pressure = propulsion
pressure, i.e. FH = FV

At Re � 1, frictional drag reduces FH by 50%.
At K � 1, pressure is parabolic, reduces FV by 2/3.

Hence FH/FV = 0.5 to 1.5 (different non-dimensionalisations)
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Experiments

Reinstating the different dimensional factors, and resolving force
along direction that body moves, predict

Propulsion/weight = (0.5 to 1.5)h cosα/`
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