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Collapse of a granular column

Lube, Huppert, Sparks
& Hallworth 2004 JFM

Idealisation of geophysical events
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Geophysical events

Hope, British Columbia, 1965
4.6 107 m3

Venezuela
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Problem

t

−→

What determines the runout distance R∞?
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Experiments

Lube, Huppert, Sparks
& Hallworth 2004 JFM

Lajeunesse, Mangeney-
Castelnau & Vilotte
2004 PoF
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Experiments in 2D channel

Lube, Huppert, Sparks
& Freundt 2005 PRE

Balmforth & Kerswell
2005 JFM
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Runout in experiments

By Huppert et al, by Lajeunesse et al, by Balmforth et al

Independent of type, size & number of particles

Axisymmetric:
R∞/R0 = 1 + 1.8a1/2

2D:
R∞/R0 = 1 + 2a2/3

if a > 2, where aspect ratio a = H0/R0.

Simple laws, difficult to explain
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Doomed theories

Initial potential energy ρgH0

becomes vertical kinetic energy 1

2
ρw2 = ρgH0

becomes horizontal kinetic energy 1

2
ρu2 = 1

2
ρw2

Sliding mass M resisted by solid (Coulomb) friction µMg

Runout: R∞ = H0/µ 10× too large, wrong power-law
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Numerical simulations of grains flowing

1. Event-driven: for dilute granular gases, jump t to next collision,

but condensate

2. Soft-particle: cannot resolve real deformation of 1 nm on 1µs,

so artificially very soft, by 10−6, plus artificial dash-pots for

dissipation

3. Hard-particle: repulsive force to stop overlap, Coulombic

friction in sliding contacts, underdetermined
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Numerical simulations by Lydie

DEM method, 2D, hard spheres (discs),
Coulombic friction, 5000 particles, polydisperse sizes.
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Robust numerical simulations

Results independent of

number of particles

polydispersity in size of particles

value of coefficient of Coulombic friction

value of coefficient of restitution
except for extreme cases.

Consider final deposits for different parameters
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Independent of number of grains

Final deposit:

−15 −10 −5 0 5 10 15
x/R0

0.00

0.05

0.10

0.15
y/

H

N=2000, a=6.9
N=4000, a=6.0
N=8000, a=6.6

FACM06 2006, runout – p.12/61



Independent of polydispersity

Uniform distribution of radii between in [dmin, dmax],
with dmin/dmax = 1, 0.75, 0.5

Final deposit:
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Small fines would segregate and fall to bottom
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Independent of inter-grain friction

Final deposit for µ = 0.05, 0.1, 0.5, 1, 2
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Independent of restitution

Final deposit for e = 0, 0.5.0.8, 1.0
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Different only if e very close to 1

FACM06 2006, runout – p.15/61



Effect of restitution

e = 1.0

e = 0.8

Too bouncy if e = 1.
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Numerical simulations

Results independent of

number of particles

polydispersity in size of particles

value of coefficient of Coulombic friction

value of coefficient of restitution
except for extreme cases.

Like independent of type, size & number of particles in experiments.
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Results of simulations

Runout (in 2D):

If a > 2

R∞/R0 = 1 + 3.5a0.7

10−1 100 101 102

a

10−1

100

101

102

(R
∞
−R

0)/
R

0

slope = 1 slope = 0.7

Simulations 3.5 vs experiments 2.

Dissipation low for discs?
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. . . more details

Free fall of column while h(t) > 2.5R0

Duration of flow T∞ = 2.25
√

2H0/g

Universal position of front as function of time, normalised

Dissipation in horizontal flow
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Free fall

Column in free fall for
tf =

√

2(H0 − 2.5R0)/g
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Duration of flow, T∞

Simulations
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Moving front

Front r(t): (r − R0)/R∞ vs t/T∞

Simulations
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The horizontal flow

Mass flowing mS and
associated energy ES as
function of aspect ratio a
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Dissipation of horizontal flow

Flowing mass mS with energy Es has runout R∞
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µe=0.16

ES = µemSg(R∞ − R0)

with simple effective friction µe = 0.16 independent of a.

µe = 0.47 for centre of mass
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A shallow-water model

For runout in a thin layer

Depth-averaged horizontal velocity u

Depth-integrated horizontal momentum:

∂(hu)

∂t
+ β

∂(hu2)

∂r
= −Kgh

∂h

∂r
− µgh

with
β velocity profile factor
K ‘Earth coefficient’
µ basal Coulomb friction coefficient
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Velocity profile factor β

Mass flux to momentum flux correction:

β = h

∫ h

0

u2 dz

/

(
∫ h

0

u dz

)2

value depends on velocity profile in vertical

β =











1 plug-flow
4

3
linear

6

5
parabolic
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Earth coefficient K

‘Hydrostatic’ balance in vertical

σzz = −ρg(h(x) − z)

Plastic yielding

σxx = Kσzz with K =
1 + sin δ

1 − sin δ

Horizontal ‘pressure gradient’

∂σxx

∂x
= −Kρ

∂h

∂x

Now

K =

{

1/3 in ‘passive failure’ ux > 0

3 in ‘active failure’ ux < 0

BUT best K = 1 Pouliquen & Forterre 2002 JFM
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Basal friction µ

Take µ = 0.43 to fit runout in simulations.

∂(hu)

∂t
+ β

∂(hu2)

∂r
= −Kgh

∂h

∂r
− µgh

Also take β = 1 for simplicity, and K = 1 as in previous studies.

Speculate: no change in qualitative behaviour for different values of
coefficients
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‘Raining’ into shallow water

Initial tall column is not shallow,
but known to free-fall, so velocity at base is gt

Add mass to thin horizontal layer as rain from the tall column

∂h

∂t
+

∂(uh)

∂r
= q

where

q(r, t) =

{

gt 0 ≤ r ≤ R0

0 R0 < r
for 0 < t <

√

2H0/g

No change to momentum equation, as adding mass with zero
horizontal momentum.
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Numerical method

Conservative, shock-capturing, Roe solver

Pre-layer 10−7, initial column height 10−1

Validation: dam-break (µ = 0) in 2D

Alternative Lagrangian method for 2D
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Results from shallow-water model

Runout
2D

PSfrag replacements
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R∞/R0 =

{

1 + 4.4a0.65 2D 4.4−→ 2 in experiments
1 + 3.2a0.52 Axi 3.2−→ 1.8 in experiments
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Height of deposit

H∞/R0 =

{

0.66a0.35 2D 0.66 −→ 1 in experiments
0.52a−0.02 Axi 0.52 −→ 1 in experiments

2D

Balmforth & Kerswell 2005 JFM

Axi

Lube, Huppert, Sparks & Hallworth 2004 JFM

Lajeunesse, Mangeney-Castelnau & Vilotte
2004 PoF FACM06 2006, runout – p.32/61



Evolution of deposit

Shallow-water vs Simulations
PSfrag replacements
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Velocity profiles

Shallow-water vs Simulations

u
√

gR0
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Moving front

Shallow-water vs Simulations
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A little explanation?

Why 2D different from axisymmetric?

Simple power-laws?

Three phases

Leaving the base
Propagating wave
Deceleration
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Leaving the base

During the rain 1.5 < t < 4.2 =
√

2a, a = 9.1

2D

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1  2  3  4  5  6

PSfrag replacements

r

h

Axi

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

PSfrag replacements

r

h

FACM06 2006, runout – p.37/61



Leaving the base of the column, 2D

Height H(t) length L(t)

Mass in 2D : HL = gt2R0

Acceleration by slope: L/t2 = gH/L

L(t) = (gt2)2/3R
1/3

0

H(t) = (gt2)1/3R
2/3
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h
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2/3

FACM06 2006, runout – p.38/61



Leaving the base of the column, Axi

Height H(t) et Length L(t)

Mass in Axi : HL2 = gt2R2
0

Acceleration by slope: L/t2 = gH/L

L(t) = (gt2)1/2R
1/2

0

H(t) = R0
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Difference between 2D and Axi

Axisymmetric geometry has more area to store grains, so shorter
runout and lower height

L =

{

1.4a1/2 Axi
1.1a2/3 2D

at the end of the rain t =
√

2gH0.

Final runout c3 times greater, but moving at 2
√

gR0.

However deceleration of 2
√

gR0 at µg would only double runout.
Need further.
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Propagation of a wave, 2D

Extends runout before deceleration.

5.8 < t < 8.1, a = 9.1

h(x, t)
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A trapezoidal wave?

u u3

h h2

.
................

...............

...................
...........

.......................
......

............................ ........................... ..........................

x1 x3

1 2 3

1: stopped u(x, t) = 0, h(x, t) = h(x,∞)

2: flat h(x, t) = h2(t), u(x, t) = α(t)(x − x1(t))

3: constant velocity u(x, t) = u3,
at angle of repose h(x, t) = µ(x3(t) − x)
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Region 2

Flat h(x, t) = h2(t), so decelerate with µg

Linear velocity u(x, t) = α(x − x1) is constant deceleration if

α(t) =
1

t − t0
and x1(t) = x0 + 1

2
µg(t − t0)

2

And height decrease as h2(t) = h0α(t)

Test by plotting h(x, t)/α and u(x, t)/α vs x − x1
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Test solution for h in region 2
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Test solution for u in region 2
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Shape of final deposit, region 1

Final deposit
h(x,∞) = h2(t) at x = x1(t)

So
h(x,∞) =

h0
√

2(x − x0)/µ
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Extension of runout during wave propagation

Initial length L = 1.1R0a
2/3 of region 3 where u = u3 = 2

√
gR0a

1/6

Accelerate at µg through L in time
√

2L
µg

Distance travelled at u3 is 2.2R0a
1/2
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Deceleration, 2D

8.3 < t < 14, a = 9.1
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Deceleration:

Small slope, so initial conditions decelerate with µg:

u = u0(x0) − µg(t − t0)

x = x0 + u0(x0)(t − t0) − 1

2
µg(t − t0)

2
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Extension of runout during deceleration

Decelerate from u = u3 = 2
√

gR0a
1/6

at µg

in distance 3.5a1/3
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Axisymmetric similar

Propagating wave
4.3 < t < 6.3 a = 9.1
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Axisymmetric similar

Propagating wave
uα(t)
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A little explanation?

Three phases

Leaving the base

Runout 1.1R0a
2/3 (2D) 1.5R0a

1/2 (Axi)

Propagating wave

+2.2R0a
1/2 +1.6R0a

1/4

Deceleration
+3.5R0a

1/3 +3.7R0
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A little explanation?

Three phases, 2D

R∞
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But, the velocity profile

Lajeunesse, Monnier & Homsy 2005 PoF

Linear over stationary
Approx plug near front
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But, the velocity profile
Linear profile on top of stationary layer

Lajeunesse, Monnier & Homsy 2005 PoF

γ = 0.3
√

g/d, indpt a

Lube, Huppert, Freundt & Sparks 2006 PoF

γ = 7
√

g/H0, indpt a
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But, the velocity profile
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Linear profile in another geometry

GDR MiDi 2004 EPJ-E

γ = 0.5
√

g/d
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Evolving profile?

If flat and u(y, t)

Hydrostatic : σzz = −ρg(h − z)

Friction : σxz = −µσzz

So ρ
∂u

∂t
=

∂σxz

∂z
= −µρg

Solution
u(y, t) = max (u(y, 0) − µgt, 0)

Linear profile remains linear at same shear-rate,
depth of stationary layer grows at ẏ = µg/γ
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But, the velocity profile

Linear profile over stationary layer
just final stopping?
low flux?

Plug profile near front
high flux?
main runout?

Change shallow-water β = 4

3

shorter runout?
change K also?
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