Collapse of a granular column

John Hinch

in collaboration with Lydie Staron & Emeline Larrieu

inspired by Herbert Huppert

Collapse of a granular column

Lube, Huppert, Sparks & Hallworth 2004 JFM

Idealisation of geophysical events

Geophysical events

Hope, British Columbia, 1965 $4.6\,10^7\,\mathrm{m}^3$

Venezuela

Problem

What determines the runout distance R_{∞} ?

Experiments

Experiments in 2D channel

Lube, Huppert, Sparks & Freundt 2005 PRE

Runout in experiments

By Huppert et al, by Lajeunesse et al, by Balmforth et al

Independent of type, size & number of particles

Axisymmetric:

$$R_{\infty}/R_0 = 1 + 1.8a^{1/2}$$

2D:

$$R_{\infty}/R_0 = 1 + 2a^{2/3}$$

if a > 2, where aspect ratio $a = H_0/R_0$.

Simple laws, difficult to explain

Doomed theories

Initial potential energy $\rho g H_0$

becomes vertical kinetic energy $\frac{1}{2}\rho w^2 = \rho g H_0$

becomes horizontal kinetic energy $\frac{1}{2}\rho u^2 = \frac{1}{2}\rho w^2$

Sliding mass M resisted by solid (Coulomb) friction μMg

Runout: $R_{\infty} = H_0/\mu$ 10× too large, wrong power-law

Numerical simulations of grains flowing

1. Event-driven: for dilute granular gases, jump t to next collision, but condensate

2. Soft-particle: cannot resolve real deformation of 1 nm on $1 \mu \text{s}$, so artificially very soft, by 10^{-6} , plus artificial dash-pots for dissipation

3. Hard-particle: repulsive force to stop overlap, Coulombic friction in sliding contacts, underdetermined

Numerical simulations by Lydie

DEM method, 2D, hard spheres (discs), Coulombic friction, 5000 particles, polydisperse sizes.

Robust numerical simulations

Results independent of

- number of particles
- polydispersity in size of particles
- value of coefficient of Coulombic friction
- value of coefficient of restitution except for extreme cases.

Consider final deposits for different parameters

Independent of number of grains

Final deposit:

Independent of polydispersity

Uniform distribution of radii between in $[d_{\rm min}, d_{\rm max}]$, with $d_{\rm min}/d_{\rm max}=1, 0.75, 0.5$

Final deposit:

Small fines would segregate and fall to bottom

Independent of inter-grain friction

Final deposit for $\mu = 0.05, 0.1, 0.5, 1, 2$

Different only if very slippery

Independent of restitution

Final deposit for e = 0, 0.5.0.8, 1.0

Different only if *e* very close to 1

Effect of restitution

Too bouncy if e = 1.

Numerical simulations

Results independent of

- number of particles
- polydispersity in size of particles
- value of coefficient of Coulombic friction
- value of coefficient of restitution except for extreme cases.

Like independent of type, size & number of particles in experiments.

Results of simulations

Simulations 3.5 vs experiments 2.

Dissipation low for discs?

... more details

- **•** Free fall of column while $h(t) > 2.5R_0$
- Duration of flow $T_{\infty} = 2.25\sqrt{2H_0/g}$
- Universal position of front as function of time, normalised
- Dissipation in horizontal flow

Free fall

Duration of flow, T_{∞}

Simulations

Experiments

Lube, Huppert, Sparks & Freundt 2005 PRE

$$T_{\infty} = 3.3\sqrt{H_0/g}$$

$$T_{\infty} = 3.2\sqrt{H_0/g}$$

Moving front

Front r(t): $(r-R_0)/R_\infty$ vs t/T_∞

Intermediate times at nearly constant velocity $\sqrt{2gR_0}$

The horizontal flow

Mass flowing m_S and associated energy E_S as function of aspect ratio a

Dissipation of horizontal flow

Flowing mass m_S with energy E_s has runout R_∞

$$E_S = \mu_e m_S g(R_\infty - R_0)$$

with simple effective friction $\mu_e = 0.16$ independent of *a*.

 $\mu_e = 0.47$ for centre of mass

A shallow-water model

For runout in a thin layer

Depth-averaged horizontal velocity \overline{u} Depth-integrated horizontal momentum:

$$\frac{\partial(h\overline{u})}{\partial t} + \beta \frac{\partial(h\overline{u}^2)}{\partial r} = -Kgh\frac{\partial h}{\partial r} - \mu gh$$

with

- β velocity profile factor
- \blacksquare K 'Earth coefficient'
- μ basal Coulomb friction coefficient

Velocity profile factor β

Mass flux to momentum flux correction:

$$\boldsymbol{\beta} = h \int_0^h u^2 \, dz \, \bigg/ \left(\int_0^h u \, dz \right)^2$$

value depends on velocity profile in vertical

$$\beta = \begin{cases} 1 & \text{plug-flow} \\ \frac{4}{3} & \text{linear} \\ \frac{6}{5} & \text{parabolic} \end{cases}$$

Earth coefficient *K*

'Hydrostatic' balance in vertical

$$\sigma_{zz} = -\rho g(h(x) - z)$$

Plastic yielding

BUT best K = 1

$$\sigma_{xx} = K \sigma_{zz}$$
 with $K = \frac{1 + \sin \delta}{1 - \sin \delta}$

Horizontal 'pressure gradient'

$$\frac{\partial \sigma_{xx}}{\partial x} = -K\rho \frac{\partial h}{\partial x}$$

Now

$$K = \begin{cases} 1/3 & \text{in 'passive failure'} \quad u_x > 0 \\ 3 & \text{in 'active failure'} \quad u_x < 0 \end{cases}$$

Pouliquen & Forterre 2002 JFM

Basal friction μ

Take $\mu = 0.43$ to fit runout in simulations.

$$\frac{\partial(h\overline{u})}{\partial t} + \beta \frac{\partial(h\overline{u}^2)}{\partial r} = -Kgh\frac{\partial h}{\partial r} - \mu gh$$

Also take $\beta = 1$ for simplicity, and K = 1 as in previous studies.

Speculate: no change in qualitative behaviour for different values of coefficients

'Raining' into shallow water

Initial tall column is not shallow, but known to free-fall, so velocity at base is gt

Add mass to thin horizontal layer as rain from the tall column

$$\frac{\partial h}{\partial t} + \frac{\partial (\overline{u}h)}{\partial r} = q$$

where

$$q(r,t) = \begin{cases} gt & 0 \le r \le R_0 \\ 0 & R_0 < r \end{cases}$$
 for $0 < t < \sqrt{2H_0/g}$

No change to momentum equation, as adding mass with zero horizontal momentum.

Numerical method

- Conservative, shock-capturing, Roe solver
- Pre-layer 10^{-7} , initial column height 10^{-1}
- Validation: dam-break ($\mu = 0$) in 2D
- Alternative Lagrangian method for 2D

Results from shallow-water model

 $R_{\infty}/R_{0} = \begin{cases} 1 + 4.4a^{0.65} & \text{2D} & 4.4 \longrightarrow 2 \text{ in experiments} \\ 1 + 3.2a^{0.52} & \text{Axi} & 3.2 \longrightarrow 1.8 \text{ in experiments} \end{cases}$

Height of deposit

Evolution of deposit

$$t = 0.3 (0.1) 0.9, a = 9.1$$

Velocity profiles

t = 0.4 (0.1) 0.9, a = 9.1

Stops from the centre, triangle wave propagates

Moving front

A little explanation?

Why 2D different from axisymmetric?

Simple power-laws?

Three phases

- Leaving the base
- Propagating wave
- Deceleration

Leaving the base

Leaving the base of the column, 2D

- Height H(t) length L(t)
- Mass in 2D : $HL = gt^2 R_0$
- Acceleration by slope: $L/t^2 = gH/L$

At the end of the rain $L = 1.1R_0 a^{2/3}$

Leaving the base of the column, Axi

- Height H(t) et Length L(t)
- Mass in Axi : $HL^2 = gt^2R_0^2$
- Acceleration by slope: $L/t^2 = gH/L$

At the end of the rain $L = 1.4R_0 a^{1/2}$

Difference between 2D and Axi

Axisymmetric geometry has more area to store grains, so shorter runout and lower height

$$L = \left\{ egin{array}{ccc} 1.4 a^{1/2} & \mathsf{Axi} \ 1.1 a^{2/3} & \mathsf{2D} \end{array}
ight.$$

at the end of the rain $t = \sqrt{2gH_0}$.

Final runout c3 times greater, but moving at $2\sqrt{gR_0}$.

However deceleration of $2\sqrt{gR_0}$ at μg would only double runout. Need further.

Propagation of a wave, 2D

Extends runout before deceleration.

 $5.8 < t < 8.1, \qquad a = 9.1$ 2 1.8 1.6 1.4 1.2 $\frac{h(x,t)}{u(x,t)}$ 1 0.8 0.6 0.4 0.2 0 2 6 8 10 12 0 4 14

A trapezoidal wave?

1: stopped u(x,t) = 0, $h(x,t) = h(x,\infty)$

2: flat $h(x,t) = h_2(t)$, $u(x,t) = \alpha(t)(x - x_1(t))$

3: constant velocity $u(x,t) = u_3$, at angle of repose $h(x,t) = \mu(x_3(t) - x)$

Region 2

Flat $h(x,t) = h_2(t)$, so decelerate with μg

Linear velocity $u(x,t) = \alpha(x-x_1)$ is constant deceleration if

$$\alpha(t) = \frac{1}{t - t_0}$$
 and $x_1(t) = x_0 + \frac{1}{2}\mu g(t - t_0)^2$

And height decrease as $h_2(t) = h_0 \alpha(t)$

Test by plotting $h(x,t)/\alpha$ and $u(x,t)/\alpha$ vs $x-x_1$

Test solution for *h* **in region 2**

 $\alpha(t) = \frac{1}{t - t_0}$ and $x_1(t) = x_0 + \frac{1}{2}\mu g(t - t_0)^2$

Deceleration at μg

Test solution for *u* **in region 2**

 $\alpha(t) = \frac{1}{t - t_0}$ and $x_1(t) = x_0 + \frac{1}{2}\mu g(t - t_0)^2$

Deceleration at μg

Shape of final deposit, region 1

Final deposit

$$h(x,\infty) = h_2(t)$$
 at $x = x_1(t)$

So

Extension of runout during wave propagation

Initial length $L = 1.1R_0 a^{2/3}$ of region 3 where $u = u_3 = 2\sqrt{gR_0} a^{1/6}$

Accelerate at μg through L in time $\sqrt{\frac{2L}{\mu g}}$

Distance travelled at u_3 is $2.2R_0 a^{1/2}$

Deceleration, **2D**

8.3 < t < 14, a = 9.1

 $\frac{h(x,t)}{u(x,t)}$

Deceleration:

Small slope, so initial conditions decelerate with μg :

$$u = u_0(x_0) - \mu g(t - t_0)$$

$$x = x_0 + u_0(x_0)(t - t_0) - \frac{1}{2}\mu g(t - t_0)^2$$

Extension of runout during deceleration

Decelerate from $u = u_3 = 2\sqrt{gR_0}a^{1/6}$

at μg

in distance $3.5a^{1/3}$

Axisymmetric similar

Propagating wave 4.3 < t < 6.3 a = 9.14.5 4 3.5 3 2.5 2 1.5 1 0.5 0 6 2 3 5 6 7 8

Deceleration

6.5 < t < 11 **a** = 9.1

Axisymmetric similar

Deceleration

A little explanation?

Three phases

Leaving the base
 Runout $1.1R_0a^{2/3}$ (2D) $1.5R_0a^{1/2}$ (Axi)
 Propagating wave $+2.2R_0a^{1/2}$ $+1.6R_0a^{1/4}$ Deceleration

$$+3.5R_0a^{1/3}$$
 $+3.7R_0$

A little explanation?

Three phases, 2D

 \boldsymbol{a}

Lajeunesse, Monnier & Homsy 2005 PoF

Linear over stationary Approx plug near front

Linear profile on top of stationary layer

Lajeunesse, Monnier & Homsy 2005 PoFLube, Huppert, Freundt & Sparks 2006 PoF

$$\gamma = 0.3\sqrt{g/d}$$
, indpt *a* $\gamma = 7\sqrt{g/H_0}$, indpt *a*

Linear profile in another geometry

Evolving profile?

If flat and u(y,t)

Hydrostatic : $\sigma_{zz} = -\rho g(h - z)$ Friction : $\sigma_{xz} = -\mu \sigma_{zz}$ So $\rho \frac{\partial u}{\partial t} = \frac{\partial \sigma_{xz}}{\partial z} = -\mu \rho g$

Solution

$$u(y,t) = \max\left(u(y,0) - \mu gt, 0\right)$$

Linear profile remains linear at same shear-rate, depth of stationary layer grows at $\dot{y} = \mu g/\gamma$

- Linear profile over stationary layer
 - just final stopping?
 - Iow flux?
- Plug profile near front
 - high flux?
 - main runout?
- Change shallow-water $\beta = \frac{4}{3}$
 - shorter runout?
 - change K also?