Elastic liquids: so common, yet so strange

John Hinch

CMS-DAMTP, University of Cambridge

April 13, 2012

Outline

- Review of simple fluids and simple solids
- Complex fluids
- ► Tension in the streamlines
- Inhibition of stretching
- ► A little theory

Elastic liquids

Something between liquids and solids, but ...

More complicated than simple viscous fluids, More complicated than simple elastic solids.

Simple fluids

Studied for 100+ years

Well understood: library of behaviour; equations, techniques to solve, numerical approach; experimental techniques

Some examples (fluid = air)

More examples of simple fluids

Historic subjects at IMFT: hydroelectricity, porous media

And today, combustion, bio-mechanics, environment

Simple solids

Studied for 100+ years

Well understood: library of behaviour, equations, techniques to solve, numerical approach, experimental techniques.

An important example: aeroelasticity

More examples of simple fluids

Propagation of waves: tsunami

More examples of simple solids: structures (FE)

More examples of simple solids: fatigue

simple fluids and simple solids

Well understood: library of behaviour, equations, techniques to solve, numerical approach, experimental techniques.

One can predict the values of forces and velocities. One can predict their instabilities.

More examples of simple solids

Composite materials and Earthquakes

Complex fluids

- Elastic liquids following subject
- Yield fluids

Granular media

Elastic liquids

► Where & What

Plastic products, food processing, biological fluids

► Why & When

Microstructure of several microns.

- Relaxation time for a nanometre $= 10^{-9}$ s.
- Time \propto volume. Hence 1s for a micron.
- Review without maths

Climbing a rotation rod

In the kitchen: Whisking egg whites

Bird, Armstrong & Hassager 1987, Vol 1 (2nd ed) pg 62

Tension in the streamlines \longrightarrow "hoop-stress" (perpendicular force) \longrightarrow squeezing liquid towards the centre, so climbs

Tension in the streamlines

- Rod climbing
- Secondary flows
- Migration to form chains of particles
- Migration to the centreline of a pipe
- Vertical alignment of sedimenting fibres
- Stabilisation of jets
- Instability of co-extrusions
- Negative lift force
- Source of tension in the streamlines

Secondary flow

Bird, Armstrong & Hassager 1987, Vol 1 (2nd ed) pg 70

Tension in the streamlines \longrightarrow "hoop-stress"

Opposite direction to effect of inertia

Particle migration to form chains

Bird, Armstrong & Hassager 1987, Vol 1 (2nd ed) pg 87

Tension in the streamlines \longrightarrow "hoop-stress" \longrightarrow brings particles together

Also: migration to the centreline of a pipe, and alignment of fibres with gravity

Stabilisation of jets

Newtonian jet

Non-Newtonian jet (200ppm PEO)

Hoyt & Taylor 1977 JFM

Tension in streamlines near the surface \longrightarrow increase effective surface tension

For fire fighting,

and for stopping explosive aerosols of petrol

Instability in co-extrusion

Negative lift force

Anti-Bernoulli

$$p - \frac{1}{2}Ggu^2 = \text{const}$$

Dollet, Aubouy & Graner 2005 PRL

Source of tension in streamlines

Tension in the streamlines

- Rod climbing
- Secondary flows
- Migration to form chains of particles
- Migration to the centreline of a pipe
- Vertical alignment of sedimenting fibres
- Stabilisation of jets
- Instability of co-extrusions
- ► Negative lift force
- Source of tension in the streamlines

Inhibition of stretching

- Contraction
- ► Flow past a sphere
- M1 project
- Polymers in DoD ink-jet printing
- ► Effect on a capillary liquid bridge

Contraction from a large tube to a small tube

Cartalos & Piau 1992 JNNFM 92

Y (s-1)

Flow past a sphere

Arigo, Rajagopalan, Shapley & McKinley 1995 JNNFM

also negative wake

M1 project to measure the extensional viscosity

'The' extensional viscosity does not exist

... M1 project

Polymer in a DoD ink-jet printer

- inhibition of stretching

©2007 Steve Hoath, Ian Hutchings & Graham Martin

Capillary squeezing of a liquid bridge

Example: for eating

Results for the model fluids Oldroyd-B and FENE

Exp: Liang & Mackley 1994 JNNFM Thy: Entov & Hinch 1997 JNNFM

Inhibition of stretching

- ► Flow through a contraction
- Flow past a sphere
- M1 project
- Polymers in a Drop-on-Demand ink-jet printer
- ► Effect on a capillary bridge

A little theory

- Oldroyd-B model fluid
- FENE modification
- ► FENE predictions for flow past a sphere
- ... "birefringent strands"
- ► FENE predictions for flow through a contraction

Oldroyd-B model

Simplest combination of viscosity $+ \mbox{ elasticity }$

$$\sigma = -p\mathbf{I} + 2\mu_0\mathbf{E} + G\mathbf{A}$$
stress viscous elastic
$$\mu_0 \text{ viscosity } G \text{ elastic modulus}$$

with A microstructure

$$\frac{D\mathbf{A}}{Dt} = \mathbf{A} \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot \mathbf{A} - \frac{1}{\tau} (\mathbf{A} - \mathbf{I})$$
deformation by the flow relaxation

 τ relaxation time

FENE modification

Finite Extension Nonlinear Elasticity

- to avoid certain infinities

$$\frac{DA}{Dt} = A \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot A - \frac{\mathbf{f}}{\tau} (A - \mathbf{I})$$

$$\sigma = -\rho \mathbf{I} + 2\mu_0 \mathbf{E} + G \mathbf{f} \mathbf{A}$$

$$f = \frac{L^2}{L^2 - \operatorname{trace} A} \qquad \text{for} \quad A < L^2$$

 \ldots theory of "birefringent strands"

Harlen, Rallison & Chilcott 1990 JNNFM

FENE Prediction for flow past a sphere

long thin wake with high stresses

Chilcott & Rallison 1988 JNNFM

Cressely & Hocquart 1980 Opt Act

"Birefringent strand"

FENE predictions for flow through a contraction

Increase in pressure drop + long upstream vortex

& HINCH 1997 JUNEW

Cartalos & Piau 1992 JNNFM

Also cusps at the rear of shampoo bubbles

A little theory

- Oldroyd-B model fluid
- FENE modification
- ► FENE predictions for flow past a sphere
- ... "birefringent strands"
- ► FENE predictions for flow through a contraction

Outline

- Review of simple fluids and simple solids
- Complex fluids
- Tension in the streamlines
- Resistance to deformation
- ► A little theory

Elastic liquids

Studied for 20 years.

Well understood now?

- library of behaviour? beginning
- equations? some models
- techniques to solve them beginning
- numerical approach? Lagrangian finite elements
- experimental techniques? standardised test liquids