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Two-layer shear instability?

Sand bed = very viscous liquid?
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Experiments

Experiments in annulus at IMFT by Hélène Mouilleron.

Instability not seen in experiments.

But seen in oscillating flow

because erosion from crests suppressed.
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A diversion: Non-erosion of crests

Does not happen for standard model of bedload transport:

flux q(x , t) = C (γn(x , t)− γn
c ), surface shear rate γ.

Higher shear on crests
γ+ γ− γ+

Hence higher flux
q+ q− q+

Divergence of flux
deposit loss

Hence wave propages to right without growth or decay
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Erosion-deposition model for erosion of crests

Surface density of mobile grains n(x , t).

∂n

∂t
+
∂q

∂x
= − 1

τsed
n +

1

d2
(γ − γc) with q = γdn.

Higher shear on crests
γ+ γ− γ+

On crests: γ+ produces n+, produces q+.

On lee side: Div q produces δn+, so deposits and propagation,
but also a δq+

In troughs: Div δq deposits to fill trough, similarly erode crest.

Small dispacements in oscillating flow, reduce erosion by 1/(ωτ)2.
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Back to instability mechanism, now in oscillating flow
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Steady streaming

Steady streaming from troughs to crests is mechanism in all
regimes of oscillation flows.



Calculation of steady streaming

For experimental conditions, not sea conditions.



Calculation of steady streaming

In general, there are 7 lengths:

I d particle diameter

I η0 amplitude of ripples,

I λ wavelength of ripples. Vortices shed if η0 > 0.1λ

I δ thickness of Stokes oscillation boundary layer, δ =
√
ν/ω

I ` excursion of fluid in oscillating flow

I h depth of layer

I L wavelength of water waves

If d � η0, d only in particle transport equation.

Sea ripples: λ, δ � h, L

IMFT experiments: η0 � h� δ, λ
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Calculation of steady streaming

For experimental conditions, not sea conditions.

I Thin layer, kh� 1.
I O(1) term only.

I Small disturbance ε = η0/h� 1.
I O(1) flat-bottom and
I O(ε) first effect of wavy-bottom.

I Small Reynolds number, Re = ρωh2/µ� 1.
I O(1) Stokes flow and
I O(Re) first inertial correction.

I Amplitude A = kU0/ω. Two cases small and O(1).



Non-dimensionalised governing equations

Thin-layer (boundary layer) approximation for horizontal velocity

Re

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −dp

dx
+
∂2u

∂y2
.

Vertical velocity from
∂u

∂x
+
∂v

∂y
= 0.

(Also gives pressure so that horizontal flux is constant.)

Flat top
u = (A cos t, 0) on y = 1,

Wavy bottom
u = 0 on y = ε cos x .
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Double expansion

Small Reynolds number, Re � 1. and small bump, ε� 1.

u ∼ u0 + Reui +ε
(
ũ0 + Reũi

)
v ∼ +ε

(
ṽ0 + Reṽ i

)
p ∼ +ε

(
p̃0 + Rep̃i

)

u0 Couette flow
ui Inertial correction to Couette flow
ũ0 Stokes flow over bump
ũi Inertial correction to flow over bump



Couette flow and inertial correction

Couette flow for a flat bottom

u0 = U
0
(y) cos t with U

0
= Ay .

Inertial correction

ui = U
i
(y) sin t with U

i
= 1

6A(y − y3).

Continues as base Couette flow reverses.
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Wavy bottom perturbation of Stokes flow

ũ0 = Ũ0(y) cos x cos t with Ũ0 = A(−1 + 4y − 3y2).

This horizontal velocity is negative on crests, x = 0 and y small,

so sum with positive Couette flow vanishes (no slip) on crest.



Inertial correction to wavy bottom disturbance

ũi = Ũ i1(y) cos x sin t + Ũ i2(y) sin x cos2 t,

with

Ũ i1 = 1
60A(−10 + 32y + 3y2 − 40y3 + 15y4),

Ũ i2 = 1
60A2(−2y + 6y2 − 10y4 + 6y5).

Steady streaming part – from troughs to crests



Experimental check of steady streaming

To the right of a solid “ripple”.

Initial dye filament, and after 39 complete oscillations

WRONG direction! But dye is Lagrangian. Different?
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Calculation of Lagrangian mean flow

x(t) ∼ X(T ) + δx(t),

First approximation: oscillate about X

δ̇x = u(X, t),

Second correction: mean drift

VStokes = 〈δx ·∇u|X〉 ,



Calculation of Lagrangian mean flow

x(t) ∼ X(T ) + δx(t),

First approximation: oscillate about X

δ̇x = u(X, t),

Second correction: mean drift

VStokes = 〈δx ·∇u|X〉 ,



Double expansion

Lagrangian mean flow needs inertia and wavy bottom:

VStokes =
1

2
εRe

[
−U

0
Ũ i1 + U

i
Ũ0 + Ṽ 0 dU

i

dY
− Ṽ i1 dU

0

dY

]
sin X .

Hence

VStokes =
1

60
εReA2(6Y 2 − 2Y 3 − 25Y 4 + 21Y 5) sin X .

Lagrangian mean flow larger than Eulerian and in opposite
direction, except near bottom.
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Experimental check of Lagrangian drift
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Poor agreement.

But large amplitude A = 3.2: top moves more than wavelength of
ripple.
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Stokes drift at A = O(1) amplitudes

Double expansion again

x(t) ∼ x0 + Rex i+εx̃0 + εRex̃ i ,

y(t) ∼ y0 +εỹ0 + εReỹ i ,

with large oscillation with the base Couette flow

x0 = X (T ) + U
0
(Y ) sin t,

y0 = Y (T ).



Example

One term in wavy-bottom correction to the Stokes flow

.

ỹ0 = Ṽ 0(Y ) sin
[
X + U

0
(Y ) sin t

]
cos t,

with displacements,

which can be integrated to

ỹ0 = −Ṽ 0(Y )
cos
[
X + U

0
(Y ) sin t

]
U

0
(Y )

.
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Inertial correction to wavy-bottom flow

Problem for drift

.

x̃ i = ũi + ỹ i ∂u0

∂y
+ ỹ0∂ui

∂y
+ x i ∂ũ0

∂x
,

.

ỹ i = ṽ i + x i ∂ṽ0

∂x
.

‘Solution’

VLagrangian = εRe

[
Ũ i1J ′

0 + Ũ i2(J0 + J ′′
0 )

+
dU

0

dY

(
Ṽ i1J ′′

0 − (Ṽ i2 − U
i
Ṽ 0)(J ′

0 + J ′′′
0 )
)

− Ṽ 0

U
0

dU
i

dY
J ′
0 + U

i
Ũ0(J0 + J ′′

0 )

]
sin X ,

where 〈cos(z sin θ)〉 = J0(z) etc.
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Ṽ 0)(J ′

0 + J ′′′
0 )
)

− Ṽ 0
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Result at large amplitude

−0.01 0 0.01

A� 1

A = 1 A = 3

VLagrangian/A2εRe

Reduced effect due to averaging over large excursion



Second experimental check of Lagrangian mean flow

Initial dyed filament on erodible bed, and after 8 oscillations

Corrected theory A = 2.0, original A� 1 theory

−0.02 0 0.02
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Conclusions

−0.02 0 0.02

I Dyed filament follows Lagrangian mean flow

I Shear at bed is Eulerian mean, from troughs to crests

Steady streaming exits, in coprrect direction for growthof dunes
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