The much-neglected Second Normal Stress **Difference**

John Hinch

CMS-DAMTP, University of Cambridge

January 19, 2021

What are normal stresses?

In simple shear $\mathbf{u} = (\gamma y, 0, 0)$, the stress tensor is

$$
\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0 \\ \sigma_{xy} & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix},
$$

with off-diagonal tangential viscous dissipative stresses, and diagonal normal stresses, which do no work.

In a Newtonian viscous fluid, the normal stresses are equal $\sigma_{xx} = \sigma_{yy} = \sigma_{zz}$ and equal to (negative) pressure.

In a visco-elastic fluid, the normal stresses are not equal. We consider their differences

$$
N_1=\sigma_{xx}-\sigma_{yy}, \quad N_2=\sigma_{yy}-\sigma_{zz}.
$$

 N_1 (dominant for polymers) is a tension in the streamlines.

Effect of N_1 on flow – tension in the streamlines

- \triangleright Rod climbing
- \blacktriangleright Secondary flows
- \blacktriangleright Migration of particles to centre of pipe flow
- \blacktriangleright Stabilisation of jets
- \blacktriangleright Purely-elastic Taylor-Couette instability
- \blacktriangleright Co-extrusion instability

For polymers and microstructures of fibres:

Thus tension in the streamlines, N_1 .

And no N_2 from fibres – why much neglected.

The origin of N_2

Need a thick microstructure that can be compressed, e.g. droplets in an emulsion

Then spin by vorticity to align with flow gives $N_2 = \sigma_{yy} - \sigma_{zz} < 0$.

 N_2 < 0 is tension in the vortex lines.

Thick microstructures, unlike thin fibres, strain with reduced efficiency, θ < 100%.

So deform with

$$
\nabla \mathbf{u} \rightarrow \frac{1}{2} \left(\nabla \mathbf{u} - \nabla \mathbf{u}^{\mathsf{T}} \right) + \theta \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}} \right)
$$

This gives a second normal stress difference and shear-thinning.

$$
N_2 \propto -\frac{\theta(1-\theta)\gamma^2}{1+(1-\theta^2)\gamma^2}, \quad \mu_{p} \propto \frac{\theta}{1+(1-\theta^2)\gamma^2},
$$

Another origin of N_2

In non-Brownian suspensions, particles impact in the *x*-direction, leading to a pressure, $\sigma_{xx} < 0$.

When concentrated $\phi > 20\%$, they also impact layer above and below, leading to a similar pressure $\sigma_{yy} \approx \sigma_{xx}$ (force-chains at 45° to flow), so $N_1 \approx 0$.

Easier to pass in z-direction, so $\sigma_{zz} \approx 0$, so $N_2 = \sigma_{vv} - \sigma_{zz} < 0$.

Boyer, Pouliquen & Guazzelli (2017)

- \triangleright Bowing of interface in Tanner tilted channel
- \blacktriangleright Longitudinal vortices in granular chute flow
- \blacktriangleright Negative rod-climbing
- \blacktriangleright Edge instability in rheometers
- \blacktriangleright Lopsided de-wetting on a vertical fibre

Tanner's tilted trough

Inclined V-shaped open channel Kuo & Tanner 1974

Higher shear-rate in centre

- \rightarrow higher tension in vortex lines in centre,
	- \rightarrow pull fluid to centre
		- \rightarrow surface bows up

Same mechanism for longitudinal vortices in granular chute flow? An alternative to Forterre & Pouliquen PRL 2017

Negative rod-climbing

Standard analysis

Beavers & Joseph 1975

$$
h(r) = \frac{1}{\rho g} \left(\frac{1}{4} N_1 + N_2 \right) \frac{a^2}{r^2}
$$

For polymers, $N_1 > 0$ and $N_2 \approx 0$, so climbs $h > 0$, by tension in streamlines

For concentrated non-Brownian suspensions, $N_1 \approx 0$ and $N_2 < 0$, so $h < 0$ dips (negative climb) by tension in the vertical vortex lines

Boyer, Pouliquen & Guazzelli 2017

Edge instability in rheometer

At edge of plate-plate rheometer, top plate coming towards you, bottom away. Perturb liquid interface, in at A.

Contours of constant u must meet interface at 90° .

Crowding of contours at A,

- \rightarrow increase shear-rate at A.
	- \rightarrow higher tension in vortex lines at A,
		- \rightarrow pulls A further into liquid.

Hemmingway & Fielding 2017, Tanner 1993

Lopsided de-wetting of coating on a vertical fibre

Experiments: Boulogne, Pauchard & Giorgiutti-Dauphin´e 2012

Work with Claire McIlroy c2015

g

Thicker side \rightarrow higher shear-rate \rightarrow higher tension in vortex lines \rightarrow pulls round to make thicker

Lopsided de-wetting of coating on a vertical fibre

Lubrication equations for thin coating. Case no z-variations, $h(\theta, t)$

Dotted blue is a steady state which wets only $0 \le \theta \le 1.9071$

Lopsided de-wetting of coating on a vertical fibre

Draining of small region to right

Small region drains as $t^{-1/4}$

$$
h(\pi)\sim\frac{1+\cos L}{t^{1/4}}\left(\frac{K((\pi-L)\cos L+\sin L)}{4Q\sin^5 L}\right)^{1/4}
$$

cf P.S.Hammond 1983

- \triangleright Bowing of interface in Tanner tilted channel
- \blacktriangleright Longitudinal vortices in granular chute flow
- \blacktriangleright Negative rod-climbing
- \blacktriangleright Edge instability in rheometers
- \blacktriangleright Lopsided de-wetting on a vertical fibre

 N_2 should not have been neglected!