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Motivation

I François Boulogne observed in his Paris PhD thesis that
the coating of an elastic liquid was never axisymmetric,
but was always thicker on one side.

I Flow in thin coating is mainly simple shear and quasi-steady

I Hence rheology is a viscosity plus normal stresses.

I First normal stress difference = tension in streamlines →
enhanced effective surface tension.

I Second normal stress difference = tension in vortex lines →
new instability.

I Will use lubrication theory for thin film.
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Governing equation

Extra non-Newtonian stress for a second-order fluid

σNN = −2α
O
E + βE 2,

α tension in the streamlines, β < 0 tension in the vortex lines.

Lubrication theory, suitably non-dimensionalised:

∂h

∂t
+ G

∂h3

∂z
+∇h3∇(h +∇2h) + A

∂2

∂z2
h5 + B

∂2

∂θ2
h5 = 0,

(curiously A ∼ α/6, but B ∼ −β/80)

Now study development of lop-sided flow with h(θ, t),
no z-variations.

ht +
(
h3(hθθ + h + Bh2)θ

)
θ

= 0
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Time evolution

h(θ, t) at t = 2n n = −2, . . . , 11, for B = 0.5.
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Dotted blue is a steady state which wets only 0 ≤ θ ≤ 1.9071

(Interesting intermediate times: drift of an off-centred cylinder.)
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Steady states

Steady states for various B
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Structure at late times

The shape and the pressure (stress σθθ) at t = 103 for B = 0.5
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There two constant pressure regions.

Higher pressure region to the right drains into the lower pressure
region to the left through a small neck.
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The neck between the two constant pressure regions

Universal shape of the neck between the two constant pressure
regions, for t = 50 (50) 103 and for B = 0.5.
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Blue shape from Bretherton’s equation.
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Draining of small region as t−1/4
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h(π) =
1 + cos L

t1/4

(
K ((π − L) cos L + sin L

4Q sin5 L

)1/4

with Bretherton Q = 1.20936 and for B = 0.5 pressure in steady
state K = 3.7297 and length of steady state L = 1.9171.
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